Насыбуллина Эльвира Ильгизовна

ДЕЙСТВИЕ МЕТАБОЛИТОВ ОКСИДА АЗОТА И КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ НА ГЕМОГЛОБИН

Специальность 03.01.04 Биохимия

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата биологических наук

Работа выполнена в лаборатории биохимии азотфиксации и метаболизма азота Института биохимии им. А.Н. Баха Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук»

Научный руководитель:

доктор биологических наук Топунов Алексей Федорович

Официальные оппоненты:

Панасенко Олег Михайлович доктор биологических наук, профессор, Федеральное государственное бюджетное учреждение «Федеральный научно-клинический физикоцентр химической медицины» Федерального медикобиологического агентства, заведующий лабораторией физико-химических методов исследования и анализа

Тимошин Александр Анатольевич, доктор биологических наук, Федеральное государственное бюджетное учреждение «Российский кардиологический научно-производственный комплекс» Министерства здравоохранения Российской Федерации, ведущий научный сотрудник лаборатории физико-химических методов исследования

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский педагогический государственный университет» (МПГУ)

Защита	состоится	« 22 »	<u> </u>	2017	7 г.	в <u>15</u> часо	ов на	зас	едании
диссертационно	ого совета	(Д 002.24	1 7.01) по	защите д	циссер	таций на	соиска	ние	ученой
степени доктор	а наук, на с	соискание	ученой ст	епени кан	ндидат	а наук на	базе Ф	едер	ального
государственно	го учр	еждения	«Феде	еральный	И	сследоват	ельский	Й	центр
«Фундаменталь	ные основ	вы биотех	::HOЛОГИИ»	Российс	кой а	кадемии	наук»	по	адресу:
119071, Москва, Ленинский проспект, дом 33, строение 2.									

С диссертацией можно ознакомиться в Библиотеке биологической литературы РАН по адресу: 119071, Москва, Ленинский проспект, дом 33, строение 1 и на сайте http://fbras.ru//.

Автореферат разослан «» 2017 года.	
Учёный секретарь диссертационного совета,	
кандидат биологических наук	А.Ф. Орловский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

При метаболических нарушениях, приводящих к гипергликемии и кетонемии, в организме человека и животных накапливаются активные карбонильные соединения и конечные продукты гликирования аминокислот и белков [Kalapos, 2008a; Allaman et al., 2015]. Влияние этих соединений на физиологическую активность оксида азота (NO) является основной причиной нарушения вазодилятации при диабете [Turkseven et al., 2014; Alomar et al., 2016]. Важным фактором, влияющим на функционирование NO в сердечно-сосудистой системе, является гемоглобин (Hb). Гемоглобин может участвовать в образовании и в элиминации NO [Gardner, 2012; Tejero, Gladwin , 2014], а также выступать в качестве переносчика NO в форме нитрозотиолов [Zhang et al., 2016; Космачевская, Топунов, 2009] или динитрозильных комплексов негемового железа [Тимошин с соавт., 2007; Timoshin et al., 2007; Shumaev et al., 2008a,b; Ванин, 2015].

Особенности метаболизма эритроцитов увеличивают вероятность сочетания окислительного, нитрозативного и карбонильного стрессов. В энергетическом отношении эритроциты зависимы от потребления глюкозы, которая метаболизируется в реакциях гликолиза и пентозофосфатного шунта. Интермедиаты этих реакций — триозофосфаты являются основным источником активного дикарбонильного соединения — метилглиоксаля (MG) [Richard, 1993; Allaman et al., 2015]. В результате спонтанного автоокисления Нь в эритроцитах постоянно образуется супероксид-анион $({\rm O_2}^{\bullet})$. Этот процесс может усиливаться в условиях гипоксии, когда возрастает дезоксигенация Нь и конформационное R-T равновесие сдвигается в сторону Т-формы, более склонной к автоокислению [Bonaventura et al., 2013]. При этом дезоксиНb, восстанавливая нитриты и нитросоединения, может продуцировать NO. Одновременное образование в эритроцитах O_2^{\bullet} и NO, а также наличие восстановленного железа в составе гемовой группы и железа, высвободившегося при окислительной деградации Нь, создают предпосылки для развития окислительного и нитрозативного стрессов. В этих условиях образуются нитрозотиолы и динитрозильные комплексы железа (ДНКЖ), связанные с гемоглобином, и низкомолекулярные, связанные с глутатионом [Shumaev et al., 2008]. К тому же, длительный период жизни гемоглобина повышает вероятность образования связанных с Нь конечных продуктов гликирования [Nathan et al., 2007]. Изменения структуры, заряда и конформации белка вследствие гликирования аминокислотных остатков благоприятствуют связыванию Нь с компонентами мембран и цитоскелета [Громов с соавт, 1988; Токтамысова, Биржанова, 1991; Datta et al., 2008], а также образованию агрегатов из денатурированных и сшитых молекул Hb (телец Гейнца) [Webster, 1949]. Повышенное количество мембраносвязанного Hb может быть связано со многими болезнями системы крови, вызванными нарушениями в системе антиоксидантной защиты и действием различных ксенобиотиков [Shaklai, Ranney, 1978; Shaklai, Sharma, 1981; Sharma, Premachandra, 1991].

Роль доноров NO при карбонильном стрессе неоднозначна. С одной стороны, NO может непосредственно взаимодействовать с продуктами неферментативного гликирования и предотвращать их дальнейшие превращения, с другой стороны, метаболиты NO могут участвовать в генерации свободнорадикальных интермедиатов. Поэтому представлялось актуальным изучение влияния оксида азота на процессы неферментативного гликирования и функционирование гемоглобина в условиях карбонильного стресса.

Цель и задачи исследования

Целью работы было изучение образования редокс-активных интермедиатов реакции неферментативного гликирования в присутствии метаболитов и доноров оксида азота и их действия на гемоглобин.

Для достижения этой цели были поставлены следующие задачи:

- 1) Изучить влияние метаболитов оксида азота на протекание реакции неферментативного гликирования (реакция Майяра) и образование в ходе этой реакции редокс-активных соединений.
- 2) Изучить влияние интермедиатов реакции Майяра на окислительную модификацию гемоглобина и его присоединение к компонентам мембраны.
- 3) Разработать методику определения мембраносвязанного гемоглобина в эритроцитах.
- 4) Изучить влияние метаболитов оксида азота на образование мембраносвязанного гемоглобина в эритроцитах, обработанных метилглиоксалем.
- 5) Разработать компьютерную экспертную систему для диагностики анемий и гемоглобинопатий различного генеза с использованием данных о мембраносвязанном гемоглобине.

Научная новизна работы

В системе, моделирующей карбонильный стресс, впервые было показано увеличение выхода свободнорадикальных интермедиатов под действием нитрозотиолов. Эти редоксактивные соединения вызывали нитрозилирование гемоглобина и нитрование винильной группы порфирина, а также присоединение гемоглобина к компонентам мембраны. Было установлено, что продукты взаимодействия метилглиоксаля с аминокислотными остатками гемоглобина и карнозина могут быть лигандами динитрозильных комплексов железа (ДНКЖ). До настоящего исследования в научной литературе отсутствовали факты, описывающие способность оснований Шиффа участвовать в формировании ДНКЖ. Образование подобных

комплексов может быть одной из причин ингибирования реакции неферментативного гликирования метаболитами оксида азота.

Впервые было предложено рассматривать уровень связанного с мембранами гемоглобина (МВНb) в качестве дополнительного критерия оценки функционального состояния эритроцитов при хронической эндогенной интоксикации.

Научно-практическая значимость работы

В настояшее время рассматривается возможность использования показателя реактивности эритроцитов в качестве индикатора стрессового состояния или адаптационной реакции организма. Мы предлагаем производить оценку реактивности эритроцитов по содержанию MBHb. Уровень MBHb в крови также можно использовать в клинической качестве дополнительного биохимического показателя диагностике в выраженности интоксикационного синдрома. Разработанная В рамках данной работы спектрофотометрической оценки доли MBHb в эритроцитах может быть полезна для этих целей. Предложенная пилотная версия компьютерной экспертной системы, учитывающая данные о МВНь, может послужить основой для создания диагностического комплекса, направленного на повышение оперативности и точности при постановке диагноза в сфере заболеваний системы крови.

