Успехи биологической химии, т. 56, 2016, с. 25-52

ИССЛЕДОВАНИЯ СТРУКТУРЫ L12/P-ВЫСТУПА РИБОСОМЫ

©2016 г.

И. В. МИТРОШИН, М. Б. ГАРБЕР, А. Г. ГАБДУЛХАКОВ

Институт белка РАН, Пущино, Московская область

I. Введение. II. Номенклатура рибосомных белков. III. Компоненты L12/P-выступа рибосомы. IV. Взаимозаменяемость бокового выступа бактерий, архей и эукариот. V. Кристаллографические исследования L12/P-выступа в составе рибосом. VI. Заключение.

І. ВВЕДЕНИЕ

В 1950-х годах были открыты клеточные органеллы, которые ответственны за биосинтез белка в клетке. Эти органеллы были названы рибосомами. Рибосома представляет собой макромолекулярный рибонуклеопротеидный комплекс. Рибосомная РНК (рРНК) определяет основные структурные и функциональные свойства рибосомы, но для нормального функционирования рибосомы необходимо наличие как рРНК, так и рибосомных белков.

Строение рибосом на ранних этапах исследовалось методами ультрацентрифугирования и электронной микроскопии. Эти исследования показали, что в определенных условиях (например, низкая концентрация ионов магния) рибосома диссоциирует на малую и большую субчастицы. Для большой субчастицы рибосомы характерны три периферических выступа: с одной стороны субчастицы расположен боковой пальцеобразный выступ (L12-выступ в бактериях и Р-выступ в археях и эукариотах), посередине – центральный протуберанец, который можно назвать головкой большой субчастицы, и с другой стороны – боковой L1-выступ [1, 2].

В процессе биосинтеза белка рибосома взаимодействует с матричной РНК (мРНК), транспортными РНК (тРНК), факторами инициа-

Принятые сокращения: pPHK – рибосомная PHK, мPHK – матричная PHK, тPHK – транспортная PHK, IF2 – фактор инициации трансляции 2.

Адрес для корреспонденции: garber@vega.protres.ru

Работа выполнена при поддержке программы президиума РАН «Молекулярная и клеточная биология».

ции, элонгации и терминации трансляции и с другими лигандами [3]. Рабочий цикл рибосомы состоит из трех этапов: инициации, элонгации и терминации. Факторы трансляции способствуют белковому синтезу на каждом этапе рабочего цикла рибосомы. Боковой L12/P-выступ рибосомы способствует взаимодействию рибосомы с факторами элонгации и терминации трансляции, а L12-выступ бактерий участвует еще и в инициации трансляции, увеличивая скорость ассоциации малой и большой субчастиц рибосомы [4]. С помощью криоэлектронной микроскопии и последующей реконструкции структуры рибосомы показано, что в процессе элонгационного цикла рибосомы L12-выступ подвергается различным конформационным перестройкам.

II. НОМЕНКЛАТУРА РИБОСОМНЫХ БЕЛКОВ

Малая и большая рибосомные субчастицы содержат большое число индивидуальных белков. Практически все они представлены одной копией на рибосоме. Первая попытка систематизировать рибосомные белки была основана на стандартном экспериментальном методе, в качестве которого использовался двумерный электрофорез в геле. Этот наиболее удобный метод позволил полностью разделить рибосомные белки по заряду и размеру молекул (рис. 1) [5].

Первоначально рибосомные белки каждого вида организмов имели собственное обозначение, соответствующее их электрофоретическому разделению. В возникшей номенклатуре один и тот же номер мог принадлежать негомологичным белкам различных видов. При сравнении аминокислотных последовательностей рибосомных белков была найдена гомология между белками разных видов, а также было обнаружено, что большая часть рибосомных белков эволюционно консервативна [6]. Это позволило создать первоначальную номенклатуру для консервативных гомологичных белков бактерий, архей и эукариот.

С появлением полученных методами кристаллографии или криоэлектронной микроскопии моделей бактериальных, архейных и эукариотических рибосом отсутствие единого обозначения рибосомных белков стало затруднять сравнительный анализ структур. Для решения этой проблемы, в 2014 году была создана единая номенклатура рибосомных белков всех доменов жизни (таблица) [7]. В основу новой номенклатуры легло обозначение рибосомных белков *E. coli*, поскольку впервые рибосомные белки были выделены именно из этого организма, их аминокислотные последовательности стали известны раньше последовательностей других рибосомных белков,

Рибосомные белки малой субчастицы				Рибосомные белки большой субчастицы					
Новое	Помонии	Старое название		Новое	Помощи	Старое название			
назва- ние#	жизни*	Бакте- рии	Археи	Эука- риоты	назва- ние [#]	домены жизни*	Бакте- рии	Археи	Эука- риоты
bS1	Б	S1	_	—	uL1	БАЭ	L1	L1	L1/L10A^
eS1	AЭ	—	S3ae	S1/S3A^	uL2	БАЭ	L2	L2	L2/L8^
uS2	БАЭ	S2	S2	S0/SA^	uL3	БАЭ	L3	L3	L3
uS3	БАЭ	S3	S3	S3	uL4	БАЭ	L4	L4	L4
uS4	БАЭ	S4	S4	S9	uL5	БАЭ	L5	L5	L11
eS4	AЭ	_	S4e	S4	uL6	БАЭ	L6	L6	L9
uS5	БАЭ	S5	S5	S2	eL6	Э	_	_	L6
bS6	Б	S6	_	_	eL8	AЭ	_	L8e	L8/L7A^
eS6	AЭ	_	S6e	S6	bL9	Б	L9	_	_
uS7	БАЭ	S7	S7	S5	uL10	БАЭ	L10	P0	PO
eS7	Э	_	_	S7	uL11	БАЭ	L11	L11	L12e
uS8	БАЭ	S8	S8	S22/S15A^	bL12	Б	L12	_	_
aS8	A	_	L7ae	_	uL13	БАЭ	L13	L13	L16/L13A^
eS8	AЭ	_	S8e	S8	eL13	AЭ	_	L13e	L13
uS9	БАЭ	S9	S9	S16	uL14	БАЭ	L14	L14	L23
uS10	БАЭ	S10	S10	S20	eL14	AЭ	_	L14e	L14
eS10	Э	_	_	S10	uL15	БАЭ	L15	L15	L28/L27A^
uS11	БАЭ	S11	S11	S14	eL15	AЭ	_	L15e	L15
uS12	БАЭ	S12	S12	S23	uL16	БАЭ	L16	L16	L10
eS12	AЭ	_	S12e	S12	bL17	Б	L17	_	—
uS13	БАЭ	S13	S13	S18	uL18	БАЭ	L18	L18	L5
uS14	БАЭ	S14	S14	S29	eL18	AЭ	_	L18e	L18
uS15	БАЭ	S15	S15	S13	bL19	Б	L19	_	_
bS16	Б	S16	_	_	eL19	AЭ	_	L19e	L19
uS17	БАЭ	S17	S17	S11	bL20	Б	L20	_	_
eS17	AЭ	_	S17e	S17	eL20	AЭ	_	LX	L20/L18A^
bS18	Б	S18	_	_	bL21	Б	L21	_	_
uS19	БАЭ	S19	S19	S15	eL21	AЭ	—	L21e	L21
eS19	AЭ	_	S19e	S19	uL22	БАЭ	L22	L22	L17
bS20	Б	S20	_	_	eL22	Э	_	_	L22
						~			

Таблица.	Старая	и новая	номенкл	атуры	рибосо	мных	белков
	(таблица	взята с и	изменения	ями из ј	работ [7	7, 8]).	

Окончание таблицы см.на сл. стр.

