МЕТИЛЭРИТРИТОЛФОСФАТНЫЙ (НЕМЕВАЛОНАТНЫЙ) ПУТЬ БИОСИНТЕЗА ИЗОПРЕНОИДОВ

© 2005 г.

Ю. В. ЕРШОВ

Институт биохимии им. А.Н.Баха РАН, Москва

I. Введение. II. История открытия метилэритритолфосфатного пути. III. Описание реакций метилэритритолфосфатного пути. IV. Компартментализация и взаимодействие двух путей синтеза изопреноидов. V. Медицинские аспекты наличия нескольких путей синтеза ИП. VI. Заключение.

І. ВВЕДЕНИЕ

К изопреноидам, также называемых терпеноидами, относят соединения, углеродный скелет которых частично или полностью можно формально представить состоящим из остатков изопрена. Изопреноиды (ИП) синтезируются всеми свободноживущими организмами и образуют очень большую группу разнообразных по структуре и функциям природных соединений. Так, в изданном в 1992 г. «Словаре терпеноидов» описано около 22 тысяч ИП и родственных им веществ [41]. Формулы некоторых представителей различных классов ИП представлены на рис. 1. В клетке, пожалуй, нет такого

Адрес для корреспонденции: ershov@inbi.ras.ru

Работа выполнена при поддержке грантов РФФИ № 02-04-48077 и INTAS № 03-51-4077 и гранта РФФИ № 05-04-48924.

Принятые сокрашения: ИП – изопреноилы: CDP-ME – 4-(питилин 5'-лифосфо)-2-С-метил-D-эритритол; СDP-МЕ киназа – 4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритолкиназа; CDP-ME синтаза – 4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритол синтаза; CDP-ME2P – 2-фосфо-4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритол: СоА – коэнзим А: ШТР – цитилин трифосфат: DMAPP – диметилаллилдифосфат: DXP – 1-D-дезоксиксилулозо-5-фосфат; DXP-редуктоизомераза – 2-С-метил-D-эритритол-4-фосфатсинтаза; EST – экспрессируемые target последовательности; GA3P – глицеральдегид 3-фосфат; НМВРР – (Е)-4-гидрокси-3-метил-бут-2-енил дифосфат; НМВР-синтаза – (Е)-Гидрокси-3-метил-бут-2-енилдифосфат синтаза: ІРР – изопентенилдифосфат; IPP/DMAPP-синтаза – (Е)-Гидрокси-3-метил-бут-2-енилдифосфатредуктаза; MEcPP – 2-С-метил-D-эритритол –2,4-циклодифосфат; МЕсРР синтаза – 2-С-метил-D-эритритол-2,4-циклодифосфатсинтаза; МЕР – 2-С-метил-D-эритритол-4-фосфат (МЕР-путь – биосинтез изопреноидов через MEP); тРНК – транспортные РНК; МVА – мевалоновая кислота (МVА-путь – биосинтез изопреноидов через МVА).

класса химических веществ, представители которого не участвовали бы в образовании производных с изопреноидами [7, 8]. Сравнительно долго не удавалось обнаружить подобного рода соединений для белков и нуклеиновых кислот. Однако в последние годы выяснилось, что и они не являются исключением. Установлено, что одной из модификаций, которым подвергаются тРНК, а также мононуклеотиды, является присоединение изопентенилдифосфата [87, 95]. Важную роль в процессах передачи сигнала и деления клетки играют пренилированные белки. Причем обнаружено, что на долю белков с присоединенным остатком фарнезилдифосфата или геранилгеранилдифосфата приходится до 1% всех клеточных белков [188].

Изопреноиды играют важную роль в жизнедеятельности клетки. Они участвуют в процессах трансформации энергии (убихинон, пластохинон и др.), в регуляции стабильности мембран (гопаноиды у прокариот, стероиды у эукариот), в процессах роста и развития (витамины A, D, E, K, предшественники стероидных гормонов, фитогормоны гиббереллин и абсцизовая кислота, ювенильный гормон насекомых), при фотосинтезе (фитольный остаток хлорофилла, каротиноиды), в биосинтезе углеводов, гликолипидов и гликопротеинов (долихолфосфаты) [144, 173].

Огромное количество ИП представлено соединениями, относящимися ко вторичным метаболитам [7]. Обычно им приписывается функция регуляции взаимодействия организма с окружающей средой [33, 43]. В эту группу входят многочисленные ИП растений, привлекающие или отпугивающие животных, обеспечивающие защиту от патогенов или выживание в межвидовой конкурентной борьбе, ароматические и лекарственные вещества (например, таксол – соединение с сильной антираковой активностью), каучук и др. [7, 41, 43]. Несмотря на то, что образование этих соединений наблюдается лишь у ограниченного числа видов, их практическое значение очень велико.

На рис. 2 показаны биогенетическая связь и локализация синтеза разных классов ИП. Несмотря на большое разнообразие структур, все они синтезируются всего лишь из двух разветвленных пятиуглеродных фосфорилированных предшественников. Важно отметить, что сам изопрен в синтезе ИП не участвует, хотя по историческим причинам его название закрепилось за всем классом этих соединений. Реальными же предшественниками, называемыми иногда «изопреновыми единицами», являются изопентенилдифосфат (IPP) и диметилаллилдифосфат (DMAPP).

До недавнего времени считалось, что биосинтез этих простых предшественников осуществляется из ацетил СоА через стадию образования мевалоновой кислоты (MVA). По названию этого специфического продукта и сам путь был назван мевалонатным [144].

Рис. 2. Биогенез и локализация синтеза разных классов изопреноидов. Место синтеза указано в скобках (при отсутствии информации или при множественной локализации не приводится).

Сокращения: мт – митохондрии; пк – прокариоты; пл – пластиды; цт – цитозоль; DMAPP – диметилаллилдифосфат; FPP – фарнезилдифосфат; GPP – геранилдифосфат; GGPP – геранилгеранилдифосфат; IPP – изопентенилдифосфат.

В самые последние годы, однако, неожиданно выяснилось, что начальные этапы синтеза ИП в разных таксономических группах не идентичны и существует, по крайней мере, два различных пути биосинтеза [см. обзоры 9, 49, 54, 97, 109, 110, 156,162, 167, 168, 205]. По классическому мевалонатному пути ИП синтезируются у животных и человека, в дрожжах, архебактериях и некоторых других видах микроорганизмов, а также в цитозоле растительной клетки. В то же время у эубактерий, нескольких внутриклеточных паразитов, у зеленых водорослей и в хлоропластах растений обнаружен особый — немевалонатный — путь синтеза изопреноидов [54, 109, 110, 178], который обозначался различными терминами (путь Ромера, альтернативный путь синтеза ИП, глицеральдегидтрифосфат-пируватный путь, DXP-путь). В настоящее время наиболее часто его называют «метилэритритолфосфатный путь» (МЕР-путь), поскольку именно метилэритритолфосфат (или точнее 2-С-метил-D-эритритол-4-фосфат) является первым специфическим продуктом, с которого начинается биосинтез.

За исключением высших растений и, возможно, простейших, имеющих апикопласт (например, малярийный плазмодий), только у *Listeria monocytogenes* [27] и некоторых представителей порядка *Actinomycetales* (*Streptomyces и Actinoplanes*), относящихся к эубактериям [11], обнаружен полный набор генов обоих путей [71, 100, 183]. В свете этого кажется понятным, почему фосмидомицин – первый и по сути пока единственный специфический ингибитор нового пути, был обнаружен именно в *Streptomyces* [96, 131]. Важно отметить, что среди микроорганизмов, синтезирующих изопреноиды только этим путем, около 50 являются патогенами (возбудители туберкулеза, чумы, тифа, сибирской язвы, холеры и др. [53, 196]).

Неожиданность открытия пути синтеза, альтернативного мевалонатному, высокая научная и практическая значимость проблемы привлекли к ней внимание специалистов из самых разных областей — биохимиков, химиков, молекулярных биологов, генетиков. Сочетание традиционных и новых методических подходов (например, геномики и протеомики) обусловило поразительно быстрый (1996—2002 годы) прогресс в изучении и расшифровке всех этапов этого сложного метаболитического пути (возможно, одного из последних эволюционно консервативных).