Выявленное цитопротекторное действие физиологических доз глутатионовых ДНКЖ может служить предпосылкой для применения этих метаболитов NO в качестве стабилизаторов эритроцитов при проведении фотодинамической терапии и при консервировании донорской крови. Использование этих комплексов может изменить характеристики зависимости «дозаответ» эритроцитов, а также увеличить зону стабилизации.

Полученные в работе ДНКЖ с карнозиновыми лигандами можно рассматривать как потенциально новый класс фармакологических препаратов, функциональные группы которого обладают синергетическим терапевтическим действием и позволяют корректировать метаболизм оксида азота и эффективно защищать клетки сердечно-сосудистой системы и нервной ткани при окислительном и нитрозативном стрессах.

Положения диссертации, выносимые на защиту.

- 1. Установлено, что физиологические метаболиты оксида азота ингибируют реакцию неферментативного гликирования аминокислотных остатков гемоглобина и карнозина, индуцированную метилглиоксалем. Показано образование динитрозильных комплексов железа с продуктами модификации гемоглобина и карнозина метилглиоксалем. Формирование ДНКЖ является одним из механизмов антигликирующего действия метаболитов оксида азота.
- 2. Нитрозоглутатион при карбонильном стрессе стимулирует образование редоксактивных соединений, которые могут быть нитрозилирующими и нитрующими агентами и

вызывать окислительную модификацию метгемоглобина и его связывание с мембранами эритроцита.

3.Установлен диапазон нормальных значений для мембраносвязанного гемоглобина: 3,3% — 4,9%. Среди обследованных онкологических больных, которым была назначена химиотерапия, несоответствие норме уровня МВНb наблюдалось у 61%, в то время как в контрольной группе эта величина составляла 36%.

4. Разработана пилотная версия компьютерной экспертной системы для диагностики анемий у онкобольных, учитывающая данные о содержании мембраносвязанного гемоглобина.

<u>Личный вклад диссертанта.</u> Представленные в диссертационной работе экспериментальные данные получены лично автором, либо при его непосредственном участии на всех этапах исследований, включая планирование и проведение экспериментов, обработку, оформление и публикацию результатов.

Связь с государственными программами. Работа выполнена в рамках государственной темы «Влияние активных метаболитов оксида азота и редокс-активных интермедиатов карбонильного стресса на функционирование гемоглобинов» (№ государственной регистрации 01201351362) и была поддержана Российским фондом фундаментальных исследований (гранты 12-04-01809, 13-04-00967, 14-04-01710), Российским гуманитарным научным фондом (грант 15-36-01024) и Федеральной целевой программой «Научные и научно-педагогические кадры инновационной России» (Госконтракт № П808).

<u>Публикации.</u> По материалам диссертационной работы опубликовано 11 печатных работ, в том числе 4 статьи в журналах, рекомендованных ВАК РФ.

Апробация работы. Основные результаты работы были представлены на XIX и XXIII международных конференциях «Новые информационные технологии в медицине, биологии, фармакологии и экологии» (Ялта-Гурзуф, Крым, 2011, 2015); V международной научной конференции «Химия, структура и функция биомолекул» (Минск, Белоруссия, 2014); IV Международной молодежной научной школе-конференции «Современные проблемы физики и технологий» (Москва, 2015); Научной сессии НИЯУ МИФИ-2015» (Москва, 2015); III межрегиональной научно-практической конференции «Диагностика и лечение анемий в XXI веке» (Рязань, 2015). Работа была представлена на межлабораторном семинаре Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук» 26 декабря 2016 г.

<u>Структура и объем работы.</u> Диссертация включает введение, обзор литературы, состоящий из 4 разделов, описание материалов и методов исследования, главу «Результаты и их обсуждение», состоящую из 4 разделов, заключение, выводы, список цитируемой литературы.

Работа изложена на 151 страницах, иллюстрирована 52 рисунками, включает 9 таблиц. Список литературы состоит из 350 источников.

Сокращения, принятые в тексте. МG — метилглиоксаль, NO — оксид азота, metHb, охуНb, HbNO, Hb-[Fe^{IV}=O], MBHb — окисленный, оксигенированный, нитрозилированный, оксоферрил- и мембраносвязанный гемоглобин, GSNO — нитрозоглутатион, Cys-NO — нитрозоцистеин, ДНКЖ-GS — ДНКЖ с глутатионовыми лигандами, ДНКЖ-PO₄ — ДНКЖ с фосфатными лигандами, PAPA/NO и DETA/NO — синтетические доноры NO, СОД — супероксиддисмутаза, МТТ — дифенилтетразолий бромид.

СОДЕРЖАНИЕ РАБОТЫ

Обзор литературы. В обзоре литературы описаны реакции гемоглобина с метаболитами оксида азота, переход гемоглобина в мембраносвязанное состояние, понятие карбонильного стресса, пути образования активных карбонильных соединений в живых системах и способы их детоксикации. Особое внимание уделено причинам возникновения карбонильного стресса в эритроцитах и роли гемоглобина в развитии последствий карбонильного стресса. Также рассмотрен адсорбционный механизм регуляции клеточного метаболизма. Один из разделов посвящен описанию компьютерных экспертных систем в медицинской диагностике.

Материалы и методы.

Синтез метаболитов NO. GSNO и Cys-NO синтезировали путем смешения эквимолярных количеств глутатиона или N-ацетил-L-цистеина и NaNO₂. Концентрацию нитрозотиолов определяли, используя ε_{335} =774 M^{-1} см⁻¹. ДНКЖ с различными лигандами (фосфат, глутатион, цистеин) синтезировали по ранее разработанной методике [Shumaev et al., 2008b]. ДНКЖ с карнозиновыми лигандами получали путем последовательного смешивания следующих компонентов: 65 мкл 0,1 М HEPES (pH 7,5), 50 мкл 0,5 М раствора карнозина, 5 мкл 8% раствора метилглиоксаля, 5 мкл 20 мМ FeSO₄ и 5 мкл 100 мМ Соли Ангели. Гемоглобиновые и альбуминовые ДНКЖ получали добавлением фосфатных ДНКЖ к раствору белков в фосфатном буфере в молярном соотношении Hb : ДНКЖ = 1 : 2,4.

Определение концентрации гемоглобина и его разных форм

Общий гемоглобин определяли цианидным методом [Depositar et al., 1972] или пиридингемохромным методом Riggs'а в нашей модификации [Космачевская, Топунов, 2007]. Количество восстановленного гемоглобина определяли по доли оксигенированного гемоглобина (ε_{576} =14,6 мМ $^{-1}$ см $^{-1}$). Образование нитрозилгемоглобина ($HbFe-[^{II}NO]$) регистрировали по увеличению поглощения в области 572 нм (один из максимумов) относительно поглощения при 592 нм (ближайшая изобестическая точка), а также с помощью спектроскопии ЭПР. Образование нитригемоглобина (NO_2 -Hb) оценивали по характерной для

этой формы полосе поглощения восстановленного гемохромогена при 582 нм в 30% щелочном растворе пиридина [Otsuka et al., 2010]. *Мембраносвязанный гемоглобин (МВНь)* определяли по разработанному нами методу. Для анализа брали 100 мкл крови, производили отмывку эритроцитов от компонентов плазмы в 1 мл фосфатно-солевого буфера и затем полностью гемолизировали. Тени эритроцитов, содержащие гемоглобин, отделяли центрифугированием при 5000 g в течение 5 мин. К двукратно отмытым теням добавляли 100 мкл воды и 450 мкл 30% щелочного раствора пиридина. После полного растворения осадка определяли концентрацию связанного с мембранами гемоглобина пиридингемохромным методом. Для этого непосредственно перед измерением раствор Нb в пиридине восстанавливали дитионитом натрия. Измеряли оптическое поглощение восстановленного пиридингемохромогена при 556 и 539 нм и рассчитывали концентрацию гемопротеидов по формуле С(мг/мл) = (A₅₅₆ - A₅₃₉) × 3,86.