Рибосомные белки малой субчастицы					Рибосомные белки большой субчастицы				
Новое	Полого	Старое название			Новое	п	Старое название		
назва- ние#	домены жизни*	Бакте- рии	Археи	Эука- риоты	назва- ние [#]	домены жизни*	Бакте- рии	Археи	Эука- риоты
bS21	Б	S21			uL23	БАЭ	L23	L23	L25/L23A^
eS21	Э	—	—	S21	uL24	БАЭ	L24	L24	L26
eS24	AЭ	_	S24e	S24	eL24	AЭ	_	L24e	L24
eS25	AЭ	—	S25e	S25	bL25	Б	L25	—	_
eS26	Э	_		S26	bL27	Б	L27	_	_
eS27	AЭ	—	S27e	S27	eL27	Э	_	—	L27
eS28	AЭ	—	S28e	S28	bL28	Б	L28	—	_
eS30	AЭ		S30e	S30	uL29	БАЭ	L29	L29	L35
eS31	AЭ	_	S27ae	S31/ S27A^	eL29	Э	_	_	L29
					uL30	БАЭ	L30	L30	L7
					eL30	AЭ	_	L30e	L30
					bL31	Б	L31	—	_
					eL31	AЭ	_	L31e	L31
					bL32	Б	L32	—	_
					eL32	AЭ	_	L32e	L32
					bL33	Б	L33	—	_
					eL33	AЭ	_	L33e	L33/L35^
					bL34	Б	L34	—	_
					eL34	AЭ	_	L34e	L34
					bL35	Б	L35	—	_
					bL36	Б	L36	—	_
					eL36	Э	—	—	L36
					eL37	AЭ	—	L37e	L37
					eL38	AЭ	_	L38e	L38
					eL39	AЭ	—	L39e	L39
					eL40	AЭ	_	L40e	L40
					eL41	AЭ	—	L41e	L41
					eL42	AЭ	_	L44e	L42/ L36A^
					eL43	AЭ	_	L43e	L43/ L27A^
					P1/P2	AЭ	—	P1	P1/P2

Окончание таблицы

29

b – бактериальный, е – эукариотический, а – архейный, и – универсальный.
* Б – бактерии, А – археи, Э – эукариоты.
^ обозначены дрожжевые/человеческие эукариотические рибосомные белки

а также эти белки были наиболее подробно описаны в литературе. Белкам, которые обнаружены в рибосомах всех доменов жизни, была присвоена приставка «u» (от английского «univesal») и нумерация белков *E. coli*. Бактериальные белки, у которых не обнаружено гомологов среди архей и эукариот, были обозначены приставкой «b» (от английского «bacterial»). Архейным рибосомным белкам, которые не имеют гомологов в бактериальной и эукариотической рибосомах, была приписана приставка «a» (от английского «archaeal»). Приставка «e» (от английского «eukaryotic») была добавлена не только для обозначения эукариотических рибосомных белков, для которых не найдены бактериальные и архейные гомологи, но также и для гомологичных им архейных белков.

В предложенной номенклатуре рибосомные белки L12/P-выступа приобрели новое обозначение. Бактериальный белок L10 и его архейный и эукариотический гомологи P0 было предложено обозначать как uL10, а бактериальный белок L12 – как bL12. В археях и эукариотах не обнаружено гомологов бактериального белка L12, но имеются его функциональные аналоги, называемые белками eP1/P2 в эукариотах и aP1 в археях. Соответственно, этот боковой выступ у архей и эукариот обозначается теперь как P-выступ. Бактериальный и архейный белки L11 и их эукариотический аналог, белок L12е, предложено обозначать как uL11.

Далее в обзоре будет использоваться более подробная номенклатура. Так, чтобы различать «универсальные» белки uL10 и uL11, кроме префикса «u» будут также использоваться префиксы «b», «a» и «е», которые будут обозначать принадлежность белка к бактериям, археям или эукариотам, соответственно.

III. КОМПОНЕНТЫ L12/Р-ВЫСТУПА РИБОСОМЫ

БАКТЕРИАЛЬНЫЕ БЕЛКИ bL10, bL11 И bL12

Рибосомные белки bL10, bL11 и bL12 вместе с фрагментом домена II 23S pPHK образуют характерный морфологический выступ бактериальной рибосомы, называемый L12-выступом. Двух-стадийная обработка большой рибосомной субъединицы *E. coli* 1 M NH₄Cl и 50% этанолом при 0°C и 37°C позволяет полностью удалить эти белки из рибосомы [8].

Рибосомный белок bL12

Рибосомный белок bL12 является одним из первых белков, выделенных из рибосомы. Это единственный белок большой субчастицы рибосомы, который представлен в нескольких копиях [9]. В рибосомах *E. coli* присутствует также ацетилированный вариант этого белка, который по первоначальной номнклатуре был обозначен как рибосомный белок L7 [5]. bL7 является точной копией рибосомного белка bL12, единственным отличием является то, что bL7 ацетилирован по N-концевому остатку серина [10]. Из-за близкого сходства эти белки ранее в литературе упоминались как белок bL7/L12. Соотношение белков bL7: bL12 в клетке не постоянно и зависит от фазы роста клеток. В ранней логарифмической фазе роста клеток *E. coli* в рибосомах присутствие белка bL7 минимально. Увеличение его количества наблюдается при переходе из логарифмической фазы роста клеток в стационарную фазу [11, 12].

В процессе инициации трансляции белок bL12 необходим для узнавания фактора инициации трансляции 2 (IF2) в комплексе с ГТФ в составе 30S преинициаторного комплекса. Результатом такого взаимодействия является увеличение скорости ассоциации малой и большой рибосомных субчастиц [4].

Скорость трансляции и уровень ошибок в процессе биосинтеза белка на рибосомах зависят от наличия белка bL12 [13, 14]. Удаление этого рибосомного белка из рибосомы затрудняет связывание факторов элонгации EF1A и EF2 с рибосомой [15] и затрагивает другие фактор-зависимые функции, например, связывание аминоацил-тРНК с A-сайтом рибосомы, транслокацию, и, как следствие, гидролиз ГТФ [16, 17].

Белок bL12 обладает уникальными свойствами среди бактериальных рибосомных белков. Помимо того что bL12 является мультикопийным белком, его изоэлектрическая точка находится в кислой области (pH 4.8) [18]. В водном растворе изолированный белок bL12 существует только в виде димера [19] или тетрамера [20].

Рибосомный белок bL12 состоит из двух доменов и длинной гибкой перетяжки [21–23]. С-концевой домен белка bL12 (bL12CTD) ответственен за взаимодействие с факторами трансляции [24, 25], а N-концевой домен белка bL12 (bL12NTD) – за димеризацию и связывание с рибосомным белком bL10 [21]. N- и С-концевые домены bL12 соединены между собой гибкой перетяжкой, которая обеспечивает подвижность молекулы белка [26]. Длина этой перетяжки влияет не только на подвижность двух доменов друг относительно друга, но

И.В.Ми	прошин	и	соавт.
--------	--------	---	--------

и на связывание факторов элонгации, гидролиз ГТФ на рибосоме, скорость и точность трансляции [27, 28]. Удаление этого участка приводит к инактивации белка bL12 [28].

В 1980 году был закристаллизован С-концевой домен белка bL12 из *E. coli* и определена его структура с разрешением 2.6 Å [29]. Это была первая кристаллическая структура рибосомного белка. Значительно позднее появилась пространственная структура полноразмерного белка bL12 из *Thermotoga maritima* с разрешением 2.0 Å [30]. bL12NTD содержит две коротких спирали α 1 и α 2. Длинная шарнирная спираль α 3 представляет собой перетяжку, которая отделяет N-концевой домен от глобулярного C-концевого домена. Эта спираль образована 20 аминокислотными остатками, преимущественно гидрофобными. С-концевой домен белка bL12 имеет плотную упаковку и состоит из трех-тяжевого анитипараллельного β -листа, окруженного с одной стороны тремя α -спиралями [30].

В 2004 году определена пространственная структура димера белка bL7, N-ацетилированного варианта белка bL12 из *E. coli*, методом ядерного магнитного резонанса в растворе (ЯМР) [26]. Белок bL7 находится в вытянутой конформации. Данная структура димера белка bL7 сильно отличается от кристаллической структуры белка bL12 из *T. maritima* в области перетяжки. Гибкая перетяжка в структуре каждого мономера белка bL7 не имеет определенной структурной укладки. Определенная методом ЯМР структура димера белка bL7 позволила определить способ димеризации белка в растворе (рис. 2). Димеризация белка bL7 происходит за счет контакта двух антипараллельных V-образных α - α -шпилек N-концевого домена, которые образуют симметричный четырех-спиральный узел.

На основании полученных структур белка bL12 из *T. maritima* и димера белка bL7 из *E. coli* была предложена модель молекулярного переключения между двумя состояниями белка. Эта модель предполагает, что участок в области перетяжки белка bL12 может выполнять роль молекулярного переключателя: молекула принимает или «закрытую», компактную конформацию, когда фактор элонгации связан с рибосомой, или «открытую», вытянутую конформацию после гидролиза ГТФ и освобождения фактора элонгации из рибосомы [26].

Димеры белка bL12 связываются с рибосомным белком bL10, образуя в растворе прочный комплекс рибосомных белков bL10-bL12. Термостабильность белков bL10 и bL12 в комплексе повышается по сравнению с индивидуальным состоянием [31]. Комплекс bL10-bL12 из *E. coli* остается стабильным в присутствии 6 М мочевины при значении pH 4.6. В связи с этим при систематизации рибосомных

Рис. 2. Структурное сравнение способов димеризации эукариотических белков eP1/P2, архейного белка aP1 и бактериального белка bL12 (рисунок с небольшими изменениями взят из работы [34]).

белков методом двумерного электрофореза сохранившийся в денатурирующих условиях комплекс белков bL10-bL12 был ошибочно принят за индивидуальный белок, которому было присвоено название L8 [32].