II. ИСТОРИЯ ОТКРЫТИЯ МЕТИЛЭРИТРИТОЛФОСФАТНОГО ПУТИ

На рис. 3 приведены два известных в настоящее время пути биосинтеза изопреноидов.

МVА-путь будет рассмотрен кратко — только в той степени, чтобы проиллюстрировать историю открытия альтернативного пути и подчеркнуть главные различия между ними. Схема реакций мевалонатного пути приведена на рис. 3 (A) [144].

Рис. 3. Пути биосинтеза изопреноидов. (А) – Мевалонатный, (Б) – МЕР-путь.

Ферменты, катализирующие реакции: (1) – ацетил-СоА ацетилтрансфераза; (2) –3-гидрокси-3-метилглутарил-СоА синтаза; (3) – 3-гидрокси-3-метилглутарил-СоА редуктаза; (4) – мевалонаткиназа; (5) – фосфомевалонаткиназа; (6) – дифосфомевалонатдекарбоксилаза; (7) – IPP изомераза; (8) – DXP-синтаза (1-D-дезоксиксилулозо-5-фосфат синтаза); (9) – DXP редуктоизомераза (2-С-метил-D-эритритол 4-фосфат синтаза); (10) – МЕР-цитидилтрансфераза (4-дифосфоцитидин-2С-метил-D-эритритол синтаза); (11) – цитидил-метилэритритолкиназа; (12) – 2-С-метил-D-эритритол 2,4-циклодифосфатсинтаза; (13) – HMBP-синтаза (гидрокси-3-метил-бут-2-енилдифосфат редуктаза).

Биосинтез ИП по этому пути начинается с конденсации 3-х молекул ацетил СоА с образованием 3-гидрокси-3-метилглутарил-СоА, который при участии NADPH-зависимой редуктазы превращается в первый специфический продукт – мевалоновую кислоту. Эту реакцию ингибирует мевинолин – специфический ингибитор MVA-пути. Последовательное присоединение в ATP-зависимых реакциях трех фосфатных групп, сопряженное на последнем этапе с декарбоксилированием, приводит к образованию изопентенилдифосфата (IPP), называемого также «активным изопреном». У животных и других организмов, использующих этот путь, вторая C_5 -молекула, необходимая для синтеза сложных изопреноидов (политерпеноидов), а именно DMAPP, образуется в реакции, катализируемой IPP-изомеразой. Последующая конденсация IPP и DMAPP дает начало всему разнообразию изопреноидов.

В течение многих лет представления о том, что биосинтез пятиуглеродных предшественников ИП у всех организмов происходит исключительно по MVA-пути, сомнений не вызывали, хотя накапливались некоторые экспериментальные факты, которые в рамки этой концепции не укладывались. Так, например, не удавалось добиться заметного включения MVA в ИП хлоропластов при одновременном эффективном превращении MVA в ИП в цитозоле растительной клетки. Также не удалось обнаружить прямое включение MVA в ИП и у ряда микроорганизмов. Более того, в этих объектах не удавалось даже надежно установить наличие активности или самих ферментов MVA-пути. Тем не менее этим фактам пытались найти объяснения (вроде наличия нескольких неперемешивающихся пулов IPP или плохой проницаемости мембран для интермедиатов и продуктов синтеза ИП) и ничто не могло поколебать уверенности в универсальности MVA-пути (см. ссылки в монографии Пасешниченко [7]).

Открытию второго пути синтеза ИП положили работы Ромера и соавторов (середина 80-х — начале 90-х годов [62, 169, 171]). Несколько позднее, независимо от группы Ромера, данные о существовании МЕР-пути были получены в лаборатории Аригони (которые, к сожалению, не были опубликованы в реферируемых журналах) [31, 177], а также Жоу и Уайтом [216].

В группе Ромера изучалось включение и распределение метки в ИП при росте некоторых эубактерий на средах с ацетатом или глюкозой, содержащих ¹³С-метку в различных положениях, в качестве единственного источника углерода. В этих экспериментах [62, 167, 169, 171] распределение метки в гопаноидах и/или в боковой цепи убихинона у нескольких видов *Rhodopseudomonas*, а также *Zymomonas mobilis*, *Methylobacterium fujisawaense* и *Escherichia coli* оказалось совершенно отличным от того, которое следовало бы ожидать исходя из

Рис. 4. Судьба C_1 -атомов глюкозы (а также C_2 -атомов ацетата) при синтезе изопентенилдифосфата по мевалонатному (а) или MEP-пути (б).

схемы с MVA (рис. 4). Изучение этого феномена и привело авторов к ниспровержению догмы MVA-пути как единственного способа синтеза ИП. Успех исследований был, в основном, обеспечен удачным выбором объектов.

Гопаноиды – группа пентациклических тритерпеноидов, широко распространенных в различных таксонах грамотрицательных и грамположительных микроорганизмов, а также среди цианобактерий и метанотрофов [167]. В то время как другие бактериальные ИП (убихиноны, менахиноны, бактопренолы) присутствуют в клетке в очень небольших количествах, синтез гопаноидов протекает очень интенсивно и у Z. mobilis их накапливается до 30 мг/г сухого веса. Это химически стабильные соединения, легко подвергаются выделению и очистке, что также облегчает возможности использования ¹³С-ЯМР спектроскопии. Для успеха опытов оказалось важным и то, что в отличие от использованных ранее организмов в Z. mobilis и у M. fujisawaense метаболизм глюкозы происходит исключительно по схеме Энтнера-Лудорова. Культивирование бактерий с единственным источником vглерода и энергии позволяло избегать изотопного разбавления меченого субстрата и существенно облегчало интерпретацию распределения метки в исследуемых продуктах.

В ранних опытах по изучению мевалонатного пути с использованием меченых глюкозы и ацетата, было установлено, что C_2 , C_4 и C_5 атомы IPP происходят из C_2 атома ацетата, предшественниками которого являются C_1 и C_6 атомы глюкозы при гликолизе или C_3 и C_6 при окислении глюкозы по пути Энтнера-Дудорова. Распределение ¹³С-метки в гопаноидах *Z. mobilis* свидетельствовало о том, что источником C_3 и C_5 атомов IPP служили C_2-C_3 или C_5-C_6 фрагменты глюкозы включались, соответственно, C_6 , C_5 и C_4 атомы. Такое распределение метки исключало возможность прямого включения в ИП ацетил СоА, образующегося при катаболизме глюкозы.

Другими фактами, полученными в этих экспериментах, не согласующимися с существовавшими тогда представлениями, были полное отсутствие случайного перераспределения (scrambling) изотопной метки для некоторых из соседних атомов субстрата и отсутствие прямого включения в ИП экзогенного ацетата.

В рамках концепции MVA-пути эти данные можно было объяснить, только предположив наличие новых предшественников для MVA и IPP. Однако после ряда изящных экспериментов с применением ¹H и ¹³С-ЯМР спектроскопии Ромеру и его коллегам удалось устранить последние сомнения в наличии второго пути синтеза ИП.

Изучая включение в ИП ¹³С-глюкозы, меченой в нескольких положениях, для всех С, и С, атомов IPP в спектре ЯМР наблюдали ¹³С-¹³С расшепление с обычной константой спин-спинового взаимодействия ¹J ~ 40 Hz. Это свидетельствовало о том, что они происходят из одного предшественника. Сходным образом, используя в качестве субстрата равномерно меченую глюкозу, было показано, что С1, С2 и С, атомы молекулы IPP также происходят из одного предшественника. Между С₁ и С₂ атомами IPP проявлялись типичные дублеты с ¹J константой спин-спинового взаимодействия, а между C_{2} и $C_{4} - c$ константой, равной 3 Hz (²J). С, и С, атомы IPP взаимодействовали между собой с константой 5 Hz (³J) [62]. Вопрос о возможности внутримолекулярной перегруппировки в ходе биосинтеза атомов предшественника, соответствующих C₂ и C₄ IPP, был решен с помощью C_4, C_5 -(¹³C)-глюкозы. При этом во всех случаях наблюдали изотопное обогащение C₂ и C₄ атомов IPP. Таким образом, было доказано, что при образовании молекулы ІРР, в трехуглеродный фрагмент, построенный из С₆, С₅ и С₄ атомов глюкозы, происходит вставка двухуглеродного фрагмента. Предположения о природе этих фрагментов были сделаны на основании картины распределения метки. Происхождение C_3 атома IPP из C_2 и/или C_5 атомов глюкозы, а C_5 – из C_3 и/или С, напоминает профиль мечения в жирных кислотах при использовании С13-ацетил-СоА. Это позволило предположить, что двухуглеродный фрагмент является результатом тиаминзависимого декарбоксилирования пировиноградной кислоты. Анализ профилей включения в ИП меченых глицеральдегид 3-фосфата (GA3P), глюкозы и эритрозы штаммами Z. mobilis, M. fujisawaense, Alicyclobacillus acidoterrestris, а также диким типом и мутантами E. coli, дефектными по ферментам метаболизма триозофосфатов, показали, что трехуглеродным фрагментом-предшественником служит GA3P [171, 172].