Эксперименты с суспензией эритроцитов. В работе использовали эритроциты, полученные из крови крыс линии Wistar и из донорской крови, стабилизированной цитратом натрия. Эритроциты отмывали от компонентов плазмы изотоническим раствором в фосфатносолевом буфере. Отмытые эритроциты использовали для приготовления суспензии с гематокритом 0,2 (содержание гемоглобина 50 ± 3 мг/мл). В качестве среды инкубирования использовали тот же раствор, дополнительно содержащий 5 мМ глюкозы.

Гликированный гемоглобин получали инкубацией metHb (20 мг/мл) с 4 мМ МС в деаэрированной аргоном среде при 37 °C в течение 20 и 113 ч.

Накопление флуоресцирующих продуктов неферментативного гликирования гемоглобина (пентозидины и аргпиримидины) оценивали по автофлуоресценции аддуктов в области 385-395 нм, при длине волны возбуждения 320 нм на спектрофлуориметре Shimadzu RF-5301 PC (Япония).

Антиоксидантную активность ДНКЖ оценивали по скорости восстановления Мb- $[Fe^{IV}=O]$. Реакционная смесь включала 0,1 М HEPES (pH 7,5), 100 мкМ metMb из скелетных мышц лошади, 1 мМ H_2O_2 и 5 мкл 4 мМ раствора ДНКЖ или продуктов распада ДНКЖ.

SDS-электрофорез проводили в блоках 10% ПААГ размером 150×150×1 мл по методу Лэммли. Реакционная смесь содержала 0,3 мМ Нb быка в 0,01 М К-фосфатном буфере (pH 7,2), 0,02 % NaN₃, 6 мМ МG и 1,5 мМ GSNO. Инкубацию осуществляли в микроаэрофильных условиях при 37 °C. На гель наносили по 10 мкл образца белка. Белки в геле фиксировали и окрашивали раствором Кумасси бриллиантового синего R-250.

Регистрацию спектров ЭПР проводили на спектрометре E-109E (Varian, США). Условия регистрации при комнатной температуре: СВЧ мощность 20 мВт, СВ-частота 9,15 ГГц, амплитуда СВЧ модуляции 0,2 мТл для сигналов органических свободных радикалов или 0,4 мТл для сигналов нитрозилированного Нв. В качестве стандарта использовали сигнал ЭПР

стабильного синтетического свободного радикала — дифенилпикрилгидразина [Шумаев с соавт., 2009]. Условия регистрации при температуре жидкого азота: СВЧ мощность 10 мВт, СВ-частота 9,33 ГГц, амплитуда СВЧ модуляции 0,16 мТл, постоянная времени 0,032.

Основные результаты исследования и их обсуждение

1. Влияние метаболитов оксида азота на реакцию неферментативного гликирования (реакцию Майяра)

1.1. Ингибирование образования флуоресцирующих продуктов неферментативного гликирования донорами оксида азота

Имеются данные, что интермедиаты реакции Майяра предотвращают нитрозилирование гема, перехватывая NO [Bucala et al., 1991; Asahi et. al., 2000]. В условиях нашего эксперимента GSNO ингибировал образование флуоресцирующих конечных продуктов гликирования, возникающих в ходе инкубации metHb c MG (рис. 1). Причём этот эффект практически не зависел от содержания кислорода, что указывает на прямое взаимодействие NO или GSNO с интермедиатами реакции Майяра.

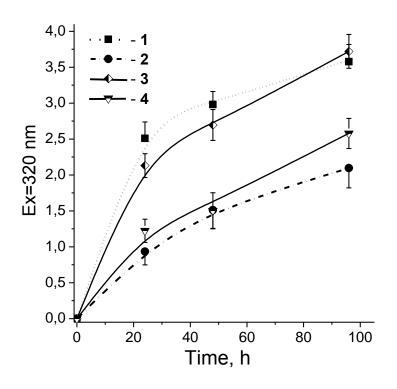


Рис. 1. Кинетика накопления флуоресцирующих глубокого продуктов гемоглобина. гликирования Инкубация metHb c MG - (1, 3)или в присутствии комбинации MG и GSNO – (2, 4). Инкубация проводилась в аэробных – (1, 2) или микроаэрофильных условиях − (3, 4). \(\lambda\) возб=320 нм и \(\lambda\) исп=450 HM.

Также было показано ингибирующее влияние GSNO на образование белковых межмолекулярных связей,

образуемых в процессе реакции неферментативного гликирования. Инкубация metHb с MG в течение семи суток приводила к появлению кросс-сшивок между субъединицами гемоглобина. Присутствие в реакционной смеси GSNO снижало количество агрегированных субъединиц. Этот эффект продемонстрирован с помощью SDS-электрофореза в ПААГ (рис. 2).

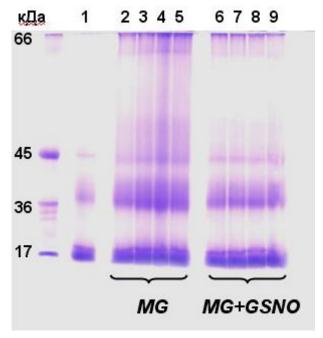


Рис. 2. SDS-электрофорез гемоглобина в 10% ПААГ. Реакционная смесь содержала 0,3 мМ Нb в 0,01 М К-фосфатном буфере (рН 7,2) с 6 мМ МС и 1,5 мМ GSNO. Инкубацию осуществляли в микроаэрофильных условиях при 37 °С. Слева указаны массы маркеров. Обозначения трэков:

1 - metHb,

2 и 6 − 24 ч инкубации,

3 и 7 − 48 ч инкубации,

4 и 8 - 72 ч инкубации,

5 и 9 – 168 ч инкубации.

Ингибирующее действие метаболитов NO на ход реакции неферментативного гликирования может быть связано с образованием аддуктов оснований Шиффа с оксидом азота (С- и N-нитрозаминов) и нитрозильных комплексов железа. Для проверки этого предположения было исследовано образование флуоресцирующих продуктов в системе, содержащей метилглиоксаль и карнозин. Дипептид карнозин (β-аланил-*L*-гистидин) обладает способностью реагировать с активными карбонильными соединениями, а также продуктами их взаимодействия с белками [Battah et al., 2002; Hipkiss, Brownson, 2000; Aldini et al., 2005; Reddy et al., 2005]. Добавление ДНКЖ с фосфатными лигандами (ДНКЖ-РО₄) и соли Ангели (донор нитроксила – HNO/NO⁻) к системе MG-карнозин существенно ингибировало образование флуоресцирующих продуктов реакции (рис. 3, столбцы 4, 5 и 6). Наибольшее ингибирующее действие наблюдалось в среде, содержащей нитроксил и ионы двухвалентного железа (рис. 3). ДНКЖ-РО₄ в наших экспериментах можно рассматривать как донор Fe–NO группы [Vanin, van Faassen, 2007], которая может переходить на белковые лиганды (цистеин, имидазол), образуя более прочные комплексы.

Предположение, что включение реакционноспособных аминокислотных остатков в состав ДНКЖ препятствует их участию в реакции неферментативного гликирования, мы проверили в экспериментах с цистеином. Есть данные, что тиолы являются наиболее доступными мишенями действия дикарбонильных соединений [Lo et. al., 1994; Zeng, Davies, 2005, 2006]. Скорость образования тиогемиацеталя в реакции цистеина с метилглиоксалем была на порядок выше по сравнению с цистеиновыми ДНКЖ. На основании этих результатов можно заключить, что связывание белковых тиоловых групп в динитрозильных комплексах также будет препятствовать их модификации активными карбонильными соединениями.