Для комплекса рибосомных белков bL10-bL12 из E. coli было установлено соотношение белков bL10 и bL12 как 1:4 методами изотопного разведения [33], равновестного ультрацентрифугирования и количественного анализа пятен белков на электрофореграмме [31]. Поэтому долгое время считалось, что бактериальный комплекс рибосомных белков bL10-bL12 может существовать только в виде пентамера. Появление кристаллической структуры рибосомного комплекса bL10-bL12NTD из Т. maritima изменило представление о соотношении белков bL10 и bL12. В данной структуре комплекса шесть молекул N-концевого домена белка bL12 образовали с одной молекулой белка bL10 гептамерный комплекс [34]. В связи с этим было выдвинуто предположение, что разница между соотношением белков в bL10-bL12 комплексах зависит от природы организма, из которого выделены белки, и дополнительная аминокислотная последовательность в С-концевом домене белка bL10 термофильных бактерий может быть местом связывания для третьего димера белка bL12 [35]. Результаты, полученные методом масс-спектрометрии, подтвердили это предположение. Было показано, что комплексы bL10-bL12 из мезофильных бактерий являются пентамерными, а из термофильных бактерий – исключительно гептамерными [35, 36].

Рибосомный белок bL10

Рибосомный белок bL10 играет роль моста между димерами белка bL12 и рибосомой. С-концевая часть белка bL10 мезофильных бактерий содержит два независимых сайта связывания для димеров белка bL12, тогда как N-концевой частью белок bL10 взаимодействует с 23S pPHK [22].

Кристаллическая структура комплекса рибосомного белка bL10 с димерами N-концевого домена белка bL12 из T. maritima была определена с разрешением 2.3 Å [34]. Белок bL10 состоит из двух доменов: N-концевого РНК-связывающего домена и С-концевого домена, с которым связывается белок bL12. N-концевой домен имеет плотную упаковку и содержит α/β мотив. С-концевой домен белка bL10 образован длинной и гибкой С-концевой α-спиралью (спираль α8). Спираль α8 изгибается дважды, формируя три сегмента из 10 аминокислотных остатков. Каждый сегмент связывает один димер bL12NTD, поэтому в области контакта белков bL10 и bL12 можно выделить три практически идентичных элемента [34]. Между N- и С-концевым доменами белка bL10 находится, так называемый, «центр вращения». Благодаря этому «центру вращения» обеспечивается высокая подвижность спирали α8 с димерами bL12NTD относительно РНК-связывающего домена, необходимая для функциональной активности бокового L12-выступа [34].

Место связывания белка bL10 с рибосомой расположено на поверхности большой субчастицы рибосомы. Методом химического пробинга был определен основной участок связывания белка bL10, который расположен в домене II 23S PHK и включает спирали H42-44 [37]. Чтобы локализовать сайт связывания белка bL10 с 23S pPHK было проведено наложение по консервативному РНК-связывающему домену известной структуры бактериального белка bL10 из T. mari*tima* на структуру двух N-концевых α-спиралей архейного белка aL10, которая определена в составе 50S рибосомной субчастицы из археи Haloarcula marismortui [34, 38]. На основании этих данных обнаружено, что наибольшее количество контактов образуется между спиралями α1 и α2 белка bL10 и спиралью H42 23S pPHK, что хорошо согласуется с данными химического пробинга [34, 37]. Стоит отметить, что большая часть контактов белка bL10 с 23S pPHK приходится на сахарофосфатный остов рРНК. Вероятно, пространственная укладка рРНК играет ключевую роль в узнавании места связывания белка uL10 в рибосомах всех организмов [34].

Гены бактериальных рибосомных белков bL10 и bL12 расположены в одном опероне. Рибосомный белок bL10 в составе комплекса bL10-bL12 является трансляционным репрессором своего оперона и связывается с мРНК выше инициаторного кодона гена белка bL10 [39, 40].

При анализе pPHK в кристаллической структуре большой субчастицы рибосомы из *Deinococcus radiodurans* в районе ГТФазного центра был выделен консенсусный мотив в спирали H42 23S pPHK, называемый «излом-поворот» (от английского «kink-turn motif»), который, возможно, вносит основной вклад в узнавание pPHK белком bL10 [41, 42]. мPHK гена *rplJ* из *E. coli* потенциально может содержать такой же мотив [43]. Предполагается, что мPHK и pPHK взаимодействуют с белком bL10 схожим образом.

Рибосомный белок bL11 связывается с 23S pPHK рядом с сайтом связывания белка bL10. Связывание белков bL10 и bL11 происходит кооперативно [44]. Кооперативный эффект может увеличивать сродство bL10 к pPHK в 100 раз [43]. Возможно, что кооперативное связывание bL10 и bL11 обусловлено конформационными изменениями в структуре pPHK [34]. Несмотря на то, что в экспериментах *in vitro* мPHK и pPHK связывались с белком bL10 с одинаковым сродством, 100-кратный кооперативный эффект связывания bL10 и bL11 с pPHK гарантирует, что рибосомы будут практически полностью заняты комплексом белков bL10-bL12 [43].

Рибосомный белок bL11

Рибосомный белок bL11 является необходимым компонентом рибосомной 50S субчастицы и расположен в основании L12-выступа. Мутантные штаммы клеток *Bacillus megaterium*, лишенные белка bL11, жизнеспособны, но их рост замедлен более чем в два раза по сравнению с клетками штамма дикого типа [45]. Белок bL11 выполняет схожую с белком bL12 функцию на рибосоме – участвует во взаимодействии рибосомы с факторами элонгации EF1A и EF2, с факторами терминации RF1 и RF2, способствует ассоциации субчастиц рибосомы, а также стимулирует гидролиз ГТФ [46]–[48].

В настоящее время определены пространственные структуры полноразмерного белка bL11 из *T. maritima* в свободном состоянии методом ЯМР в растворе [49] и в комплексе с фрагментом 23S pPHK методом рентгеноструктурного анализа с разрешением 2.6 Å [50], а также структура 50S субчастицы рибосомы из *Deinococcus radiodurans* в комплексе с антибиотиком тиострептоном, в которой визуализирован белок bL11, с разрешением 3.3 Å [51].

Рибосомный белок bL11 состоит из N- и C-концевых глобулярных доменов, которые соединены короткой перетяжкой. Спираль α1 N-концевого домена белка bL11 имеет консервативный остаток пролина (Pro22, нумерация по *T. maritima*), с которым взаимодействуют антибиотики тиазольного класса (например, тиострептон и микрококцин). Перетяжка между доменами bL11 образована консенсусным мотивом из трех аминокислотных остатков (Thr72–Pro73–Pro74). Структура C-концевого домена (bL11CTD) имеет характерную особенность, а именно протяженную неупорядоченную петлю (84–96 а. о.). Эта петля вовлечена в PHK-белковое взаимодействие и подвержена конформационным изменениям при связывании pPHK [49, 50].

С помощью С-концевого домена белок bL11 взаимодействует с большой рибосомной РНК. Методом связывания на фильтрах установлено, что константа диссоциации для белка и pPHK равна 1.2×10⁻⁹ М [52]. С-концевой домен белка bL11 связывается с малым желобком 23S рРНК, образованным спиралями Н43-44. РНК-связывающая поверхность белка bL11 образована спиралью α5, N-концевой частью спирали $\alpha 3$, а также петлями $\alpha 3$ – $\beta 4$ и $\alpha 4$ – $\alpha 5$, которые расположены по бокам спирали α5. Спираль α5 расположена вдоль малого желобка 23S pPHK, образуя наибольшее количество контактов. Петли α3-β4 и α4-α5 при связывании с рРНК приобретают упорядоченную структуру, которая повторяет поверхность малого желобка рРНК [50]. Больше половины водородных связей комплекса образовано между сахарофосфатным остовом рРНК и основной цепью bL11CTD. Этот факт указывает на то, что пространственная укладка 23S рРНК играет основную роль в узнавании места связывания белком bL11. С помощью биофизических экспериментов показано, что белок bL11 стабилизирует третичную структуру рРНК посредством С-концевого домена [53]. N-концевой домен белка bL11 (bL11NTD) участвует во взаимодействии с факторами трансляции.

Рибосомный комплекс белка bL11 с 23S pPHK служит мишенью для тиазольного класса антибиотиков [54]. При связывании с рибосомой тиострептон блокирует, а микрококцин – стимулирует гидролиз ГТФ на EF2 [55]. Основной сайт связывания тиострептона/ микрококцина расположен в щели между спиралью α1 bL11NTD и 1067/1095 участком pPHK. Таким образом, антибиотик тиострептон блокирует функционально важные структурные перестройки bL11 с помощью образования стабильного комплекса bL11–pPHK–тиострептон.