После того, как GA3P и пируват были постулированы в качестве предшественников нового пути биосинтеза ИП [24, 31,171, 172], наступил этап его тщательного биохимического изучения.

Еще до открытия MEP-пути у *E. coli* и *Bacillus subtilis* было обнаружено образование 1-D-дезоксиксилулозы из пирувата и глицеральдегида в реакции, катализируемой пируватдегидрогеназой [212]. Поэтому по базам данных был предпринят поиск генов, участвующих в метаболизме GA3P, но функции которых были бы неизвестны.

Используя в качестве исходных последовательностей пируватдекарбоксилазу, E1 субъединицу пируватдегидрогеназного комплекса и транскетолазу, был обнаружен ген с высокой степенью гомологии к ним. Поскольку он находился в одном опероне с другим геном синтеза ИП (*ispA* или фарнезилтрансферазой), то авторы предположили, что кодируемые ими белки функционально связаны.

Неизвестный ген был клонирован. Оказалось, что его белковый продукт и в самом деле катализирует образование из GA3P и пирувата 1-D-дезоксиксилулозо-5-фосфата (DXP) [113, 189].

Важно подчеркнуть то, что хотя DXP не является специфичным продуктом MEP-пути, а используется клетками также и для синтеза других соединений (тиамина и пиридоксина [76, 195, 198]) рассмотрение MEP-пути традиционно начинают именно с этой реакции.

III. ОПИСАНИЕ РЕАКЦИЙ МЕТИЛЭРИТРИТОЛФОСФАТНОГО ПУТИ

Схема реакций МЕР-пути – приведена на рис. 3 (Б).

ОБРАЗОВАНИЕ ДЕЗОКСИКСИЛУЛОЗО-5-ФОСФАТА

Образование DXP катализируется DXP-синтазой [ЕС 4.1.3.37] (синонимы – 1-D-дезоксиксилулозо-5-фосфат синтаза и Dxs). Фермент кодируется геном *dxs* (у растений *cla1*). Эта реакция сходна с транскетолазной и также является тиаминзависимой.

Впервые ген DXP-синтазы был клонирован из *E. coli*. Соответствующий белок был экспрессирован в том же организме, выделен и очищен [113, 189].

DXP-синтаза из *E. coli* является гомодимером, состоящим из двух субъединиц по 65 кДа каждая и в качестве кофермента нуждается в тиаминдифосфате. Для проявления активности требуются также ионы Mg^{2+} или Mn^{2+} .Фермент имел $V_{max} = 300$ мкмоль/мин мг и $K_{M} = 50$ мкМ (пируват) и 96 мкМ (GA3P) [30, 189]. Фторпируват ингибирует DXP-синтазу из *E. coli* с IC₅₀ = 80 мкМ, а из *Pseudomonas aeruginosa* с

IC₅₀ = 400 мкМ. Предполагается, как и в случае с пируватдегидрогеназой, фторпируват ковалентно связывается с активным центром фермента [17]. Еще одним достаточно неспецифичным ингибитором DXP-синтазы является кломазон (2-(2-хлорбензил)-4,4-диметилизоксазолидин-3-он).

Этот гербицид широкого спектра действия ингибирует синтез хлорофилла и каротиноидов в хлоропластах проростков ячменя, а также выделение изопрена (образующегося по MEP-пути) листьями различных деревьев, включая дуб, тополь, платан и др. [214]. Продемонстрировано также ингибирование кломазоном синтеза брассиностероидов в культуре хлореллы [26]. Такое действие позволило предположить, что мишенью (или одной из мишеней) его действия является один из ферментов MEP-пути. Первоначально сам кломазон рассматривался в качестве действующего агента. Однако позднее, на очищенном препарате DXP-синтазы из *Chlamydomonas* было показано, что ингибирующим действием обладает не сам гербицид, а один из продуктов его деградации — 5-оксо-кломазон. Величина I_{50} для этого производного составляла около 100 мкМ, кломазон же этот фермент не ингибировал [126].

Впоследствии DXP-синтаза была также клонирована из других микроорганизмов [25, 72, 100, 123] и растений [30, 57, 106, 112]. В случае фермента из Arabidopsis [57], томатов [114], а также из бактерий [72, 100, 123] суперэкспрессией DXP-синтазы была показана лимитирующая роль этого фермента при синтезе ИП. У растений найдено три изоформы DXP-синтазы, функции которых пока не совсем ясны. В растении Medicago truncatula из семейства бобовых идентифицированы два гена для DXP-синтазы с гомологией около 70% [204]. Ген dxs2экспрессируется в основном в корнях и активируется при колонизации микоризными грибами, а также в синтезирующих монотерпеноиды железистых клетках листьев. Ген dxs1, наоборот, экспрессируется во многих растительных тканях, но не в корнях. Таким образом, создается впечатление, что DXP-синтаза, кодируемая геном dxs1, принимает участие в основном метаболизме, а функцией белкового продукта гена dxs2 является синтез вторичных метаболитов [204]. В банке экспрессируемых последовательностей (EST) Arabidopsis EST DXP-синтазы принадлежат к самым многочисленным [156].

DXP-синтазы, выделенные из различных источников оказались близкими по своим свойствам, а нуклеотидная последовательность

Метилэритритолфосфатный путь биосинтеза изопреноидов

dxs у эволюционно отдаленных видов – высококонсервативной. При этом у ферментов из *Mentha piperita* и *Arabidopsis thaliana* обнаружено наличие N-концевой пластидной сигнальной последовательности [106], а у *Arabidopsis* и томатов (*Lycopersicon esculentum*) продемонстрирована транслокация DXP-синтазы в хлоропласты [57, 114]. Альбино-фенотип некоторых мутантов *Arabidopsis* по DXP-синтазе восстанавливался при добавлении 1-D-дезоксиксилулозы. Обнаружено также включение 1-D-дезоксиксилулозы в различные ИП, например, в гинкголиды у *Ginkgo biloba*, ферругинол у *Salvia miltiorrhiza* [31, 177], в каротиноиды, фитол и ситостерол у *Catharanthus roseus* [24], в боковую цепь убихинона у *E. coli* [31, 146, 177].

ОБРАЗОВАНИЕ 2-С-МЕТИЛ-D-ЭРИТРИТОЛ-4-ФОСФАТА

После того когда было установлено включение 2-С-метил-Д-эритритола в ИП у E. coli [50, 51], возникло предположение, что его фосфорилированная форма является одним из интермелиатов преврашения DXP при биосинтезе ИП. Для проверки этой гипотезы Кузуяма и соавторы получили ауксотрофные мутанты *E. coli*, которые росли на средах с добавкой 2-С-метил-D-эритритола или 2-С-метил-D-эритритол-4-фосфата. Среди них был отобраны мутанты не способные к росту на 1-D-дезоксиксилулозе. В экспериментах по комплементации оказалось, что все эти штаммы дефектны по гену с неизвестной функцией, гену vaeM[102, 193]. Когда выяснилось, что кодируемый этим геном белок катализирует образование 2-С-метил-Д-эритритол-4-фосфата (MEP), из DXP он был переименован в dxr (по ферменту DXP-релуктоизомеразе) [193], а впоследствии в *ispC* из-за связи с биосинтезом изопреноидов. Представляется не лишним еще раз подчеркнуть, что именно МЕР является первым специфическим продуктом немевалонатного пути биосинтеза изопреноидов.