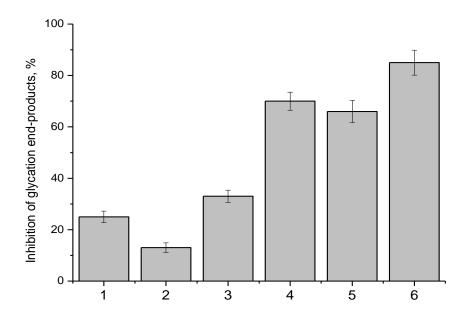


Рис. 3. Влияние доноров NO на образование флуоресцирующих продуктов в реакции метилглиоксаля с карнозином. Состав реакционной смеси: 0,1 M HEPES (pH 7,6), 2 мМ карнозина, 4 мМ MG, 2 мМ NO-доноров: 1 - PAPA/NO, $2 - NaNO_2$, 3 - GSNO, $4 - соль Ангели, <math>5 - ДНКЖ-PO_4$ -, 6 - соль Ангели + 2,4 мМ FeSO₄. Инкубация при 37 °C в течение 4,5 ч. λ возб = 334 нм, λ исп = 440 нм. За 100% принято количество флуоресцирующих конечных продуктов гликирования в контрольном варианте (без доноров NO).

1.2. Образование динитрозильных комплексов железа с продуктами модификации гемоглобина и карнозина метилглиоксалем

Ранее было показано, что лигандами для ДНКЖ могут быть основания Шиффа, образующиеся в реакции карбонильных групп метилглиоксаля с α-аминогруппой *L*-лизина [Шумаев с соавт, 2013]. Из литературных источников известна способность оснований Шиффа формировать комплексы с металлами переменной валентности [Моһаmed et al., 2006; Yousif et al., 2013]. В экспериментах с гемоглобином, модифицированным метилглиоксалем, было показано образование ДНКЖ нового типа с g-фактором ~ 2,05 (рис. 4). При гликировании метилглиоксалем аминокислотных остатков гемоглобина образуются лиганды, способные связывать ионы железа и формировать нитрозильные комплексы. С увеличением степени модификации гемоглобина спектр ЭПР становится более ассиметричным (рис. 4, спектр 3). Такое изменение формы спектра может быть связано с изменением в лигандной сфере ДНКЖ. В случае альбуминовых ДНКЖ появление аналогичного максимума с g-фактором ~ 2,05 происходит в результате замены тиольного лиганда на остаток гистидина белковой цепи, причем железо комплексов образует координационную связь с азотом имидазольного кольца. В наших экспериментах новым лигандом ДНКЖ может быть азот основания Шиффа. Кроме того,

метилглиоксаль может модифицировать остаток цистеина-93 β-субъединицы гемоглобина с образованием тиогемиацеталя.

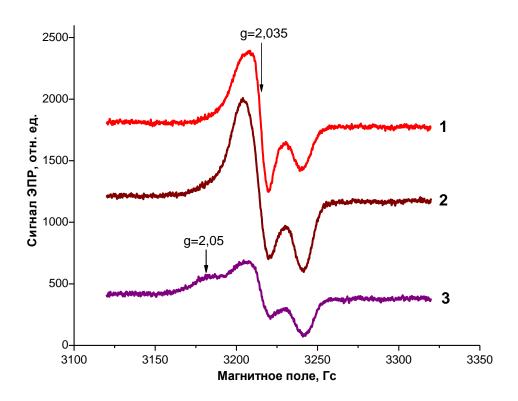
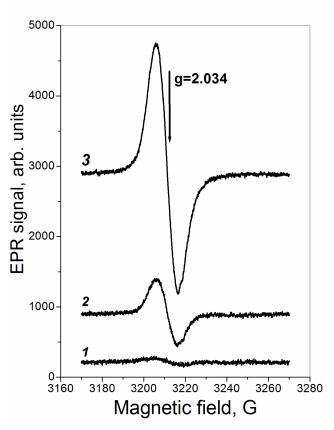



Рис. 4. Спектры ЭПР ДНКЖ, связанных с нативным и модифицированным метилглиоксалем гемоглобином. Состав реакционной смеси: 1 – нативный metHb + 270 мкМ ДНКЖ- PO_4^- , 2 – модифицированный Hb + 600 мкМ ДНКЖ- PO_4^- , 3 – модифицированный Hb + 600 мкМ ДНКЖ- PO_4^- .

При добавлении ДНКЖ-РО₄ к раствору карнозина в реакционной смеси образуется синглетный сигнал ЭПР, принадлежащий новому типу динитрозильных комплексов железа. Аналогичный сигнал возникал в реакционной смеси, содержащей карнозин, ионы двухвалентного железа и соль Ангели (рис.5, спектры 2 и 3). Сигнал ЭПР карнозиновых ДНКЖ характеризуется g-фактором, равным 2,034, и не имеет выраженной сверхтонкой структуры. В системе, содержащей HNO/NO⁻, ионы Fe²⁺ и избыток карнозина, наблюдался линейный рост концентрации карнозиновых ДНКЖ.

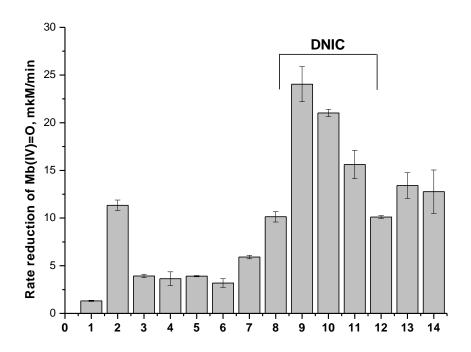
Метилглиоксаль дозозависимо увеличивал скорость образования комплексов. Нами было установлено, что при взаимодействии карнозина и метилглиоксаля образуется продукт с максимумом поглощения при 334 нм, который характерен для азометиновой группы перекрестно-сшитых оснований Шиффа, представляющих собой продукт взаимодействия аминогрупп двух молекул карнозина с карбонильными группами MG [Yim et al., 1995; Zhou et al., 1999]. Исходя из результатов экспериментов был сделан вывод, что перекрестно-сшитые

основания Шиффа являются более эффективным лигандом при формировании ДНКЖ, по сравнению с индивидуальным карнозином.

Рис. 5. Спектры ЭПР ДНКЖ с карнозиновыми лигандами. Состав реакционной смеси: 1 — HEPES (pH 7,6), 1 мМ FeSO₄, 5 мМ соли Ангели; 2 — HEPES (pH 7,6), 100 мМ карнозина, 1 мМ FeSO₄, 5 мМ соли Ангели; 3 — то же, что и (2) + 250 мМ мG. Спектры регистрировали при 25 °C после 8-минутного инкубирования.

Ранее было показано кооперативное антиоксидантное действие тиолсодержащих ДНКЖ и их компонентов [Шумаев с соавт., 2004, 2006; Shumaev et al., 2008b]. Аналогичных свойств можно ожидать и от карнозиновых ДНКЖ, так как и карнозин и

оксид азота могут перехватывать свободные радикалы. Поэтому на следующем этапе наших исследований было изучено антиоксидантное действие карнозиновых ДНКЖ в сравнении с их компонентами и продуктами реакции Майяра (рис. 6).


В заключение отметим, что образование ДНКЖ, связанных с продуктами модификации аминокислот, пептидов и белков метилглиоксалем, можно рассматривать как механизм адаптации к высоким уровням активных карбонильных соединений, накапливающихся в условиях гипергликемии. Нельзя исключить, что эти комплексы также могут участвовать в сигнальных и регуляторных путях NO, а также защищать от окислительного и карбонильного стрессов.