БЕЛКИ ЭУКАРИОТИЧЕКОГО И АРХЕЙНОГО Р-ВЫСТУПА

Эукариотические и архейные рибосомы содержат боковой Р-выступ, структурная организация которого аналогична бактериальному L12-выступу. Эукариотический рибосомный Р-выступ образован двумя типами Р-белков и белком eL11. Белок eL10 относится к первому типу Р-белков (ранее обозначался как P0) [56]. Второй тип включает небольшие кислые белки eP1/P2 размером около 11 кДа [57]. Р-белки образуют между собой пентамерный комплекс eL10–eP1/ P2, в котором два гетеродимера eP1/P2 связываются с белком eL10. Эукариотический Р-выступ является необходимым компонентом рибосомы, а белок eL10 жизненно важен для роста клеток [58].

В археях Р-выступ состоит из рибосомных белков aL11, aL10 и aP1. Архейные белки aL10 и aP1 по аминокислотной последовательности и размеру намного ближе к эукариотическим белкам eL10 и eP1/P2, чем к бактериальным аналогам [59].

Архейный Р-выступ достаточно стабилен. Белки aL10 и aP1 образуют прочный белковый комплекс aL10-aP1, который, как и бактериальный комплекс bL10-bL12, не разрушается в 6 М мочевине при pH 4.6. При обработке большой субчастицы архейной рибосомы раствором с высокой концентрацией NH_4Cl и этанолом белок aL10 не удаляется полностью с рибосомы, поскольку взаимодействует с pPHK с большим сродством, чем белок bL10 [60].

Рибосомные белки еР1/Р2 и аР1

Эукариотические белки eP1/P2 между собой очень похожи, как функционально, так и структурно. В разных видах организмов присутствует разное количество групп и подгрупп белков eP1/P2 [61, 62]. В отличие от бактериального белка bL12 из *E. coli*, который представлен на рибосоме еще дополнительной N-ацетилированной копией, каждый тип белка eP1/P2 кодируется отдельным геном [61]. В растворе eP1/P2 белки находятся в виде стабильного гетеродимера [63, 64].

Архейный белок aP1 кодируется только одним геном в археях и не подвержен модификациям, несмотря на то, что имеет структурное сходство с эукариотическими белками eP1/P2. В растворе, а также на рибосоме, белок aP1 находится в виде димера [60, 65].

Структурно архейный aP1 и эукариотический eP1/P2 можно разделить на N- и C-концевой домены и гибкую перетяжку, которая соединяет оба домена (аналогично бактериальному белку bL12). И также как в bL12, N-концевой домен ответственен за димеризацию этих белков и за связывание их с рибосомной субчастицей через белок a/eL10 [66, 67].

В процессе биосинтеза белка архейный белок aP1 выполняет функцию доставки факторов трансляции на рибосому. С-концевая часть белка напрямую взаимодействует с элонгационными факторами aEF2 и aEF1 α , а также с фактором инициации aIF5B, который является гомологом бактериального фактора инициации IF2 [68, 69]. Методом поверхностного резонанса плазмонов показано, что белок aP1 связывает фактор элонгации aEF2 независимо от того, находится ли фактор в комплексе с ГТФ или ГДФ. Более того, белковый комплекс aL10•(aP1)₆ способен связывать несколько молекул aEF2, что способствует увеличению скорости доставки aEF2 в ГТФаза-связывающий центр и высокой скорости гидролиза ГТФ [69].

Первые десять аминокислотных остатков эукариотического белка eP1/P2 важны для гетеродимеризации и образования пентамерного комплекса [70]. С-концевой домен белка eP1/P2 ответственен за взаимодействие рибосомы с факторами трансляции [71].

В настоящее время определена пространственная структура полноразмерного гетеродимера eP1/P2 из *Homo sapiens* методом ЯМР в растворе [72]. N-концевые домены белков eP1 и eP2 состоят их четырех α -спиралей и достаточно компактны (рис. 2). Гетеродимер N-концевых доменов eP1 и eP2 ассиметричен и образован за счет высококонсервативных гидрофобных остатков спиралей $\alpha 1$, $\alpha 2$ и $\alpha 4$ белков eP1 и eP2. Основной контакт расположен между спиралями $\alpha 1$ белков eP1 и eP2. С-концевая часть не имеет определенной структуры. В результате C-концевой «хвост» димера eP1-eP2 может быть на расстоянии до 125 Å от N-концевого домена. Благодаря вытянутому C-концевому «хвосту» eP1/P2, факторы элонгации трансляции, по-видимому, могут беспрепятственно быть доставлены в ГТФаза-связывающий центр [72].

Структура полноразмерного архейного белка aP1 неизвестна, но определены кристаллические структуры димеров N-концевого домена белка aP1 (в комплексе с белком aL10; разрешение 2.1 Å) [67] и C-концевого домена белка aP1 (в комплексе с фактором элонгации aEF1 α ; разрешение 2.3 Å) из *Ругососсиs horicoshii* [73]. N-концевой домен архейного белка aP1 образован четырьмя α -спиралями (рис. 2). Димеризация белка aP1 происходит благодаря гидрофобным взаимодействиям между спиралями α 1 и α 2 двух мономеров. В отличие от компактного C-концевого домена бактериального bL12, C-концевой домен архейного aP1 (aP1CTD) неструктурирован в свободном от фактора элонгации состоянии [74], но при взаимодействии с трансляционными факторами aP1CTD структурируется с образованием длинной α -спирали [73].

Структуры архейного димера N-концевого домена aP1 и эукариотического гетеродимера N-концевых доменов eP1 и eP2 имеют схожую укладку полипептидных цепей в отличие от бактериального димера N-концевого домена белка bL12 (рис. 2). Основные отличия в структурах димера aP1NTD и гетеродимера eP1/P2NTD заключены в спирали α 4. Спираль α 4 aP1NTD в структуре архейного комплекса aL10•(aP1)₆ принимает «открытую» конформацию, которая позволяет связываться с короткой спиралью белка aL10. Спираль α 4 в эукариотическом димере eP1/P2NTD принимает «закрытую» конформацию, но, вполне вероятно, эта спираль может принимать и «открытую» конформацию, и в таком состоянии способствует связыванию гетеродимера eP1/P2 с C-концевой частью эукариотического белка eL10 [66].

Поверхность спирали α3 эукариотического белка eP1 сильно гидрофобна, тогда как поверхность спирали α3 белка eP2, наоборот, гидрофильна. Обе спирали α3 белков eP1 и eP2 не участвуют в процессе димеризации. Ассиметричность гетеродимера eP1/P2 предполагает, что гетеродимеры eP1/P2 в пентамерном комплексе располагаются в последовательности eP2–eP1:eP1–eP2 [66].

В архейных рибосомах белки aL10 и aP1 присутствуют в виде комплекса aL10–aP1 в соотношении 1:4 или 1:6, как было показано с помощью масс-спектрометрии [36, 59]. Рибосомы гипертермофильных архей содержат только гептамерный комплекс aL10•(aP1)₆, тогда как в мезофильных археях было обнаружено две популяции рибосом, которые содержали либо пентамерный, либо гептамерный комплекс aL10–aP1. Соотношение рибосом с пентамерным и гептамерным комплексом изменяется в процессе жизненного цикла клеток. На начальной стадии роста клеток рибосомы содержат преимущественно пентамерный комплекс aL10•(aP1)₄. При переходе клеток в стационарную фазу роста изменяется соотношение белков aL10 и aP1, и преобладают рибосомы с гептамерным комплексом aL10•(aP1)₆ [36].

Архейные рибосомы, содержащие тримерный комплекс aL10•(aP1)₂, имеют активность гидролиза ГТФ и синтеза полифенилаланина на уровне 55% от активности рибосом с гептамерным комплексом. Активность рибосом с пентамерным комплексом составляет около 95%. Таким образом, пентамерный и гептамерный комплексы aL10aP1 не сильно отличаются по доступности для факторов трансляции. Возможно, третий димер архейного белка aP1 необходим для полноценного функционирования архейной рибосомы при температуре близкой к оптимальной температуре роста (например, для *P. horicoshii* составляет 95°C) [59].

Рибосомные белки a/eL10

Эукариотический белок eL10 содержит два структурных элемента, с которыми связываются два eP1-eP2 гетеродимера [75]. С помощью удаления С-концевых аминокислотных остатков было показано, что первый сайт связывания гетеродимера eP1-eP2 расположен в районе 205–230 а. о., а второй сайт – 240–255 а. о. (нумерация по *Bombyx mori*) [75, 76].

Архейный и эукариотический рибосомные белки a/eL10 подобно бактериальному белку bL10 являются посредниками между архейным aP1, эукариотическим eP1/P2 и рибосомой. Архейный и эукариотический белки a/eL10 состоят из трех доменов (рис. 3). Консервативный среди всех доменов жизни N-концевой домен 1 белка a/eL10 является PHK-связывающим доменом, который ответственен за прикрепление рибосомного комплекса aL10–aP1 или eL10–eP1/P2 к большой субчастице рибосомы. Второй (специфичный домен) обнаружен только в составе белков a/eL10 архей и эукариот и отсутствует в бактериальном аналоге [77, 78]. С-концевой спиральный домен служит местом посадки для двух гетеродимеров eP1–eP2 в случае эукариотического P-выступа и двух или трех гомодимеров aP1 в случае архейного P-выступа.