С помощью изотопномеченых соединений и последующего анализа продуктов реакции методом ЯМР-спектроскопии стереохимия этой реакции была изучена сначала в опытах *in vivo* [23, 24, 50, 51, 171], а затем и *in vitro* [145, 148]. Оказалось, что образование МЕР, включая стадии восстановления и внутримолекулярной перестройки углеродного скелета, катализирует всего один фермент – DXP-редуктоизомераза (синонимы – 2-С-метил-D-эритритол-4-фосфат синтаза, MEP- синтаза, Dxr и IspC) [EC 1.1.1.267].

Молекулярная масса фермента из *E. coli* методом нативного электрофореза была оценена в 165 кДа, а методом гель-фильтрации в 150 кДа. При SDS-электрофорезе очищенный белок давал единственную полосу, соответствующую 42 кДа [102, 193]. Авторы сделали вывод, что DXP-редуктоизомераза представляет собой тетрамер. Однако позднее, после получения кристаллов апофермента, а также кристаллических комплексов с различными кофакторами, ингибиторами и ионами пришли к заключению, что вероятнее всего фермент существует, в том числе и в растворе, в виде гомодимера [151, 152, 190, 211].

Для проявления активности DXP-редуктоизомераза нуждается в NADPH и в двухвалентных катионах, предпочтительно Mg^{2+} или Mn^{2+} . Тиольные агенты на активность не влияют. Замена NADPH на NADH приводит к 100-кратному уменьшению выхода продукта [102, 193]. Реакция является обратимой, хотя равновесие сильно сдвинуто в сторону образования MEP. При введении в реакционную среду 2-С-метил-D-эритритозо-4-фосфата и соответствующей формы пиридинового динуклеотида можно получить или MEP или DXP. Для фермента из *E. coli* были получены следующие константы Михаэлиса (в зависимости от добавленного катиона – Mg²⁺ или Mn²⁺): 73–97 мкM для DXP, 158–294 мкM для 2-С-метил-D-эритритозо-4-фосфата. V_{max} соответственно были 10,5 и 11,9–20,6 мкмоль/мин мг [78]. Коппиш и соавторы [93] приводят равновесные кинетические константы для очищенной рекомбинантной DXP-редуктоизомеразы из *E. coli*. В их экспериментах K_м для NADPH равнялась 0,5 мкM, а для DXP K_м = 115 мкM; K_{cat} = 116 s⁻¹. Стадии перегруппировки и восстановления также были обратимы с K_{eq} для DXP и MEP равной 45 мкМ [93].

Хотя не удалось выделить ²⁷-С-метил-D-эритритозо-4-фосфат в качестве промежуточного продукта, был предложен механизм 2-С-метил-D-эритритол-4-фосфатсинтазной реакции, включающий внутримолекулярную перегруппировку DXP с последующим восстановлением этого альдегидного интермедиата донором электронов (NADPH) [78, 102].

Все изученные до сих пор DXP-редуктоизомеразы ингибируются фосмидомицином (3-(N-формил-N-гидроксиамино)пропилфосфоновой кислотой), обозначавшимся ранее FR-31564, и его аналогами, например, FR-900098 и FR-33289.

Фосмидомицин, первый специфический ингибитор МЕР-пути. был синтезирован, а затем и выделен из Streptomyces lavendulae примерно за десять лет до открытия МЕР-пути. В начале было обнаружено, что фосмидомицин эффективно тормозит рост большинства грамотрицательных и некоторых грамположительных бактерий [96. 131]. Однако после того, когда выяснилось, что у Micrococcus lutheus он одновременно ингибирует и образование каротиноилов, и биосинтез менахинона, Шиги высказал предположение, что летальный эффект фосмиломицина как-то связан с синтезом изопреноилов [186]. Фосмиломицин в концентрации 3-6 мкг/мл полностью подавлял рост культур E. coli, этот эффект, однако, исчезал при добавлении в среду 0,025% 2-С-метил-D-эритритола [101, 102]. Опыты с мутантами Е. coli K-12, дефектными по аденилатциклазе и устойчивыми к его действию показали, что фосмидомицин транспортируется в клетку через глицерол-3-фосфатный переносчик GlpT [174]. Однако его мишень оставалась неизвестной до 1998 г., когда установлено, что фосмидомицин дозозависимо (IC₅₀ = 24 нM) ингибирует рекомбинант-ную DXP-редуктоизомеразу из *E. coli* [102]. Для фермента из ячменя IC₅₀ составляет 8,2 нМ [215]. Тип ингибирования был определен как конкурентный с К = 9,4 нМ [101] или смешанный (конкурентнонеконкурентный) с K = 38 нМ [215].

В начале предполагали. что ингибирующее действие фосмидомицина связано с тем, что его структура напоминает постулированную для промежуточного продукта DXP-редуктоизомеразы (2-С-метил-D-эритритозо-4-фосфат) и что он конкурирует за сайт связывания МЕР [101]. Однако впоследствии этот механизм был поставлен под сомнение. При сходстве структур логично было бы ожидать, что при их транспорте через клеточную мембрану будут задействованы родственные переносчики. Но оказалось, что в переносе этих соединений в клетку участвуют, по-видимому, различные транспортеры. Так, перенос 2-С-метил-D-эритритола у Salmonella typhimurium идет через сорбитолфосфотрансферазную транспортную систему [197], а фосмидомицина у E. coli – через глицерол-3-фосфатный переносчик [174]. При кинетическом анализе в условиях равновесия фосмидомицин проявлял свойства конкурентного ингибитора относительно DXP [93]. Относительно NADPH фосмидомицин оказался неконкурентным ингибитором. В то же время по типу ингибирования дигидро-NADPH проявил себя как конкурентный относительно NADPH и неконкурентный относительно DXP. Эти результаты можно объяснить тем, что NADPH связывается с активным центром до связывания DXP. а фосмиломицин в активном центре фермента конкурирует за связывание не с продуктом реакции, а с субстратом (т.е. с DXP) [93]. Подтверждение этого было получено при изучении кристаллического комплекса DXP-редуктоизомеразы с марганцем и фосмидомицином. В этом комплексе конформация ингибитора такова, что она может быть конформно наложена на молекулу DXP [190]. Лополнительным аргументом может также служить то наблюление. что FR-900098. имеюший дополнительную метильную группу в том же положении, что и в молекуле DXP, связывается с ферментом сильнее и является более сильным ингибитором, чем фосмиломицин [83]. Если предположение о механизме действия фосмидомицина верно, то обнаружение взаимодействия между его фосфонатной группой и Ser186, Ser222, Asn227 и Lys228 дополняет знания об аминокислотных остатках, входящих в активный центр DXP-редуктоизомеразы [190].

В кристаллическом виде помимо комплекса с фосмидомицином недавно были получены апо-форма DXP-редуктоизомеразы из E. coli и из Z. mobilis, а также комплексы фермента из этих источников с NADPH [151, 152, 211]. Трехмерное строение DXP-редуктоизомераз оказалось весьма близким. Асимметрическая единица содержит димер, т.е. ту же форму, в которой фермент существует и в растворе. Каждый V-образный мономер состоит из трех доменов. На N-конце (примерно 150 аминокислот) находится NADPH-связывающий сайт. представляющий собой вариант типичного динуклеотид-связывающего сайта. Сайт на С-конце (аминокислоты 312–398 для фермента из E. coli и 300–386 для Z. mobilis) образован пучком из четырех спиралей. Между этими сайтами располагается центральный, или соединительный, домен. Он представлен β-складкой, образованной четырьмя и фланкированной тремя α-спиралями. Центральный домен состоит из подвижного участка (для DXP-редуктоизомеразы из E. coli соответственно аминокислоты 186–216), а также из каталитического участка, связывающего двухвалентные ионы (Mn²⁺, Mg²⁺ или Co²⁺) и субстрат [151, 152, 211]. Предполагается, что в связывании металлов у фермента из E. coli принимают участие высококонсервативные аминокислотные остатки Asp150, Glu152, Glu231 и Glu234 [151]. По данным же группы Кузуямы, полученным при анализе dxr-мутантов E. coli, Glu231 участвует в конверсии DXP в MEP, а в связывании этого субстрата принимают участие His153, His209 и His257 [211]. Выше уже указывалось также на возможную роль Ser186, Ser222, Asn227 и Lys228 в активном центре фермента [190]. Помимо образования большей части активного центра, центральный домен ответственен также за

Метилэритритолфосфатный путь биосинтеза изопреноидов

димеризацию DXP-редуктоизомеразы. Наличие в асимметрической единице кристаллов нескольких конформеров свидетельствует о том, что при связывании NADPH происходят значительные конформационные изменения, обуславливающие правильную геометрию активного центра. Эта индуцируемая в ходе взаимодействия с субстратами подвижность связана с центральным (особенно в области 186–216), а также с С-концевым доменами [151, 152, 211].