2. Нитрозилирование и нитрование гемоглобина в условиях, моделирующих реакцию Майяра

2.1. Взаимодействие нитрозоглутатиона с гемоглобином в присутствии метилглиоксаля

Влияние процессов неферментативного гликирования на метаболизм Sнитрозоглутатиона представляет особый интерес, так как с нитрозотиолами связаны многие

физиологические функции NO [Angelo et al., 2008]. На рис. 7. представлены кривые восстановления гемоглобина и нитрозилирования его гемовой группы в используемой модельной системе Lys-MG в микроаэрофильных условиях и в кислородсодержащей среде. В обоих случаях в ходе реакции Майяра происходило восстановление метгемоглобина (metHb) до дезоксиНb и нитрозилирование железа гема под действием GSNO с образованием Hb-[Fe^{II}NO] (рис. 7). В системе, не содержавшей MG и лизин, нитрозилирование было существенно меньшим и составляло 8±1,2 и 20±2,3% в зависимости от содержания кислорода.

Рис. 6. Скорость восстановления оксоферрилМb (Mb-[Fe^{IV}=O]) до метмиоглобина динитрозильными комплексами железа с фосфатными и карнозиновыми лигандами, а также их компонентами. 1 – контроль, 2 – GSH, 3 – FeSO₄, 4 – NaNO₂, 5 – карнозин, 6 – MG, 7 – карнозин + MG, 8 – карнозин + MG + соль Ангели, 9 – ДНКЖ-PO₄-, 10 – ДНКЖ-PO₄- + карнозин, 11 – карнозиновые ДНКЖ, 12 – карнозин + MG (24 ч при 20 °C), 13 – продукты распада карнозиновых ДНКЖ и 14 – фосфатных ДНКЖ.

В кислородсодержащей среде восстановление metHb в системе с лизином и MG происходило с лаг-периодом, который сохранялся и в случае нитрозилирования Hb (рис. 7, В). В микроаэрофильных условиях на кривых восстановления и нитрозилирования лаг-фаза практически отсутствовала (рис. 7, А). Таким образом, присутствие кислорода в системе влияет на скорость и характер восстановления и, соответственно, нитрозилирования metHb в первые минуты протекания реакции Майяра. Мы также показали, что спустя 50 мин от начала реакции лизина с MG восстановление и нитрозилирование metHb в кислородсодержащей среде происходило без лаг-фазы, что указывает на то, что ингибирующее влияние кислорода проявляется только на первой стадии протекания реакции Майяра.

Рис. 7. Кинетики нитрозилирования и восстановления метгемоглобина. Микроаэрофильные условия (**A**) (продувка реакционной смеси аргоном), кислородсодержащая среда (**B**). Состав реакционной среды: 1-0.1 М К-фосфатный буфер (рН 8,5), 0.05 мМ метНb, 3.2 мМ GSNO; 2- то же что и (1) + 40 мМ L-лизина, 40 мМ MG; 3- то же что и (2) + СОД (600 ед/мл); 4- кинетика восстановления метНb в реакционной среде содержавщей L-лизин и MG.

Поскольку реакция Майяра в аэробных условиях сопровождается генерацией O_2 [Шумаев с соавт., 2009], нами было изучено влияние кислорода на восстановительные свойства системы Lys-MG, которые оценивали по восстановлению МТТ. При восстановлении МТТ образуются окрашенные продукты — формазаны, накопление которых служит индикатором образования супероксида. Однако в нашей системе мы наблюдали восстановление МТТ и в микроаэрофильных условиях, причем начальная скорость восстановления МТТ была в 2 раза выше по сравнению с кислородсодержащей средой (табл. 1). Добавление СОД в реакционную систему приводило к увеличению скорости восстановления МТТ (табл. 1.).

Табл. 1. Начальные скорости восстановления МТТ. Реакционная система содержала 0,1 М К-фосфатный буфер (рН 8,5), 0,63 мМ МТТ, 40 мМ L-лизина и 40 мМ метилглиоксаля, 3,2 мМ GSNO и СОД (700 ед/мл).

	Кислородсодержащая	В присутствии	Микроаэрофильные	
	среда	СОД	условия	
Lys-MG	0,176	0,250	0,415	
Lys-MG-GSNO	0,203	0,225	0,392	
GSNO	0,034		0,019	

Этот факт служит подтверждением того, что кислород, окисляя семидион метилглиоксаля и диалкилимин Шиффова основания, снижает уровень восстановительных эквивалентов. Восстановление МТТ в микроаэрофильных условиях показывает, что этот процесс обусловлен не только супероксидом, но и другими свободнорадикальными интермедиатами. На рис. 8 приведены результаты ЭПР-спектроскопии продуктов реакции лизина с МС. Спектры ЭПР этих свободнорадикальных интермедиатов характеризуются многокомпонентной сверхтонкой структурой и являются суперпозицией спектров катионрадикала диалкилимина и анион-радикала метилглиоксаля [Lee et al., 1998]. В наших экспериментах выход органических свободных радикалов, образующихся в системе Lys-MG, увеличивался под действием GSNO и metHb (рис. 8, кривые 2 и 3). Вероятно, GSNO, NO и metHb окисляют основание Шиффа (диалкилимин) до катион-радикала, восстанавливаясь при этом до анион-радикала GS-NO, нитроксильного аниона (NO⁻) и дезоксиHb соответственно, в следующих реакциях:

диалкилимин + GS-NO
$$\longrightarrow$$
 диалкилимин $^{+\bullet}$ + GS-NO $^{-}$ диалкилимин + NO \longleftrightarrow диалкилимин $^{+\bullet}$ + NO $^{-}$ диалкилимин + Hb-[Fe $^{\rm III}$] \longrightarrow диалкилимин $^{+\bullet}$ + Hb-[Fe $^{\rm III}$]

В то же время можно предположить, что GS-NO⁻ и NO⁻ восстанавливают MG до семидиона. Однако, было показано, что NO⁻ ингибирует образование свободных радикалов в реакции лизина с MG (рис. 8 A, кривая 4). Из этого следует, что NO⁻ вряд ли может взаимодействовать с MG. Кроме того, возможно, что избыток NO⁻ смещает равновесие в реакции в сторону образования диалкилимина.

Мы полагаем, что химия исследованных процессов связана с образованием анионрадикала GSNO, который стимулирует образование свободных радикалов шиффовых оснований и метилглиоксаля, а также восстановливает и нитрозилирует metHb в реакции:

$$Hb-[Fe^{III}] + GSNO^{\bullet-} \longrightarrow Hb-[Fe^{II}NO] + GS^{\bullet}$$

Кривые нитрозилирования metHb в реакционной среде Lys-MG-GSNO смещены влево (рис. 7, кривые 2 и 3), что свидетельствует об образовании в этой системе интермедиатов GSNO, которые служат восстановительными и нитрозилирующими агентами для metHb. На взаимодействие metHb с редокс-активными производными GSNO указывает и тот факт, что в исследуемой системе, содержавшей также metHb, уровень свободнорадикальных интермедиатов увеличивается в меньшей степени, чем в среде без metHb (рис. 8, кривые 2 и 3).

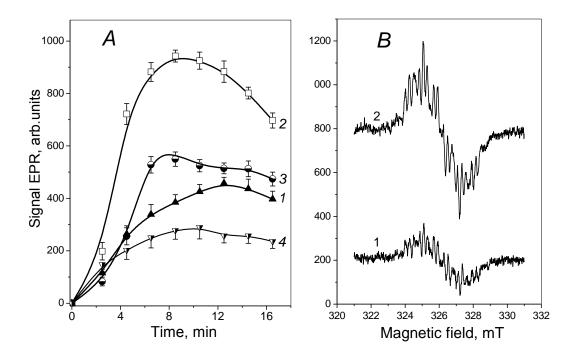
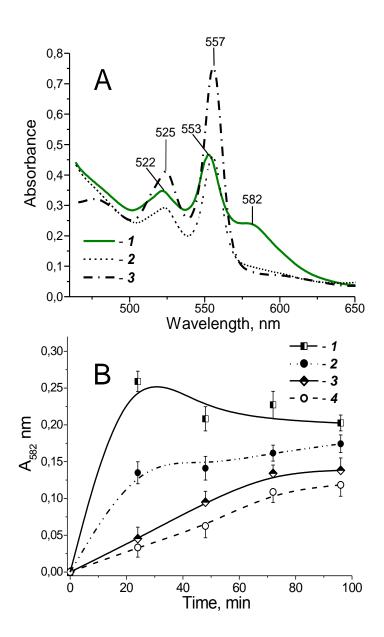



Рис. 8. Влияние GSNO, метНb и нитроксильного аниона на образование семидиона метилглиоксаля и катион радикала диалкилимина в реакции лизина и метилглиоксаля. (A) — Кинетики образования свободнорадикальных продуктов в реакционной смеси, содержащей 1-L-лизин и MG в концентрации 100 мM; 2-в той же смеси в присутствии 3,2 мM GSNO, 3-0,2 мM metHb и 4-4 мM соли Ангели. (B) — Суперпозиция спектров ЭПР органических свободных радикалов в среде с MG и лизином – (1), то же в присутствии GSNO – (2). Спектры регистрировались в условиях продувки азотом через 6 мин инкубации реакционной смеси при комнатной температуре.