В 2010 году были определены кристаллические структуры архейного рибосомного комплекса белка aL10 с димерами N-концевого домена белка aP1 из *P. horicoshii* (разрешение 2.1 Å) [67] и двухдоменного N-концевого фрагмента архейного рибосомного белка aL10 (aL10NTF) из *Methanococcus jannaschii* (разрешение 1.6 Å) [77].

N-концевой домен 1 архейного белка aL10 состоит из двух частей, которые соответствуют аминокислотным остаткам 1–111 и 192–206 (нумерация по *M. jannaschii*) [67, 77]. Второй домен белка aL10 является вставкой в первый и содержит аминокислотные остатки 115–188. Оба домена соединены перетяжкой, которая состоит из двух противоположно направленных β -тяжей. Домен 2 может смещаться относительно домена 1 на 13 Å [77]. С-концевой домен белка aL10 в два раза длиннее (рис. 3) бактериального bL10СTD и отличается от него по структуре. Он содержит три независимые α -спирали, соединенные короткой перетяжкой из 6 а. о. С каждой спиралью С-концевого домена белка aL10 связывается один димер белка aP1 [67].

Пространственная структура изолированного эукариотического белка eL10 не определена. На основании высокой гомологии архейного и эукариотического белков a/eL10 и кристаллической структуры архейного белка aL10 в комплексе с димерами N-концевых доменов

Рис. 3. Схема последовательностей полипептидных цепей рибосомных белков uL10.

Черным цветом окрашен N-концевой домен 1, светло-серым – домен 2, серым – С-концевой домен. Белым прямоугольником со сплошной линией обозначена дополнительная аминокислотная последовательность термофильных бактериальных белков bL10.

белка aP1 была предсказана модель структуры эукариотического белка eL10 в комплексе с N-концевыми доменами гетеродимера eP1–eP2 [79]. В данной модели была предсказана структура только N-концевого домена 1 и C-концевого домена белка eL10, поэтому определение структуры его домена 2 до сих пор остается актуальным.

Участок архейного и эукариотического белков a/eL10, соответствующий домену 2, обеспечивает специфичность взаимодействия рибосомы с эукариотическими или архейными факторами трансляции, но не с бактериальными. Удаление этого домена приводит к снижению до 40% фактор-зависимого гидролиза ГТФ и уровня синтеза полифенилаланина гибридными рибосомами *E. coli* с эукариотическими и архейными факторами трансляции [67].

N-концевой домен 1 архейного белка aL10 взаимодействует со спиралью H42 домена II 23S pPHK подобно связыванию бактериального белка bL10 с 23S pPHK, причем основной контакт между архейным белком aL10 и pPHK также приходится на сахаро-фосфатный остов PHK (мотив «излом–поворот») [34].

Первые 20 аминокислотных остатков эукариотического белка eL10 необходимы для связывания с 26/28S pPHK [76]. Между 40 и 70 a. о. располагается аргинин-богатый участок, который обеспечивает дополнительный контакт с pPHK [80]. В комплексе с белками eP1/P2 повышается сродство белка eL10 к pPHK [81]. Наиболее вероятно, что eP1/P2 выполняют дополнительную функцию модулятора при связывании белка eL10 с рибосомой.

Рибосомные белки a/eL11

Эукариотический рибосомный белок eL11 является функциональным аналогом архейного и бактериального белков a/bL11. С помощью химического сшивания соседних молекул показано, что эукариотический белок eL11 взаимодействует с эукариотическими факторами элонгации eEF1α и eEF2 [82]. Белок eL11 связывается с 26/28S pPHK в участке, эквивалентном участку связывания архейного/бактериального белков a/bL11 на 23S pPHK.

Стоит заметить, что на данный момент пространственная структура изолированного эукариотического белка eL11 не определена. Известна только модель eL11 в составе дрожжевой рибосомы в виде полиаланиновой цепи [83].

Архейный белок aL11 гомологичен бактериальному белку bL11 [65]. В настоящее время пространственная структура архейного белка aL11 частично визуализирована только в составе 50S субчастицы рибосомы из *H. marismortui* [84]. Белок aL11 состоит из двух доменов, соединенных короткой перетяжкой. Из-за плохого качества электронной плотности в районе N-концевого домена детали структуры этого домена плохо различимы [84].

Архейный aL11 посредством С-концевого домена связывается со спиралями H43–44 домена II 23S pPHK. Сайты связывания архейных aL10 и aL11 расположены на pPHK рядом. Важно отметить, что архейный белок aL11 стимулирует связывание архейного aL10 с pPHK только при высоких температурах (70°С), тогда как при низких температурах (37°С) стимулирования не наблюдается [85]. PHK-связывающая поверхность белка aL11 образована спиралью α 5 и петлями α 3- α 4 и α 4- α 5, которые расположены по бокам спирали α 5. Спираль α 5 С-концевого домена образует протяженную сеть взаимодействий с 23S pPHK, располагаясь вдоль малого желобка pPHK [84].

N-концевой домен архейного aL11 способствует доставке факторов элонгации и терминации трансляции в ГТФаза-связывающий центр архейной рибосомы. Было показано, что архейная рибосома восприимчива к пептидным антибиотикам тиострептону и микрококцину. Наиболее вероятно, что архейный белок aL11 может быть мишенью для данного класса антибиотиков [86].

IV. ВЗАИМОЗАМЕНЯЕМОСТЬ БОКОВОГО ВЫСТУПА БАКТЕРИЙ, АРХЕЙ И ЭУКАРИОТ

После того, как было показано, что L12/P-выступ является функционально важным морфологическим элементом рибосом бактерий, архей и эукариот, были предприняты первые попытки создать гибридную рибосому в условиях in vitro. В 1981 году была впервые реконструирована первая эукариотическая гибридная рибосома. После удаления белков eL10, eL11 и eP1/P2 с эукариотической рибосомы экстракцией смесью NH₄Cl/этанол к «вакантной» рибосоме были добавлены соответствующие бактериальные белки. Однако полученная гибридная рибосома оказалась неактивна [87]. Также белковый комплекс aL10-aP1 архейной рибосомы был заменен на бактериальный комплекс bL10-bL12, и, наоборот, комплекс bL10-bL12 бактериальной рибосомы на архейный комплекс aL10-aP1. С помощью электронной микроскопии было продемонстрировано наличие L12/Pвыступа в гибридных рибосомах, который образован bL10-bL12 или aL10-aP1 комплексами, но функциональная активность таких рибосом не проверялась [88].

Впервые активную гибридную бактериальную рибосому из *E. coli* с эукариотическим P-выступом рибосомы крысы удалось получить в лаборатории Hachimori [89]. Данная замена изменяет специфичность связывания бактериального EF2 на связывание эукариотического eEF2 и стимулирует ГТФазную активность последнего. Уровень гидролиза ГТФ на eEF2 в гибридной рибосоме сопоставим с уровнем гидролиза ГТФ на eEF2 в эукариотической 80S рибосоме [68]. При этом активность гибридной рибосомы при синтезе полифенилаланина в присутствии эукариотических факторов элонгации eEF1 α и eEF2 находится на том же уровне, как для эукариотической рибосомы [68, 76].

Архейные белки Р-выступа, как и их эукариотические гомологи, способны замещать бактериальные белки L12-выступа [68]. Такая замена приводит к тому, что реконструированная гибридная рибосома становится доступной как для архейных факторов элонгации, так и для эукариотических, но не для бактериальных факторов элонгации. Активность гидролиза ГТФ и синтеза полифенилаланина гибридной рибосомы, содержащей архейные белки бокового выступа, в присутствии эукариотических факторов элонгации сопоставима с таковыми для гибридной рибосомы, в которой бактериальный L12-выступ заменен на эукариотический аналог. Стоит отметить, что синтез полифенилаланина и ГТФазная активность гибридной

И.В.Митрошин и соавт	ı.
----------------------	----

рибосомы с архейным Р-выступом одинаковы с эукариотическими и архейными факторами элонгации [68].

Белки L12-выступа митохондрий человека имеют высокую степень гомологии с соответствующими бактериальными белками. L12-выступ митохондрий способен заменить аналогичный выступ на рибосоме *E. coli* с образованием функционально активной гибридной рибосомы [90]. Получившаяся гибридная рибосома с митохондриальным L12-выступом имеет высокую активность синтеза полифенилаланина в присутствии бактериальных или митохондриальных факторов элонгации.