Интересные заключения о возможном механизме DXP-редуктоизомеразы удалось сделать при сравнении трехмерных структур комплексов *E. coli* фермента с фосмидомицином и с NADPH. В последнем случае NADPH можно расположить в связывающем центре таким образом, что он оказывается в непосредственной близости от молекулы субстрата и в правильной ориентации по отношению к ней. Это, в свою очередь, обеспечивает перенос протона в нужное положение альдегидного остатка DXP [196].

DXP-редуктоизомераза была первоначально выделена из *E. coli*, а затем из *Chlamidomonas, Arabidopsis thaliana, Mentha piperita, Synecho-coccus leopoliensis, Plasmodium falciparum* и других организмов [69, 103, 123, 193, 208]. Обнаруженная степень гомологии для ферментов из разных организмов лежит между 33,9 и 62,4% [193].

ОБРАЗОВАНИЕ 4-(ЦИТИДИН 5'-ДИФОСФО)-2-С-МЕТИЛ-D-ЭРИТРИТОЛА

Образование 4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритола (CDP-ME) катализируется CDP-ME синтазой, EC 2.7.7.60 (синонимы — МЕР цитидилтрансфераза, YgbP и IspD) [98, 164]. Фермент является белковым продуктом гена *ispD* (ранее называвшегося *ygbP* и *mect*).

В качестве возможного кандидата на роль одного из генов МЕР-пути ygbP первоначально был предложен потому, что всегда встречался в геномах, имеющих гены dxs и dxr, но отсутствовал у организмов, использующих MVA-путь. Вообще, этот подход (поиск в секвенированных геномах таких неидентифицированных открытых рамок считывания, чье присутствие коррелировало бы с наличием ортологов уже известных генов МЕР-пути, но не обнаруживавшихся при этом в организмах, синтезирующих ИП по МVА-пути) активно применялся при расшифровке немевалонатного пути. Он оказался очень плодотворным и в немалой степени способствовал быстрой расшифровке последовательности реакций и выделению соответствующих ферментов.

*YgbP*был быстро клонирован и очищен. При инкубации с МЕР и СТР происходило образование продукта, который методами ЯМР и масс-спектрометрии был также идентифицирован как CDP-ME [98, 164].

Свойства 4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритолсинтаз из бактерий (E. coli) и растений (A. thaliana) оказались довольно сходными [98, 163, 164]. Они являются гомодимерами с молекулярной массой около 50 кДа. Фермент из E. coli содержит две одинаковые субъединицы из 236 аминокислот. При SDS-электрофорезе субъединицы идут одной полосой с кажущейся молекулярной массой около 26 кДа. Подобно другим ферментам МЕР-пути, для проявления активности фермент нуждается в двухвалентных катионах (Mg^{2+} , Mn^{2+} , Co²⁺). Рекомбинантные CDP-ME синтазы специфичны к ЦТР, а другие же трифосфатнуклеотиды практически неактивны. Однако для фермента дикого типа из *E. coli* образование фосфорилированного продукта с UTP и GTP доходит до 30% от активности с CTP. При использовании АТР активность составляет 20% от максимальной [164]. Сушественно отличались кинетические параметры ферментов из *E. coli и A. thaliana*: V_{max} равны 23 и 67 мкмоль/мин мг, К_m для СТР – 3 и 114 мкМ, К_m для МЕР – 131 и 500 мкМ, число оборотов – 9 и 26 s⁻¹, соответственно [163, 164]. Возможно это объясняется тем, что степень идентичности каталитического домена у этих ферментов составляет лишь около 30% [164]. Степень гомологии белков, выявленная при сравнении *ispD* последовательностей из разных организмов, колебалась в широких пределах. Например, между E. coli и Salmonella typhi она доходила до 91%, а между E. coli и Clostridium perfringens составляла лишь 29% [79].

Были получены кристаллы CDP-ME синтазы *E. coli* в виде апофермента [88, 90], а также с CTP/Mg²⁺ и с CDP-ME/Mg²⁺ [153]. Как и в растворе фермент является гомодимером. Субъединица представляет собой единый α/β домен. За взаимодействие мономеров в основном отвечает β участок. Активный сайт образуется при взаимодействии 6 сегментов первой субъединицы и одного сегмента второй. В общей сложности в узнавании и во взаимодействии с субстратом принимают участие 22 аминокислотных остатка, из них 18 образуют водородные связи [153]. Активный центр CDP-ME синтазы *E. coli* характеризуется большим количеством остатков положительно заряженных аминокислот. Некоторые из них относятся к высококонсервативным остаткам, что свидетельствует об их важной роли в каталитической активности фермента. Arg157 и Lys213 отвечают за связывание в нужной ориентации MEP, который в этой реакции осуществляет нуклеофильную атаку. С фосфатными группами СТР, поляризуя его и облегчая атаку нуклеофилам, связываются через Mg²⁺-мостик Arg20 и Lys27. Эти же остатки принимают участие в стабилизации отрицательно заряженного переходного комплекса, образующегося в этой реакции. Специфичность к цитидиновому остатку обеспечивается как стерическими ограничениями, так и ограничениями возможности образования водородных связей. При этом азот пиримидинового кольца образует координационную связь с Ser88, карбонильная группа – водородные связи с Ala14 и Ala15, а аминогруппа – с карбонилом Gly82. Помимо этого пиримидиновое основание вступает в стэкинг-взаимодействие с метиленовой цепью Arg85 [153].

ОБРАЗОВАНИЕ

2-ФОСФО-4-(ЦИТИДИН 5'-ДИ-ФОСФО)-2-С-МЕТИЛ-D-ЭРИТРИТОЛА

АТР-зависимое фосфорилирование по 2-гидроксильной группе CDP-ME с образованием 2-фосфо-4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритола (CDP-ME2P) катализируется ферментом 4-(цитидин 5'-дифосфо)-2-С-метил-D-эритритол киназой (синонимы 4-ди-фосфоцитидил-2-С-метил-D-эритритол киназа, YchB, IspE), ЕС 2.7.1.148. Она кодируется геном *ispE* (другие названия, встречающиеся в литературе — *ychB* и *cmek*).

Вопрос о возможной связи гена *усhB*с синтезом ИП возник после обнаружения его участия в процессе созревания плодов томатов [107]. И действительно, во всех секвенированных к тому времени геномах организмов, использующих МЕР-путь, была обнаружена соответствующая последовательность [104, 115]. Анализ выявил наличие ATP-связывающего участка, а для ортологов из растений также хлоропластную сигнальную последовательность [104, 115, 165]. Ген *усhB* был клонирован из нескольких организмов, его белковый продукт очищен и частично охарактеризован в опытах *in vitro*. В первой публикации, описывающей свойства YchB [104], для фермента из мяты *M. piperita* и *E. coli* была продемонстрирована ATP-киназная активность по отношению к изопентенилмонофосфату и спиртовым аналогам IPP и DMAPP. На основании этих опытов авторы предположили, что он катализирует завершающую реакцию MEP-пути. Однако полученные активности YchB с изопентенилмонофосфатом были очень низки — 1,4 рмоль/с мг (мята) и 178 рмоль/с мг (*E. coli*). С изопентенолом и диметилаллиловым спиртом активность была еще меньше — в 2,5–10 раз [104].