2.2. Образование нитригемоглобина в системе, содержащей метилглиоксаль.

В наших исследованиях совместное действие GSNO и MG на metHb приводило к возникновению «зеленой» формы гемоглобина. Известно, что «зеленая» форма Hb появляется в ходе взаимодействия metHb с нитритом в аэробных условиях [Otsuka et al., 2010]. При этом в результате ковалентной модификации винильной группы порфирина metHb превращается в нитриметгемоглобин. Спектр оптического поглощения нитриHb приведен на рис. 9 (панель A, кривая 1). Существенно, что в отсутствие MG как GSNO, так и нитрит, не вызывали превращения metHb в нитриHb. Выход нитриHb снижался при низкой концентрации кислорода (рис. 9, панель B, кривые 2 и 4). Замена GSNO нитритом приводила к снижению скорости образования нитриHb (рис. 8, панель B, кривые 3 и 4).

Нитрование гемоглобина обусловлено образованием в исследуемой системе O_2 и активных форм азота (ONOO и NO $_2$) [Lushinger et al., 2003; Goldstein, Merenyi, 2008; Schopfer et al., 2009]. Было показано, что СОД ингибирует формирование нитриНь под действием GSNO и MG. Наблюдаемое действие СОД может быть обусловлено ингибированием образования

Рис. 9. Образование нитригемоглобина в системе MG-GSNO-metHb. (**A**) Спектры поглощения нитриНb — (1), гемоглобина — (2, 3) в щелочном растворе пиридина. Состав реакционной среды: metHb инкубировавшийся 24 часа в аэробных условиях в 25 мМ Кфосфатном буфере, рН 7,4, содержашем 20 мМ MG и 5 мМ GSNO — (1); (2) — то же что и (1) + 1200 Ед/мл СОД; (3) — metHb в среде без метилглиоксаля и GSNO. (**B**) Кинетики образования нитриНb в системах, содержащих: 1 — metHb, 20 мМ MG и 5 мМ GSNO в 25 мМ К-фосфатного буфере, рН 7,4, аэробная инкубация; 2 — то же, что и (1), но инкубация в микроаэрофильных условиях; 3 то же что (1), но вместо GSNO добавлен 5 мМ нитрит натрия; 4 — то же что (3), но инкубация в микроаэрофильных условиях. Концентрация metHb во всех модельных системах составляла 0,3 мМ.

активных нитрующих агентов в результате элиминации O_2^{\bullet} . Механизм реакции нитрования Hb, вероятно, связан с образованием интермедиатов, образующихся в реакции ONOO $^{\bullet}$ с железом гема [Lushinger et al., 2003; Romero et al., 2003; Pietraforte et al., 2003; Schopfer et al, 2009]. Мы предположили, что предшественником нитриHb является оксоферрил форма гемоглобина

(порфирин $-Fe^{IV}=O$). Вероятно, в исследуемой нами модельной системе нитриHb образуется в следующих реакциях:

порфирин
$$^{\bullet+}$$
–[Fe^{IV}=O] + NO $_2^{\bullet-}$ \longrightarrow NO $_2$ -порфирин–[Fe^{IV}=O] NO $_2$ -порфирин–[Fe^{IV}=O] + NO $_2$ -порфирин–[Fe^{II}OH]+ NO $_2^{-}$ NO $_2$ -порфирин–[Fe^{IV}=O] + NO $_2^{-}$ + H $^+$ \longrightarrow NO $_2$ -порфирин $^{\bullet+}$ –[Fe^{III}OH] + NO $_2^{\bullet-}$

Наше предположение согласуется с фактами [Nicolis et al., 2007], где было обнаружено образование нитринейроглобина в системе, содержащей NO_2^- и пероксид водорода.

Полученные данные указывают, что как в нитрозилировании железа гема, так и в нитровании винильных групп порфирина играют важную роль интермедиаты реакции гликирования гемоглобина. К таким редокс-активным соединениям можно отнести продукты перегруппировки Амадори, основания Шиффа и их свободнорадикальные формы, а также свободные радикалы дикарбонильных соединений [Asahi et. al., 2000; Turk 2010; Yim et. al., 1995; 2001; Шумаев с соавт., 2009].

3. Переход гемоглобина из растворимого в мембраносвязанное состояние

3.1. Разработка методики определения мембраносвязанного гемоглобина

В интактных эритроцитах гемоглобин может существовать в растворимой и мембраносвязанной формах (МВНb). Повышенное количество МВНb может быть связано со многими болезнями системы крови, вызванными не только нарушениями структуры молекулы гемоглобина, но и нарушениями в системе антиоксидантной защиты и действием различных ксенобиотиков, окислительных и гликирующих агентов [Sharma, Premachandra, 1991; Rogers et al., 2008; van Zwieten et al., 2014].

Применяемые в настоящее время методические подходы для оценки содержания МВНь в эритроцитах являются либо трудоемкими, либо неточными. Поэтому перед нами стала задача разработать простую, чувствительную и недорогостоящую методику измерения МВНь. Прототипами предложенного нами способа послужили два методических спектрофотометрическая оценка MBHb [Nogueira et al., 2015] и метод измерения концентрации гемоглобина в щелочном растворе пиридина, предложенный Riggs'ом [Riggs, 1981]. Суть нашей методики заключается в определении связанного с тенями эритроцитов Hb после полного гемолиза клеток. Для перевода гемоглобина в растворимую форму было предложено использовать 30% щелочной раствор пиридина [Космачевская, Топунов, 2007], что позволило одновременно солюбилизировать мембраны И перевести Hb удобную спектрофотометрической детекции форму — пиридингемохромоген. Разработанная методика имеет хорошую точность, позволяя обнаруживать менее 0,1% MBHb в пробе. Точность определения контролировали 3-кратным анализом одного и того же образца. Максимальный разброс значений МВНь при измерении одного и того же образца (параллельные пробы) не

превышает 10%, что свидетельствует о хорошей сходимости измерений. Разработанная методика была испытана в модельных экспериментах с суспензией эритроцитов и на цельной крови здоровых доноров и пациентов Российского онкологического научного центра им. Н.Н. Блохина (РОНЦ РАМН). Был установлен диапазон нормальных значений для МВНb: 3,3%—4,9%, соответствующий высокой гемолитической устойчивости эритроцитов.

3.2. Взаимосвязь между уровнем МВНь и устойчивостью эритроцитов

В литературе содержатся противоречивые сведения о роли МВНь в формировании устойчивости эритроцитов к гемолизу. По данным одних авторов, связывание Нь с компонентами мембраны является компенсаторно-приспособительным процессом, направленным на стабилизацию мембраны эритроцита [Knutton et al., 1970; Mendanha et al., 2012]. По другим данным, отмечена положительная корреляция между уровнем гемолиза и содержанием МВНь [Luneva et al., 2016].