Таким образом, с помощью этих экспериментов была продемонстрирована ключевая роль белков L12/P-выступа в специфическом узнавании трансляционных факторов. uL10–L12-подобный комплекс, но не белки uL11, ответственен за специфичность взаимодействия между рибосомой и факторами трансляции. Важно отметить, что изменение в специфичном узнавании факторов элонгации, вызванное замещением белков бокового выступа на их гомологи (или аналоги) на рибосоме, сопровождается изменениями в структуре участков 23S/28S pPHK в области сарцин-рициновой петли и спиралей H43–44 [91].

V. КРИСТАЛЛОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ L12/P-BЫСТУПА В СОСТАВЕ РИБОСОМ

Использование рентгеноструктурного анализа открыло возможность определения не только важных морфологических деталей рибосомы, но и внутренней структуры рибосомы, третичных структур рибосомных РНК в составе рибосомы, расположения и структур рибосомных белков. Первые кристаллы рибосом, пригодные для рентгеноструктурного анализа, были получены еще в конце 1980-х годов. Но только в 2000 году была впервые определена кристаллическая структура 50S субчастицы рибосомы из археи *H. marismortui* с высоким разрешением [38]. Эта структура содержала 2711 из 2923 нуклеотидных остатков 23S рРНК, полностью 5S рРНК и структуры для 27 из 31 рибосомных белков. Электронная плотность для белков aL1, aL10, aL11 и aP1 отсутствовала, хотя ранее они были локализованы в составе этой рибосомной субчастицы с помощью электронной микроскопии и дифракционных данных низкого разрешения [92].

В 2009 году в составе 70S бактериальной рибосомы в комплексе с EF2 из *T. thermophilus* была определена структура L12-выступа [93]. Фактор элонгации EF2 напрямую взаимодействует с bL11 и С-концевым доменом bL12. Из-за низкого качества электронной

плотности в районе бокового выступа структура белкового комплекса bL10-bL12 была определена в виде полиаланиновой цепи. Спираль а8 белка bL10 изгибается по сравнению с ее положением в структуре изолированного комплекса bL10-bL12NTD, позволяя С-концевому домену bL12CTD взаимодействовать и с N-концевым доменом bL11, и с G'-доменом EF2. В свою очередь, N-концевой домен bL11 вместе с нуклеотидными остатками 1067 и 1095 23S pPHK взаимодействует с доменом V фактора элонгации EF2 [93].

В составе 80S эукариотической рибосомы из *S. cerevisiae* P-выступ был частично визуализирован [83]. Белки этого выступа удалось вписать в карту электронной плотности только в виде полиаланиновых цепей. Исключение составил консервативный N-концевой PHK-связывающий домен 1 белка eL10, структура которого была определена полностью. Общая укладка eL10NTD совпадает с укладками N-концевых доменов бактериального bL10 и архейного aL10.

Наиболее полную структуру архейного Р-выступа удалось определить при переуточнении структуры 50S субчастицы рибосомы из археи *H. marismortui* в 2013 году [84]. В результате переуточнения был визуализирован не только Р-выступ, но и некоторые рибосомные компоненты, структура которых не была известна (например, специфический для архей белок LX). Уточнение структуры большой субчастицы позволило интерпретировать электронную плотность для приблизительно 2/3 белка aL10 (С-концевой домен в виде полиаланиновой цепи) и одного димера N-концевого домена aP1 (как полиаланиновая цепь), а также дополнить структуру белка aL11.

VI. ЗАКЛЮЧЕНИЕ

Боковой L12/P-выступ играет ключевую роль во взаимодействии рибосомы с факторами трансляции. Структурная организация этого выступа подобна среди доменов жизни, несмотря на то, что входящие в его состав рибосомные белки отличаются: белки бактериального L12-выступа имеют низкую гомологию и по последовательности и по структуре с соответствующими белками, формирующими P-выступ в археях и эукариотах.

За последнее десятилетие произошел огромный прорыв в определении пространственных структур рибосомы и изолированных белков данного бокового выступа, но до сих пор остаются пробелы в понимании взаимодействия этих белков между собой и с высокомолекулярной рРНК. В данном обзоре рассматриваются работы последних лет, посвященные данной теме.

ЛИТЕРАТУРА

- Lake, J.A. (1976) Ribosome structure determined by electron microscopy of *Escherichia coli* small subunits, large subunits and monomeric ribosomes, *J. Mol. Biol.*, **105**, 131–159.
- Boublik, M., Hellmann, W., Roth, H.E. (1976) Localization of ribosomal proteins L7L12 in the 50S subunit of *Escherichia coli* ribosomes by electron microscopy, *J. Mol. Biol.*, **107**, 479–490.
- 3. Спирин А.С. (2011) Молекулярная биология: рибосомы и биосинтез белка, Москва: Академия, 496 с.
- Huang, C., Mandava, C.S., Sanyal, S. (2010) The ribosomal stalk plays a key role in IF2-mediated association of the ribosomal subunits, *J. Mol. Biol.*, **399**, 145–153
- Kaltschmidt, E., Wittmann, H.G. (1970) Ribosomal proteins, XII. Number of proteins in small and large ribosomal subunits of *Escherichia coli* as determined by two-dimensional gel electrophoresis, *Proc. Natl. Acad. Sci.* USA, 67, 1276–1282.
- Liao, D., Dennis, P.P. (1994) Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences, *J. Mol. Evol.*, 38, 405–419.
- Ban, N., Beckmann, R., Cate, J.H.D., Dinman, J.D., Dragon, F., Ellis, S.R., Lafontaine, D.L.J., Lindahl, L., Liljas, A., Lipton, J.M., McAlear, M., Moore, P.B., Noller, H.F., Ortega, J., Panse, V.G., Ramakrishnan, V., Spahn, C.M.T., Steitz, T., Tchorzewski, M., Tollervey, D., Warren, A.J., Williamson, J.R., Wilson, D., Yonath, A., Yusupov, M. (2014) A new system for naming ribosomal proteins, *Curr. Opin. Struct. Biol.*, 24, 165–169.
- Highland J.H., Howard, G.A. (1975) Assembly of ribosomal proteins L7, L10, L11, and L12 on the 50S subunit of *Escherichia coli*, *J. Biol. Chem.*, **250**, 831–834.

- Hardy, S.J.S. (1975) The stoichiometry of the ribosomal proteins of *Escherichia coli*, *Mol. Gen. Genet.*, 140, 253–274.
- Terhorst, C., Möller, W., Laursen, R., Wittmann-Liebold, B. (1972) Amino acid sequence of a 50S ribosomal protein involved in both EF-G and EF-T dependent GTP-hydrolysis, *FEBS Lett.*, 28, 325–328.
- Ramagopal S., Subramanian, A.R. (1974) Alteration in the acetylation level of ribosomal protein L12 during growth cycle of *Escherichia coli*, *Proc. Natl. Acad. Sci. USA*, 71, 2136–2140.
- Gordiyenko, Y., Deroo, S., Zhou, M., Videler, H., Robinson, C.V. (2008) Acetylation of L12 increases interactions in the *Escherichia coli* ribosomal stalk complex, *J. Mol. Biol.*, **380**, 404–414.
- Pettersson, I., Kurland, C.G. (1980) Ribosomal protein L7/L12 is required for optimal translation, *Biochemistry*, 77, 4007–4010.
- 14. Kirsebom, L.A., Isaksson, L.A. (1985) Involvement of ribosomal protein L7/ L12 in control of translational accuracy, *Proc. Natl. Acad. Sci. USA*, 82, 717–721.
- 15. Sander, G., Marsh, R.C., Voigt, J., Parmeggiani, A. (1975) A comparative study of the 50S ribosomal subunit and several 50S subparticles in EF-T-and EF-G-dependent activities, *Biochemistry*, 14, 1805–1814.
- Koteliansky, V.E., Domogatsky, S.P., Gudkov, A.T. (1978) Dimer state of protein L7/L12 and EF-G-dependent reactions on ribosomes, *FEBS J.*, 90, 319–323.
- Donner, D., Villems, R., Liljas, A., Kurland, C.G. (1978) Guanosinetriphosphatase activity dependent on

elongation factor Tu and ribosomal protein L7/L12, *Proc. Natl. Acad. Sci.* USA, **75**, 3192–3195.