Несколько позднее другими исследователями было установлено, что YchB *E. coli* с гораздо более высокой скоростью (34 мкмоль/мин мг) осуществляет ATP-зависимое фосфорилирование CDP-ME с образованием CDP-ME2P [99, 115]. Синтез CDP-ME2P из CDP-ME также был показан для фермента из томатов *L. esculentum* ($V_{max} = 33$ мкмоль/мин мг) [115, 165]. При использовании меченого субстрата, наблюдалось включение CDP-ME2P хромопластами перца *Capsicum аппиит* в каротиноиды с эффективностью около 10% [115]. На основании всех этих данных, исследователи пришли к выводу, что истинная метаболическая роль *ispE* (*ychB*) – CDP-ME-киназная реакция.

Весьма вероятно, что у некоторых организмов CDP-ME киназа (*IspE*) является одним из ключевых ферментов MEP-пути. Так, *IspE* хламидий (но не *IspE* из *E. coli*) снимает у кишечной палочки токсичное действие ДНК-связывающего белка хламидий [68]. Авторами, однако, было найдено, что это обратимое образование нуклеоида (практически нетранскрибируемой компактной формы бактериальной ДНК), регулируется не CDP-ME2P, а продуктом следующей реакции пути (метилэритритолциклодифосфатом, см. ниже). Диф-ференцированный же эффект *ispE* генов разного происхождения был объяснен наличием у хламидиального фермента уникальных кинетических свойств [68].

Была изучена кристаллическая структура энзима из двух микроорганизмов – *E. coli* и термофильной бактерии *Thermus thermophylus* [122, 202]. Достаточно неожиданным оказалось сходство активного центра CDP-ME киназы с мевалонаткиназой и MVA-P киназой. Фермент имеет α/β складку, типичную для GHMP (галактозокиназа, гомосеринкиназа, мевалонаткиназа, фосфомевалонаткиназа) семейства киназ [122]. Однако, в отличие от других членов этого семейства, CDP-ME киназа не образует димеров. Таким образом, и в немевалонатном, и мевалонатном пути участвуют родственные киназы со сходным механизмом действия [105,122, 202]. В то же время сайт связывания субстрата у CDP-ME киназы модифицирован таким образом, чтобы обеспечить связывание субстрата большей величины, чем у других членов семейства, а именно – нуклеотидного остатка [122]. Фермент специфичен к нуклеотидному остатку. Неспособность CDP-ME киназы фосфорилировать 4-(уридин 5'-дифосфо)-2-С-метил-D-эритритол свидетельствует о важной роли пиримидинового остатка во взаимодействии субстрата с ферментом [202].

Структура фермента из термофильной бактерии *T. thermophylus* была определена с разрешением 1,7 Å [202]. В опытах была использована апо-форма фермента, то есть фермент кристаллизовали в отсутствие субстратов. Однако, несмотря на это, обнаруженная гомология позволила авторам высказать некоторые предположения относительно структуры активного центра. Так, Asp58 и Lys83 приписано участие в связывании ATP, а Ser95 и Asp125 — в связывании Mg²⁺. Предложенный механизм реакции включает стадию активации Asp125 остатком Lys8, после чего кислород карбоксильной группы Asp125 отнимает протон от C-2 гидроксила CDP-ME [202]. Впрочем, на основании того, что азот аминогруппы Lys8 находится на расстоянии 4,2 Å от ближайшего карбоксильного кислорода Asp125, этот механизм подвергается сомнению [196].

Степень гомологии фермента *T. thermophylus* с *E. coli* около 33%, с *M. tuberculosis* 35% [202]. В свою очередь, CDP-ME киназа *E. coli* имеет 21–38% гомологии с *M. tuberculosis* и около 90% с *Salmonella typhi* [122]. В среднем же процент гомологии равен 45–60%.

ОБРАЗОВАНИЕ 2-С-МЕТИЛ-D-ЭРИТРИТОЛ-2,4-ЦИКЛОДИФОСФАТА

2-С-метил-D-эритритол-2,4-циклодифосфат (МЕсРР) был первым выделенным метаболитом МЕР-пути [6, 12, 136, 138, 140]. Однако, поскольку тогла не только отсутствовала информация о конкретных реакциях МЕР-пути, но и вообще не было установлено само существование альтернативного пути, то предвидеть связь МЕсРР с биосинтезом ИП было трудно. В группе Д.Н.Островского в Институте биохимии им. А.Н.Баха РАН были изучены свойства открытого соединения. У ряда микроорганизмов в ответ на окислительный стресс, вызванного добавкой бензилвиологена или других редоксциклизующих агентов. МЕсРР накапливается в очень больших концентрациях (в клетках Corvnebacterium ammoniagenes до 100 мМ) [1, 4, 12, 135, 136]. Его образование было также продемонстрировано и при тепловом шоке [5]. Поэтому первоначально МЕсРР была приписана функция антистрессора [2, 3, 139, 140]. Основанием для такого предположения послужило то, что бактерии-аккумуляторы МЕсРР сохраняли способность к росту в присутствии ингибирующих концентраций индукторов окислительного стресса [2]. Также оказалось, что бактерии, способные накапливать это соединение, лучше выживали внутри перитониальных макрофагов мышей [3, 130].

Когда выяснилось, что MEcPP является промежуточным метаболитом синтеза ИП [164], аккумуляцию этого соединения сочли не направленной защитной реакцией клетки от стресса (хотя полностью игнорировать возможную антистрессорную роль MEcPP было нельзя), а следствием нарушения метаболического пути. Однако не исключено, что функции MEcPP в клетке не ограничиваются участием в синтезе ИП и побочными реакциями защиты от действия свободных радикалов.

Совсем недавно было установлено, что у Chlamvdia trachomatis МЕсРР вызывает высвобождение из нуклеоида (конденсированной ДНК) гистон-подобного белка Hc1. Этот процесс необходим для перехода покояшейся формы хламидий в активную внутриклеточную форму [68]. Возможная роль МЕсРР в качестве внутриклеточного регулятора обсуждалась уже в ранних работах Островского и соавторов [136, 140]. Высказывалось предположение, что это соединение, связывающее двухвалентные катионы, может участвовать в регуляции метаболизма, модулируя активность металл-зависимых ферментов [136]. В качестве другого механизма внутриклеточной регуляции посредством МЕсРР при отсутствии экспериментальных данных рассматривалась возможность его конъюгирования с какими-то токсичными соединениями [140]. В определенной степени таковым можно считать упоминавшееся выше предотвращение летального эффекта Hc1 для *E. coli* при коэкспрессии с *IspE*. приволящей в конечном итоге к накоплению МЕсРР [68].

Образование МЕсРР катализирутся 2-С-метил-D-эритритол-2,4циклодифосфатсинтазой (МЕсРР синтазой), кодируемой геном *ispF* (синонимы *ygbP*, *yacNu mecs*). Предположение относительно возможного участия *ygbB* в МЕР-пути было высказано после того, когда было обнаружено, что он находится в том же опероне, что и ген *ygbP*, кодирующий CDP-ME синтазу [164]. Мутации по гену *ispF* являются летальными, его слабая экспрессия ведет к нарушению формы клеток [35]. Инкубация его белкового продукта с CDP-ME2P приводит к образованию MEc-PP с одновременным отщеплением CMP [75, 192].

 Φ ермент из *E. coli* и *Plasmodium falciparum* нуждается в двухвалентных катионах. Активное превращение CDP-ME2P этими рекомбинантными белками наблюдалось в присутствии ионов Mg²⁺ или Mn²⁺. необхолимости в других кофакторах не выявлено [75, 160]. Оптимум pH MEcPP синтазы из *P. falciparum* составляет 7,0; скорость реакции – 4.3 мкмол/мин мг. Основным пролуктом реакции является 2-С-метил-D-эритритол-2,4-циклодифосфат. В качестве минорного продукта MEcPP синтазной реакции у *P. falciparum* был обнаружен пятичленный шиклический сахар – 2-фосфо-2-С-метил-Д-эритритол-3,4-шиклофосфат [160]. Если же в качестве субстрата использовался CDP-ME, то минорным продуктом был 2-С-метил-D-эритритол-3,4-шиклофосфат [75, 160]. В отсутствие фермента в шелочной среде происходит перезамыкание цикла с образованием 2-С-метил-D-эритритол-1,2-циклодифосфата [135]. Хромопласты *С. аппиит* с высокой эффективностью (до 55%) включают МЕсРР в каротиноидную фракцию [59, 60, 75]. Включения в ИП 2-С-метил-D-эритритол-3,4-циклофосфата в этой системе не обнаружено [75].