Для того, чтобы понять, как оба параметра, устойчивость и содержание МВНЬ, связаны между собой, мы провели две серии экспериментов. В первой серии мы изучали дозозависимый гемолиз эритроцитов, индуцированный хлорноватистой кислотой (HOCI/OCI). Кривые, отражающие изменение уровня гемолиза и МВНЬ, были представлены на одном графике (рис. 10). Видно, что одна кривая является как бы зеркальным отражением другой. Такой характер взаиморасположения кривых указывает на существование связи между двумя параметрами. Колебаниям МВНЬ в диапазоне концентраций 3,3 — 4,25% (обозначен штриховкой) соответствует область повышенной устойчивости клеток к гемолизу (снижение SHb). Возрастание гемолиза свыше контрольного уровня сопровождается снижением МВНЬ. Показанное в экспериментах повышение гемолитической устойчивости эритроцитов при действии HOCI/OCI (рис. 10), как мы полагаем, является иллюстрацией неспецифического ответа клетки на действие различных окислителей, ксенобиотиков или биологически активных веществ. Молекулярный механизм этой устойчивости, вероятно, связан с перестройками в мембране и цитоскелете, направленными на увеличение ее жесткости (ригидности).

Известно, что существенный вклад в увеличение жесткости мембраны вносят белковые примембранные слои [Knutton et al., 1970; Mendanha et al., 2012]. Стабилизация эритроцитов также может быть следствием реорганизации метаболических процессов, направленных на оптимизацию энергетических трат.

Было установлено, что ДНКЖ-GS на 55% ингибируют окислительный гемолиз, индуцированный НОСІ/ОСІ⁻. Цитопротекторное действие ДНКЖ может быть связано с антиоксидантным и антирадикальным действием этих комплексов. Однако принимая во внимание используемые в эксперименте низкие микромолярные концентрации ДНКЖ-GS, мы

полагаем, что наиболее вероятно сигнально-регуляторное действие этих комплексов, которое может реализоваться с участием адсорбционного механизма.

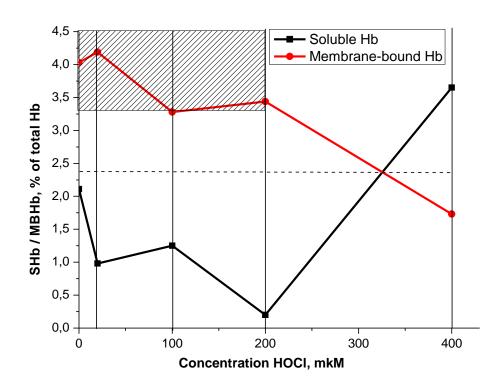
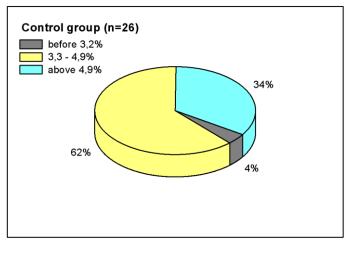



Рис. 10. Взаимосвязь между уровнем МВНb и гемолитической устойчивостью эритроцитов при действии возрастающих концентраций HOCl на суспензию эритроцитов. Нb в растворе — SHb (soluble Hb). Штриховкой выделена область значений МВНb, соответствующих норме.

На следующей стадии было проведено сравнительное исследование образования МВНь у здоровых доноров и онкологических больных с использованием разработанной нами методики. Материал для исследования был предоставлен клинико-диагностической лабораторией РОНЦ РАМН. По данным обобщенной выборки, пациенты, которые получали химиотерапию, характеризуются более высоким уровнем МВНь по сравнению со здоровыми донорами. Анализ уровня МВНь у онкобольных показал, что в 61% случаев наблюдается отклонение от нормы (свыше 4,9 %), что может свидетельствовать о развитии либо компенсаторного процесса, либо хронической эндогенной интоксикации (рис. 11). В контрольной группе отклонение от нормального диапазона наблюдалось у 38% обследованных. Различия носят достоверный характер (t=1,7; p<0,05).

Выборка пациентов включала группу онкологических больных с диагностированной анемией: анемия хронических заболеваний (АХЗ), железодефицитная анемия (ЖД), микроангиопатическая гемолитическая анемия (МГА). Был предпринят сравнительный анализ двух равных выборок: доноры без анемии и пациенты с анемией. Несоответствие норме у

пациентов с анемией наблюдалось в 74% случаев, в контрольной группе — в 35% (t=2,5; p<0,05).

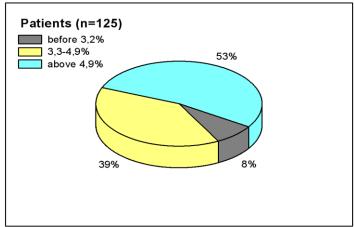


Рис. 11. Распределение обследованных здоровых доноров и онкологических больных по группам в зависимости от уровня МВНb в крови. Желтый сегмент — соответствие норме, голубой — превышение нормы, серый — ниже нормы.

4. Разработка компьютерной экспертной системы для диагностики анемий

Работа по созданию экспертной системы проводилась совместно с кафедрой компьютерных медицинских систем НИЯУ МИФИ и клинико-диагностической лабораторией РОНЦ РАМН. Структура компьютерной экспертной системы для диагностики анемий включает четыре основных блока: модель базы знаний, механизм принятия решений, механизмы ввода и вывода данных. Экспертная система реализована в среде Qt Creator, система управления базами данных: sqlite. В настоящий момент выборка включает 350 пациентов различных половозрастных групп, перенесших онкологические заболевания, с диагностированной анемией (АХЗ, ЖДА или МГА). Экспертная система проводит вероятностную оценку и постановку диагноза на основе метода эталонов. Данный способ оценки был выбран для построения экспертной системы как дающий наиболее точные

результаты при среднем объеме выборки. В табл. 2 представлена часть результатов, иллюстрирующих эффективность работы разработанной экспертной системы.

Табл. 2. Сравнение результатов диагнозов, поставленных в клиникодиагностической лаборатории РОНЦ РАМН и полученных с помощью экспертной системы.

ПАЦИЕНТ	клинико-	ЭКСПІ	ЭКСПЕРТНАЯ СИСТЕМА			
Nº	ДИАГНОСТИЧЕСКАЯ ЛАБОРАТОРИЯ	ЖДА	МГА	AX3		
1	ЖДА	65.85%	12.19%	21.95%		
2	МГА	26.82%	43.90%	29.26%		
3	МГА + ЖДА	33.30%	38.88%	27.77%		
4	_	41.37%	34.48%	24.13%		
5	AX3	41.46%	26.82%	31.70%		
6	АХЗ + ЖДА	41.86%	25.58%	32.55%		
7	МΓА	19.04%	61.90%	19.04%		
8	AX3	26.31%	28.94%	44.73%		
9	АХЗ + ЖДА	43.90%	14.63%	41.46%		
10	AX3	30.76%	30.76%	38.46%		
11	АХЗ + ЖДА	42.85%	28.57%	28.57%		
12		34.78%	30.43%	34.78%		
13	$AX3 + M\Gamma A$	7.14%	47.61%	45.23%		
14	МГА + ЖДА	51.28%	20.51%	28.20%		

По результатам проведенных экспериментов можно утверждать, что система в полной мере реализует все заявленные функции и в большинстве случаев верно определяет диагноз. Экспертная система также содержит возможность работы с базой знаний, а именно просмотр, редактирование, добавление новых элементов, проведение сравнительного анализа и статистическую постановку диагноза на основе имеющихся в базе случаев. Отдельными компонентами системы являются справочник, содержащий необходимую информацию о заболеваниях, методах диагностики и лечения, и глоссарий, включающий в себя все связанные с темой термины и понятия.

ЗАКЛЮЧЕНИЕ

Полученные результаты обобщены в виде схемы, на которой представлены основные пути образования продуктов и свободнорадикальных интермедиатов, возникающих в системе Hb-GSNO-MG (рис. 12). Присутствие в системе кислорода и/или оксида азота определяет характер и степень ковалентной модификации гемоглобина. Эта схема является иллюстрацией сети превращений, сопровождающих обмен метаболитов оксида азота, активных карбонильных соединений и гемоглобина в норме и при патологии. При изучении действия редокс-активных веществ на биологические системы необходимо учитывать их взаимовлияние.