- Brot, N., Weissbach, H. (1981) Chemistry and biology of *E. coli* ribosomal protein L12, *Mol. Cell. Biochem.*, 63, 47–63.
- Wong, K.-P., Paradies, H.H. (1974) Shape properties of proteins L7 and L12 from *E. coli* ribosomes, *Biochem. Biophys. Res. Commun.*, 61, 178–184.
- Kar, E.G., Aune, K.C. (1981) Solution behavior of proteins L7/L12 from the 50S ribosomal subunit of *Escherichia coli*, *Biochemistry*, 20, 4638–4646.
- 21. Gudkov, A.T., Behlke, J. (1978) The N-terminal sequence protein of L7/ L12 is responsible for its dimerization, *FEBS J.*, **90**, 309–312.
- 22. Gudkov, A.T., Tumanova, L.G., Gongadze, G.M., Bushuev, V.N. (1980) Role of different regions of ribosomal proteins L7 and L10 in their complex formation and in the interaction with the ribosomal 50S subunit, *FEBS Lett.*, **109**, 34–38.
- 23. Gudkov, A.T., Gongadze, G.M., Bushuev, V.N., Okon, M.S. (1982) Proton nuclear magnetic resonance study of the ribosomal protein L7/L12 *in situ*, *FEBS Lett.*, **138**, 229–232.
- 24. Olson, H.M., Tewari, D.S., Traut, R.R., Glitz, D.G. (1986) Localization of two epitopes of protein L7/L12 to both the body and stalk of the large ribosomal subunit, *J. Biol. Chem.*, 261, 6924–6932.
- 25. Oleinikov, A.V., Jokhadze, G.G., Traut, R.R. (1998) A single-headed dimer of *Escherichia coli* ribosomal protein L7/L12 supports protein synthesis, *Proc. Natl. Acad. Sci. USA*, 95, 4215–4218.
- 26. Bocharov, E.V., Sobol, A.G., Pavlov, K.V., Korzhnev, D.M., Jaravine, V.A., Gudkov, A.T., Arseniev, A.S.

(2004) From structure and dynamics of protein L7/L12 to molecular switching in ribosome, *J. Biol. Chem.*, **279**, 17697–17706.

- 27. Dey, D., Oleinikov, D., Dey, A.V., Traut, R.R. (1995) The hinge region of *Escherichia coli* ribosomai protein L7/L12 is required for factor binding and GTP hydrolysis, *Biochimie*, 77, 925–930.
- 28. Bubunenko, M.G., Chuikov, S.V., Gudkov, A.T. (1992) The length of the interdomain region of the L7/L12 protein is important for its function, *FEBS J.*, **313**, 232–234.
- Leijonmarck, M., Eriksson, S., Liljas, A. (1980) Crystal structure of a ribosomal component at 2.6 Å resolution, *Nature*, 286, 824–826.
- Wahl, M.C., Bourenkov, G.P., Bartunik, H.D., Huber, R. (2000) Flexibility, conformational diversity and two dimerization modes in complexes of ribosomal protein L12., *EMBO J.*, 19, 174–186.
- 31. Gudkov, A.T., Tumanova, L.G., Venyaminov, S.Y., Khechinashvilli, N.N. (1978) Stoichiometry and properties of the complex between ribosomal proteins L7 and L10 in solution, *FEBS Lett.*, **93**, 215–218.
- 32. Pettersson, I., Hardy, S.J.S., Liljas, A. (1976) The ribosomal protein L8 is a complex of L7/L12 and L10, *FEBS Lett.*, 64, 135–138,.
- Pettersson, I., Liljas, A. (1979) The stoichiometry and reconstruction of a stable protein complex from *Escherichia coli* ribosomes, *FEBS Lett.*, 98, 139–144.
- 34. Diaconu, M., Kothe, U., Schlünzen, F., Fischer, N., Harms, J.M., Tonevitsky, A.G., Stark, H., Rodnina, M.V., Wahl, M.C. (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation, *Cell*, **121**, 991–1004.

- 35. Ilag, L.L., Videler, H., McKay, A.R., Sobott, F., Fucini, P., Nierhaus, K.H., Robinson, C.V. (2005) Heptameric (L12)₆/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria, *Proc. Natl. Acad. Sci. USA*, **102**, 8192–8197.
- 36. Gordiyenko, Y., Videler, H., Zhou, M., McKay, A.R., Fucini, P., Biegel, E., Müller, V., Robinson, C.V. (2010) Mass spectrometry defines the stoichiometry of ribosomal stalk complexes across the phylogenetic tree, *Mol. Cell. Proteomics*, 9, 1774–83.
- 37. Rosendahl, G., Douthwaite, S. (1993) Ribosomal proteins L11 and L10. $(L12)_4$ and the antibiotic thiostrepton interact with overlapping regions of the 23S rRNA backbone in the ribosomal GTPase centre, *J. Mol. Biol.*, **234**, 1013–1020.
- 38.Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, *Science*, 289, 905–920.
- 39. Climie, S.C., Friesen, J.D. (1987) Feedback regulation of the *rplJLrpoBC* ribosomal protein operon of *Escherichia coli* requires a region of mRNA secondary structure, *J. Mol. Biol.*, **198**, 371–381.
- 40. Johnsen, M., Christensen, T., Dennis, P.P., Fiil, N.P. (1982) Autogenous control: ribosomal protein L10-L12 complex binds to the leader sequence of its mRNA, *EMBO J.*, 1, 999–1004.
- 41. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Yonath, A. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium, *Cell*, **107**, 679–688.
- 42. Klein, D.J., Schmeing, T.M., Moore, P.B., Steitz, T.A. (2001) The kink-

turn: A new RNA secondary structure motif, *EMBO J.*, **20**, 4214–4221.

- 43. Iben, J.R., Draper, D.E. (2008) Specific interactions of the L10-(L12)₄ ribosomal protein complex with mRNA, rRNA, and L11, *Biochemistry*, 10, 2721–2731.
- 44. Dijk, J., Garrett, R. A., Muller, R. (1979) Studues on the binding of the ribosomal protein complex L7/12-L10 and protein L11 to the 5'-one third of 23S RNA: a functional centre of the 50S subunit, *Nucleic Acids Res.*, **6**, 2717–2729.
- 45. Stark, M.J.R., Cundliffe, E., Dijk, J., Stoeffler, G. (1980) Functional homology between *E. coli* ribosomal protein L11 and *B. megaterium* protein BM-L11, *Mol. Gen. Genet.*, **15**, 11–15.
- 46. Tate, W.P., Dognin, M.J., Noah, M., Stöffler-Meilicke, M., Stöffler, G. (1984) The NH₂-terminal domain of *Escherichia coli* ribosomal protein L11, J. Biol. Chem., 259, 7317–7324.
- 47. Schrier, P.I., Möller, W. (1975) The involvement of 50S ribosomal protein L11 in the EF-G dependent GTP hydrolysis of *E. coli* ribosomes, *FEBS Lett.*, 54, 130–134.
- Kazemie, M. (1976) Binding of aminoacyl-tRNA to reconstituted subparticles of *Escherichia coli* large ribosomal subunits, *Eur. J. Biochem.*, 67, 373–378.
- 49. Ilin, S., Hoskins, A., Ohlenschläger, O., Jonker, H.R.A., Schwalbe, H., Wöhnert, J. (2005) Domain reorientation and induced fit upon RNA binding: solution structure and dynamics of ribosomal protein L11 from *Thermotoga maritima*, *ChemBioChem*, **6**, 1611–1618.
- Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W., Ramakrishnan, V. (1999) A detailed view of a ribosomal active site: The structure

of the L11–RNA complex, *Cell*, **97**, 491–502.

- 51. Harms, J.M., Wilson, D.N., Schluenzen, F., Connell, S.R., Stachelhaus, T., Zaborowska, Z., Spahn, C.M.T., Fucini, P. (2008) Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin, *Mol. Cell*, **30**, 26–38.
- 52. Bausch, S.L., Poliakova, E., Draper, D.E. (2005) Interactions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA, *J. Biol. Chem.*, 280, 29956–29963.
- 53. Xing, Y., Draper, D.E. (1996) Cooperative interactions of RNA and thiostrepton antibiotic with two domains of ribosomal protein L11, *Biochemistry*, **35**, 1581–1588.
- 54. Thompson, J., Cundliffe, E., Stark, M. (1979) Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11, *FEBS J.*, 98, 261–265.
- 55. Cundliffe, E., Dixon, P., Stark, M., Stöffler, G., Ehrlich, R., Stöffler-Meilicke, M., Cannon, M. (1979) Ribosomes in thiostrepton-resistant mutants of *Bacillus megaterium* lacking a single 50S subunit protein, *J. Mol. Biol.*, **132**, 235–252.
- 56. Uchiumi, T., Albert, J.W., Traut, R.R. (1987) Topography and stoichiometry of acidic proteins in large ribosomal subunits from *Artemia salina* as determined by crosslinking, *Proc. Natl. Acad. Sci. USA*, 84, 5580–5584.
- 57. van Agthoven, A., Kriek, J., Amons, R., Möller, W. (1978) Isolation and characterization of the acidic phosphoproteins of 60S ribosomes from *Artemia salina* and rat liver, *Eur. J. Biochem.*, **91**, 553–565.
- 58. Santos, C., Ballesta, J.P. (1994) Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is re-

quired for ribosome activity and *Saccharomyces cerevisiae* viability, *J. Biol. Chem.*, **269**, 15689–15696.