МЕсРР синтаза из разных источников была получена в виде кристаллов в присутствии или отсутствие субстрата и различных ионов [89, 91, 154, 191]. Рентгеноструктурный анализ фермента из *E. coli* и *T. thermophylus* показал, что MEcPP синтазы являются гомотримером с центральной гидрофобной областью, образующей В-призму. Три каталитических участка нахолятся на внешней поверхности молекулы в углублении между соседними субъединицами и образуются аминокислотами каждой из них. Субъединица МЕсРР синтазы из E. coli состоит из 156 аминокислотных остатков и представляет собой единый α/β домен. Ферменты обоих организмов содержат по два иона металла в активном центре. Однако, если в белке *T. thermophylus* оба иона представлены Mg²⁺ [91], то достаточно неожиданным оказалось наличие в активном центре MEc-PP синтазы из E. coli одного тесно связанного иона Zn²⁺ [89, 191]. Вторым ионом в этом случае является Mn²⁺ [89] или Mg^{2+} [191]. Ион Mn^{2+} попадает в активный центр, скорее всего, будучи связанным с субстратом [89].

Установлены некоторые аминокислотные остатки, принимающие участие в каталитическом акте MEcPP синтазы. По данным Кемпа и соавт. [79, 89], в связывании цитозина принимают участие Pro103, Ala100, Met105 и Leu106. Остаток рибозы взаимодействует с Asp56 и Gly58, а при участии молекул растворителя – также с Asp46 и Ala131. Альфа-фосфатная CDP вступает во взаимодействие с остатком Thr133. Для связывания остатка метилэритритол-2-фосфата важную роль играет высоконсервативный фрагмент из пяти аминокислот, начинающийся с His34. В связывании ионов Zn²⁺ принимают участие Asp8, His10 и His42. Найдено, что четвертая координационная связь тетраэдрической сферы Zn²⁺ заполнена кислородом β-фосфатной группы CDP. Ион Mn²⁺ образует октаэдр, лигандами которого являются Glu135 и кислород α - и β-фосфатных групп CDP, а также 3 молекулы воды.

Оба металла (Zn^{2+} и Mn^{2+}) играют роль в правильной ориентации α - и β - фосфатных групп субстрата и в качестве льюисовских кислот участвуют в поляризации этих групп. Первым этапом реакции является, вероятно, нуклеофильная атака β -фосфатной группы 2-фосфатной группой CDP — метилэритритолфосфата. Образующееся переходное соединение с пятью координационными связями стабилизируется ионами металлов, а затем коллапсирует, высвобождая CMP и MEc-PP [79191].

ОБРАЗОВАНИЕ (Е)-4-ГИДРОКСИ-3-МЕТИЛ-БУТ-2-ЕНИЛ ДИФОСФАТА

Накопление МЕсРР в условиях окислительного стресса вызывается ингибированием GcpE или иначе (Е)-4-гидрокси-3-метил-бут-2-енилдифосфатсинтазы (НМВРР-синтазы), продукта гена *ispG* (синоним gcpE). Его участие в синтезе ИП было доказано с помощью делеционных мутантов E. coli. При этом в клетку вводили плазмиду, содержащую гены, необходимые для синтеза IPP из MVA [36]. Такой мутант сохранял жизнеспособность только при добавлении в среду культивирования мевалоновой кислоты или при введении плазмиды с *ispG*[19, 37]. Сходные эксперименты проведены и с ортологичным геном из A. thaliana, содержащим помимо пластидной сигнальной последовательности еще дополнительный домен, и тем не менее способным комплементировать летальную *gcpE*-мутацию у *E. coli* [147]. Аккумуляция МЕсРР и появление альбино-фенотипа (вследствие резкого уменьшения синтеза пластидных пигментов) наблюдается также при silence-мутировании вирусом TRV гена ispG в клетках табака [141]. При выращивании на среде с 1-D-дезоксиксилулозой рекомбинантной E. coli, содержащей искусственный оперон с генами ispC, ispD, ispE и ispF, а также ген D-ксилулокиназы, фосфорилируюшей исходный субстрат [210], происходит накопление МЕсРР. Когда в клетке экспрессировали также и gcpE, то образовывалось соединение, которое методами 1 H-, 31 P- и 13 C-ЯМР, а также спектроскопии с использованием ядерного эффекта Оверхаузера было идентифицировано как (Е)-4-гидрокси-3-метил-бут-2-енилдифосфат (НМВРР). Это уточненное название 1-гидрокси-2-метил-2-(Е)-бутенил-4-дифосфата, как первоначально было назван продукт НМВРР-синтазной реакции [73].

Олнако даже после обнаружения и идентификации НМВРР долгое время не улавалось пролемонстрировать активность фермента в опытах in vitro. Прогресс был достигнут только после того, как было показано, что поглощение НМВРР-синтазы в типичной области 413-420 нм уменьшается при добавлении Ті³⁺. Она имеет характерные спектры ЭПР и комбинационного рассеяния, т.е. содержит [4Fe-4S]²⁺ кластер, а значит, является высокочувствительной к кислороду [16, 92]. Фермент из T. thermophylus был клонирован в E. coli и очишен в анаэробных условиях. Этот препарат имел коричневую окраску и в присутствии дитионита катализировал превращение МЕсРР в НМВРР с К₀ = 0,42 мМ. Скорость реакции при 55 °С и рН 7,5 была равна 0,6 мкмоль/мин мг, что соответствует $K_{ast} = 0.4 \, s^{-1}$; оптимум рH фермента между 7,5 и 8,0 [92]. Помимо энзимологических исследований в этой работе было показано, что продукт НМВРР-синтазной реакции вызывает пролиферацию Vg9/VΣd2-T-клетки (см. ниже – «Медицинские аспекты»).

Несколько позднее для фермента из *E. coli* была показана возможность реконституции Fe-S кластера и активности HMBPP-синтазы при использовании фотовосстановленного 5-диазофлавина или флаводоксин/флаводоксинредуктазной регенерирующей системы [181]. Механизм реакции включает, вероятно, двухэлектронное восстановление, с возможным участием NADPH.

Рекомбинантная HMBPP-синтаза была также получена из *E. coli* в виде химеры с мальтозосвязывающим белком. Очищенный препарат не способен к образованию HMBPP, но его каталитическая активность восстанавливалась при добавлении грубого клеточного лизата из мутанта, дефицитного по *ispG* [166]. Авторы предположили, что это является свидетельством необходимости в HMBPP-синтазной реакции дополнительных белков (возможно, в качестве компонентов системы, обеспечивающих ее восстановительными эквивалентами). Восстановление активности также наблюдалось при использовании фотовосстановленного 10-метил-5-диаза-изоаллоксазина. Образование HMBPP протекало со скоростью, равной 1 нмоль/мин мг [166].

ОБРАЗОВАНИЕ ИЗОПЕНТЕНИЛДИФОСФАТА И ДИМЕТИЛАЛЛИЛДИФОСФАТА

Как и в случае с ispG, первые доказательства участия гена lvtB(*ispH*) в немевалонатном пути синтеза ИП были получены в генетических экспериментах. Гетерологическая экспрессия гена Svnecho*cvstis* в специально сконструированном штамме *E. coli*. солержашем плазмиду с генами каротиногенеза, приводила примерно к двукратному увеличению синтеза ликопина [45]. К такому же увеличению синтеза каротиноидов приводила и гомологичная экспрессия вместо lytB гена ipi, кодирующего у E. coli IPP-изомеразу. Такой же уровень синтеза наблюдался и при совместной экспрессии этих двух генов. При вырашивании knock-out мутантов Synechocystis PCC6803 по гену *lvtB* на средах, содержащих спиртовые аналоги IPP и/или DMAPP, летальный эффект мутации подавлялся [45]. Спиртовые аналоги изопреновых единиц также поддерживали ограниченный рост условно-летальных lvtB-мутантов E. coli [120]. Таким образом, хотя он и не мог осуществлять взаимопревращение IPP и DMAPP [45], действие белкового продукта lvtB было таким, как если бы он выполнял функцию ІРР-изомеразы. Эта гипотеза находила и другие косвенные подтверждения. Так, было показано, что у E. coli IPP-изомеразу кодирует единственный ген (*ipi*) [44, 70], но он не является незаменимым для синтеза ИП [70]. В то же время DMAPP абсолютно необходим [144]. У Synechocystis PCC6803 и некоторых других цианобактерий не удавалось обнаружить ни гена *ipi*, ни какой-либо IPP-изомеразной активности классического типа [44, 55]. Для ряда организмов, синтезирующих ИП по МЕР-пути, удалось показать присутствие гена IPP-изомеразы, не имеющего никакой гомологии с *ipi* [84].