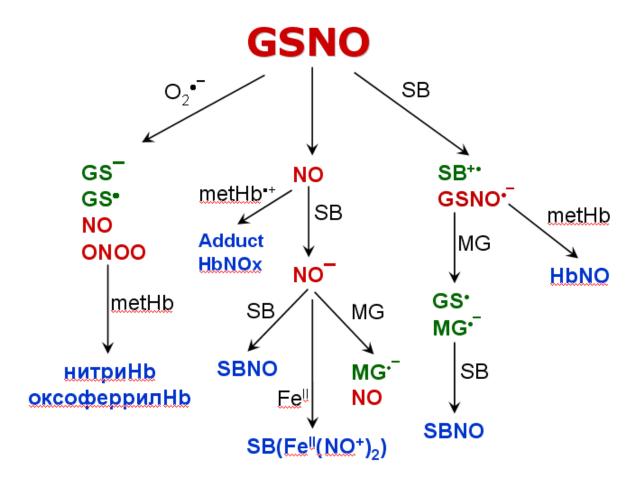


Рис. 12. Набор продуктов и свободнорадикальных интермедиатов, образующихся в реакции нитрозоглутатиона с метилглиоксалем в присутствии гемоглобина. Обозначения: R-SNO — нитрозотиолы (нитрозоглутатион, нитрозоцистеин), MG —метилглиоксаль, SB (Schiff base) — основание Шиффа, SBNO — аддукт основания Шиффа с NO, SB($Fe^{II}(NO^+)_2$) — динитрозильные комплексы железа, связанные с основаниями Шиффа, нитриHb — нитрованный по винильной группе порфиринового кольца гемоглобин, met Hb^{*+} — связанный с гемоглобином катион-радикала основания Шиффа, оксоферрилHb — оксофферильная форма гемоглобина (Hb- $[Fe^{IV}=O]$).

ВЫВОДЫ

- 1) Физиологические метаболиты оксида азота (*S*-нитрозоглутатион, динитрозильные комплексы железа, нитроксильный анион, нитрит анион) ингибируют реакцию неферментативного гликирования аминокислотных остатков гемоглобина и карнозина, индуцированную метилглиоксалем.
- 2) Показано образование динитрозильных комплексов железа с продуктами модификации гемоглобина и карнозина метилглиоксалем. Формирование ДНКЖ является одним из механизмов антигликирующего действия метаболитов оксида азота.
- 3) Нитрозоглутатион в условиях карбонильного стресса стимулирует образование редоксактивных соединений, которые могут быть нитрозилирующими и нитрующими агентами

- для метгемоглобина, а также вызывать окислительную модификацию гемоглобина и его связывание с компонентами мембраны эритроцита.
- 4) Разработана спектрофотометрическая методика оценки доли мембраносвязанного гемоглобина в эритроцитах, позволяющая обнаруживать менее 0,1% МВНb в образце. Установлен диапазон нормальных значений для МВНb: 3,3% 4,9%.
- 5) Среди обследованных онкологических больных, которым была назначена химиотерапия, несоответствие норме уровня МВНь наблюдалось у 61%, в то время как в контрольной группе эта величина составляла 36%. Среди пациентов с диагностированной анемией данный показатель составлял 74%, в контрольной группе 35%.
- 6) Разработана пилотная версия компьютерной экспертной системы для диагностики анемий у онкобольных, учитывающая данные о содержании мембраносвязанного гемоглобина.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в журналах, рекомендованных ВАК РФ:

- Kosmachevskaya O.V., Shumaev K.B., Nasybullina E.I., Gubkina S.A., Topunov A.F. Interaction of S-nitrosoglutathione with methemoglobin under conditions of modeling carbonyl stress. // Hemoglobin. 2013. V. 37. N 3. P. 205-218.
- 2) Kosmachevskaya O.V., Shumaev K.B., **Nasybullina E.I.**, Topunov A.F. Formation of nitriand nitrosylhemoglobin in systems modeling the Maillard reaction. // *Clinical Chemistry and Laboratory Medicine*. 2014. V. 52. N 1. P. 161-168.
- 3) **Насыбуллина** Э.И., Никитаев В.Г., Проничев А.И., Блиндарь В.Н., Космачевская О.В., Топунов А.Ф. Экспертная система диагностики гемоглобинопатий с использованием данных о состоянии крови, эритроцитов и гемоглобина. // Краткие сообщения по физике. 2015. Т. 42. № 7. С. 22-27.
- 4) Shumaev K.B., Kosmachevskaya O.V., **Nasybullina E.I.**, Gromov S.V., Novikov A.A., Topunov A.F. New dinitrosyl iron complexes bound with physiologically active dipeptide carnosine. // *Journal of Biological Inorganic Chemistry*. 2017. V. 22. N 1. P. 153–160.

Тезисы докладов:

1. **Насыбуллина Э.И.**, Космачевская О.В., Шумаев К.Б., Топунов А.Ф. Влияние Sнитрозоглютатиона на модификацию гемоглобина метилглиоксалем. // Труды XIX международной конференции и дискуссионного научного клуба «Новые информационные технологии в медицине, биологии, фармакологии и экологии». Украина, Крым, Ялта-Гурзуф, с 31мая по 10 июня 2011 года. С. 112-113.

- 2. **Насыбуллина** Э.И., Космачевская О.В., Шумаев К.Б., Топунов А.Ф. Переход гемоглобина из растворимого в мембранно-связанное состояние под действием нитрозотиолов и нитритов на эритроциты. // V Международная научная конференция «Химия, структура и функция биомолекул». Сборник материалов. 4-6 июня 2014 г., Минск, Белоруссия. С. 136-137.
- 3. **Насыбуллина Э.И.**, Клюев К.И., Никитаев В.Г., Проничев А.Н., Дмитриева В.В., Блиндарь В.Н., Космачевская О.В., Топунов А.Ф. Разработка компьютерной системы ВLOOD для диагностики гемоглобинопатий. // Сборник материалов III межрегиональной научно-практической конференции «Диагностика и лечение анемий в XXI веке» / ГБОУ ВПО РязГМУ Минздрава России. Рязань, 2015. С. 20-23.
- 4. **Насыбуллина** Э.И., Никитаев В.Г., Блиндарь В.Н., Космачевская О.В., Топунов А.Ф. Компьютерные системы диагностики с использованием данных о состоянии гемоглобина и эритроцитов: пути создания. // Современные проблемы физики и технологий. IVя Международная молодежная научная школа-конференция, 17-22 марта 2015 г.: Тезисы докладов. М.: НИЯУ МИФИ, 2015. Ч. 2. С.44-45.
- 5. **Насыбуллина** Э.И., Космачевская О.В., Шумаев К.Б., Никитаев В.Г., Топунов А.Ф. Система поддержки принятия решений при выявлении гемоглобинопатий: постановка задачи. // Научная сессия НИЯУ МИФИ-2015. Аннотации докладов. М.: Национальный исследовательский ядерный университет «МИФИ», 2015. Том 2. С. 65.
- 6. **Насыбуллина Э.И.**, Никитаев В.Г., Проничев А.И., Блиндарь В.Н., Космачевская О.В., Топунов А.Ф. Диагностика гемоглобинопатий с помощью компьютерных медицинских систем. // Новые информационные технологии в медицине, биологии, фармакологии и экологии: материалы международной конференции. (Гурзуф, с 02 по 12 июня 2015 г.). 2015. Весенняя сессия. С. 75-79.
- Nasybullina E.I., Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. Formation of membrane-bound hemoglobin under influence of nitric oxide metabolites in presence of methylglyoxal. // 12th International Symposium on the Maillard Reaction 2015. Tokyo, Japan. ISMR. Program & Abstract. P. 109.