- 59. Maki, Y., Hashimoto, T., Zhou, M., Naganuma, T., Ohta, J., Nomura, T., Robinson, C.V., Uchiumi, T. (2007) Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism, *J. Biol. Chem.*, **282**, 32827–32833.
- 60. Casiano, C., Matheson, A.T., Traut, R.R. (1990) Occurrence in the archaebacterium *Sulfolobus solfutaricus* ribosomal protein complex corresponding to *Escherichia coli* (L7/L12)₄-L10 and eukaryotic (P1)₇(P2)₂-P0, *J. Biol. Chem.*, **265**, 18757–18761.
- 61. Szick, K., Springer, M., Bailey-Serres, J. (1998) Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes, *Proc. Natl. Acad. Sci. USA*, **95**, 2378–2383.
- 62. Bailey-Serres, J., Vangala, S., Szick, K., Lee, C.-H.K. (1997) Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots, *Plant Physiol.*, **114**, 1293–1305.
- 63. Tchórzewski, M., Boldyreff, B., Issinger, O. G., Grankowski, N. (2000) Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: Evaluation by the two hybrid system, *Int. J. Biochem. Cell Biol.*, **32**, 737–746.
- 64. Nusspaumer, G., Remacha, M., Ballesta, J. P. (2000) Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. *EMBO J.*, **19**, 6075–6084.
- 65. Casiano, C., Traut, R.R. (1991) Protein topography of *Sulfolobus solfataricus* ribosomes by cross-linking with 2-iminothiolane, *J. Biol. Chem.*, 266, 21578–21583.

- 66.Lee, K.-M., Yu, C.W.-H., Chiu, T.Y.-H., Sze, K.-H., Shaw, P.-C., Wong, K.-B. (2012) Solution structure of the dimerization domain of the eukaryotic stalk P1/P2 complex reveals the structural organization of eukaryotic stalk complex, *Nucleic Acids Res.*, **40**, 3172–3182.
- 67. Naganuma, T., Nomura, N., Yao, M., Mochizuki, M., Uchiumi, T., Tanaka, I. (2010) Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes, J. Biol. Chem., 285, 4747–56.
- 68. Nomura, T., Nakano, K., Maki, Y., Naganuma, T., Nakashima, T., Tanaka, I., Kimura, M., Hachimori, A., Uchiumi, T. (2006) *In vitro* reconstitution of the GTPase-associated centre of the archaebacterial ribosome: the functional features observed in a hybrid form with *Escherichia coli* 50S sub-units, *Biochem. J.*, **396**, 565–571.
- 69. Nomura, N., Honda, T., Baba, K., Naganuma, T., Tanzawa, T., Arisaka, F., Noda, M., Uchiyama, S., Tanaka, I., Yao, M., Uchiumi, T. (2012) Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus, *Proc. Natl. Acad. Sci. U. S. A.*, **109**, 3748–3753.
- 70. Naganuma, T., Shiogama, K., Uchiumi, T. (2007) The N-terminal regions of eukaryotic acidic phosphoproteins P1 and P2 are crucial for heterodimerization and assembly into the ribosomal GTPase-associated center, *Genes to cells*, **12**, 501–510.
- Uchiumi, T., Traut, R.R., Kominami, R. (1990) Monoclonal antibodies against acidic phosphoproteins P0, P1, and P2 of eukaryotic ribosomes as functional probes, *J. Biol. Chem.*, 265, 89–95.
- 72. Lee, K.-M., Yusa, K., Chu, L.-O., Yu, C.W.-H., Oono, M., Miyoshi, T.,

Ito, K., Shaw, P.-C., Wong, K.-B., Uchiumi, T. (2013) Solution structure of human P1•P2 heterodimer provides insights into the role of eukaryotic stalk in recruiting the ribosome-inactivating protein trichosanthin to the ribosome, *Nucleic Acids Res.*, **41**, 8776–8787.

- 73. Ito, K., Honda, T., Suzuki, T., Miyoshi, T., Murakami, R., Yao, M., Uchiumi, T. (2014) Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α, *Nucleic Acids Res.*, 42, 14042–14052.
- 74. Grela, P., Bernadó, P., Svergun, D., Kwiatowski, J., Abramczyk, D., Grankowski, N., Tchórzewski, M. (2008) Structural relationships among the ribosomal stalk proteins from the three domains of life, *J. Mol. Evol.*, 67, 154–167.
- 75. Baba, K., Tumuraya, K., Tanaka, I., Yao, M., Uchiumi, T. (2013) Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins, *Nucleic Acids Res.*, 41, 3635–3643.
- 76. Hagiya, A., Naganuma, T., Maki, Y., Ohta, J., Tohkairin, Y., Shimizu, T., Nomura, T., Hachimori, A., Uchiumi, T. (2005) A mode of assembly of P0, P1, and P2 proteins at the GTPase-associated center in animal ribosome: *in vitro* analyses with P0 truncation mutants, *J. Biol. Chem.*, 280, 39193–39199.
- 77. Kravchenko, O., Mitroshin, I., Nikonov, S., Piendl, W., Garber, M. (2010) Structure of a two-domain N-terminal fragment of ribosomal protein L10 from *Methanococcus jannaschii* reveals a specific piece of the archaeal ribosomal stalk, J. Mol. Biol., **399**, 214–220.
- Santos, C., Remacha, M., Ballesta, J.P.G. (2004) Ribosomal P0 protein domain involved in selectivity of

antifungal sordarin derivatives, Antimicrob. Agents Chemother., 48, 2930–2936.

- 79. Choi, A., Wong, E., Lee, K.-M., Wong, K.-B. (2015) Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes, *Toxins*, **7**, 638–647.
- 80. Shimizu, T., Nakagaki, M., Nishi, Y., Kobayashi, Y., Hachimori, A., Uchiumi, T. (2002) Interaction among silkworm ribosomal proteins P1, P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA, *Nucleic Acids Res.*, **30**, 2620–2627.
- 81. Uchiumi, T., Kominami, R. (1997) Binding of mammalian ribosomal protein complex P0•P1•P2 and protein L12 to the GTPase-associated domain of 28S ribosomal RNA and effect on the accessibility to anti-28S RNA autoantibody, *J. Biol. Chem.*, 272, 3302–3308.
- 82. Uchiumi, T., Kikuchi, M., Terao, K., Iwasaki, K., Ogata, K. (1986) Cross-linking of elongation factor 2 to rat-liver ribosomal proteins by 2-iminothiolane, *Eur. J. Biochem.*, 156, 37–48.
- 83. Ben-Shem, A., de Loubresse, S., Melnikov, N.G., Jenner, L., Yusupova, G., Yusupov, M. (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution, *Science*, **334**, 1524–1529.
- 84. Gabdulkhakov, A., Nikonov, S., Garber, M. (2013) Revisiting the *Haloar*cula marismortui 50S ribosomal subunit model, *Acta Crystallogr. Sect. D Biol. Crystallogr.*, **69**, 997–1004.
- 85.Shcherbakov, D., Dontsova, M., Tribus, M., Garber, M., Piendl, W. (2006) Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and

Bacteria, Nucleic Acids Res., 34, 5800–5814.

- 86. Beauclerk, A.A.D., Hummel, H., Holmes, D.J., Bock, A., Cundliffe, E. (1985) Studies of the GTPase domain of archaebacterial ribosomes, *FEBS J.*, **151**, 245–255.
- 87. Sanchez-Madrid, F., Vidales, F.J., Ballesta, J.P.G. (1981) Functional role of acidic ribosomal poteins. Interchangeability of proteins from bacterial and eukaryotic cells, *Biochemistry*, **20**, 3263–3266.
- 88. Stöffler-Meilicke, M., Stöffler, G. (1991) The binding site of ribosomal protein L10 in Eubacteria and Archaebacteria is conserved: Reconstitution of chimeric 50S subunits, *Biochimie*, 73, 797–804,.
- 89. Uchiumi, T., Hori, K., Nomura, T., Hachimori, A. (1999) Replacement of L7/L12.L10 protein complex in *Escherichia coli* ribosomes with the eukaryotic counterpart changes the specificity of elongation factor binding, J. Biol. Chem., 274, 27578– 27582.
- 90. Han, M.-J., Cimen, H., Miller-Lee, J.L., Koc, H., Koc, E.C. (2011) Purification of human mitochondrial ribosomal L7/L12 stalk proteins and reconstitution of functional hybrid ribosomes in *Escherichia coli*, *Protein Expr. Purif.*, **78**, 48–54.
- 91. Uchiumi, T., Honma, S., Endo, Y., Hachimori, A. (2002) Ribosomal proteins at the stalk region modulate functional rRNA structures in the GTPase center, J. Biol. Chem., 277, 41401–41409.
- 92. Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P.B., Steitz, T.A. (1999) Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit, *Nature*, **400**, 841–847.

93. Gao, Y.-G., Selmer, M., Dunham, C.M., Weixlbaumer, A., Kelley, A.C., Ramakrishnan, V. (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state, *Science*, **326**, 694–699.