Поначалу такое свойство *lytB* казалось довольно загадочным, так как, хотя в генетических экспериментах по комплементации его делеционной мутации (выращивание *E. coli* на среде с MVA при введения искусственного оперона ее метаболизма подобно экспериментам, описанным в разделе, посвященном *ispG*) и было показано, что *lytB* находится перед или в точке разветвления MEP-пути на синтез IPP или DMAPP [18, 157], считалось маловероятным, чтобы один и тот же фермент катализировал образование сразу двух соединений. Однако, когда рекомбинантную *E. coli*, содержащую гены *xylB*, *ispCDEFG* и *lytB* (*ispH*) выращивали на среде с (U-¹³C)-1-D-дезоксиксилулозой, наблюдалось образование меченых IPP или DMAPP в соотношении 5:1 [161]. Хотя полученные результаты и не исключали возможность последовательного образования этих соединений, а следовательно, и участия IPP-изомеразы, авторы сочли более вероятной модель одновременного синтеза обеих изопреновых единиц. Вскоре ими были получены и прямые доказательства этого. В опытах *in vitro* диализованный клеточный экстракт из штамма *E. coli*, суперэкспрессора белка IspH (LytB), катализировал превращение HMBPP в IPP и DMAPP в соотношении 6:1 [13].

В качестве кофакторов фермент нуждается в двухвалентных ионах (Co²⁺ или, в меньшей степени, Mn²⁺), а также в FAD или NADH. В отличие от других ферментов MEP-пути, в случае с IPP/DMAPP-синтазой, NADH давал более высокую стимуляцию, чем NADPH [13].

Одновременно другой группой авторов, получивших препарат со значительно более высокой активностью, было окончательно подтверждено, что IspH (LvtB) является IPP/DMAPP-синтазой (синонимы – (*E*) – гидрокси-3-метил-бут-2-енилдифосфат редуктаза, LytB и IspH). В *Е. coli* в анаэробных условиях был клонирован фермент из термофильной бактерии Aquifex aeolicus и благодаря его термостабильности очишен до видимой гомогенности [16]. При инкубации фермента в среде с полностью определенным составом наблюдали восстановление очишенного НМВРР с образованием ІРР и DMAPP в соотношении между 4:1 и 5:1. Был определен ряд кинетических параметров IPP/DMAPP-синтазы из A. aeolicus. Максимальная скорость реакции при pH 7,5 и 60 °C равнялась 6,6 ± 0,3 мкмоль/мин мг, а k_{oot} – $3.7 \pm 0.2 \,\mathrm{s}^{-1}$. Энергия активации = $49 \pm 2 \,\mathrm{кДж}$. Константа Михаэлиса для HMBPP составляла 590 ± 60 мкМ [16]. Наличие в спектре поглощения белка широкого максимума в области 420 нм, уменьшающегося при добавлении дитионита, характерные ЭПР и спектры комбинационного рассеяния свидетельствовали о том, что он так же, как и НМВРР-синтаза, содержит железо-серный кластер, вероятно [4Fe-4S]²⁺. Очищенный препарат фермента имел коричневую окраску и, подобно НМВРР-синтазе, был очень чувствителен к кислороду: инкубация на воздухе в течении 10 минут снижала активность IPP/DMAPP-синтазы из A. aeolicus на 80% [16, 209].

Недооценка чувствительности фермента к кислороду долгое время тормозила его изучение, так как не удавалось наблюдать образования продуктов реакции *in vitro* при использовании очищенного рекомбинантного белка. В то же время, возможно, его низкие активности в очищенном состоянии объясняются и другими причинами. Так, в уже цитированной работе Адама и др. [16] было показано, что добавка к лизату *E. coli* очищенного препарата IspH примерно в 4,5 раза увеличивала активность экстракта. На этом основании авторы предположили, что подобно HMBPP-синтазе, IspH для проявления максимальной активности нуждается в каких-то не идентифицированных белках, обеспечивающих необходимые для нормальной работы фермента окислительно-восстановительные условия в активном центре [16]. Позднее эти же авторы обнаружили, что при использовании фотовосстановленного 10-метил-5-диаза-изоаллоксазина очищенный рекомбинантный белок из *E. coli* катализирует образование смеси IPP и DMAPP в соотношении 6 : 1 со скоростью 0,4 мкмоль/мин мг. При использовании смеси, включающей флаводоксин, флаводоксинредуктазу и NADPH скорость реакции составляла 3 нмоль/мин мг [166].

Вообще свойства двух последних ферментов МЕР-пути, НМВРРи IPP/DMAPP-синтаз (или IspH и IspG) оказались близки. В ходе обеих реакций, скорее всего, происходит двухэлектронное восстановление, возможно, при участии различных доноров электронов – NADPH или NADH.

Функционирование и роль IPP/DMAPP-синтазы недавно были исследованы в растениях табака. При вирус-индуцированной silenсе-мутации гена *ispH* происходит накопление HMBPP, а также (E)-2-метилбут-2-ен-1,4 диола. Вследствие нарушения синтеза ИП резко снижается количество каротиноидов и хлорофилла, происходит изменение структуры хлоропластов, уменьшение их количества. Такие проростки имеют альбино-фенотип [141].

ДВА ПУТИ СИНТЕЗА ИП: MVA И МЕР

При сравнении реакций МVA и МЕР путей (рис. 3, А и Б) видно, что прямая энергетическая «стоимость» первого существенно выше.

Затраты MVA-пути в расчете на одну изопреновую единицу составляют: три макроэргических эквивалента (в виде ацетил CoA) при синтезе 3-гидрокси-3-метилглутарил-CoA и три молекулы ATP на завершающих стадиях пути. Реакция образования MVA требует также две молекулы NADPH. Таким образом, синтез IPP или DMAPP, которые используются и для синтеза структурных компонентов клетки (т.е. в очень больших количествах), по MVA-пути является весьма энергетически затратным.

MEP-путь значительно экономичнее. В этом случае для образования молекулы IPP (или DMAPP) используется только по одной молекуле CTP, ATP и NADPH.

Нужно, однако, оговориться, что если в заключительных реакциях МЕР-пути используются дополнительные восстановительные эквиваленты (два?), то эти подсчеты для немевалонатного пути не окажутся столь благоприятными. С другой стороны, многие MEP-синтезирующие виды организмов относятся к патогенам или фотосинтетикам. В обоих случаях доступность NADPH (NADH) не является лимитирующим фактором, что делает использование MEP-пути привлекательной эволюционной стратегией.

Помимо этого, важным преимуществом MEP-пути в определенных условиях может являться и то, что он, одновременно и независимо от других ферментных систем, генерирует оба необходимых предшественника для синтеза ИП.

Существенным кажется и то, что отношение *de novo* синтезируемых IPP и DMAPP (примерно 5:1) оказывается гораздо «правильнее настроено» для синтеза сложных ИП (где на 1 молекулу DMAPP может использоваться от одной до нескольких десятков молекул IPP), чем соотношение для системы MVA-путь/IPP-изомераза (IPP: DMAPP = 3:7) [166].

Использование ряда интермедиатов для синтеза соединений отличных от IPP, является еще одной важной особенностью МЕР пути. Причем, если использование DXP в синтезе витаминов В, (тиамина) [198] и В. (пиридоксина) [76, 195] можно принимать с оговорками (и выводить реакцию синтеза DXP за рамки собственно МЕР-пути), то вовлечение НМВРР в образование цитокинина (зеатин рибозид 5'-фосфата) [95] или в образование у микобактерий конъюгатов с пиримидиновыми основаниями (уридином и тимидином) [63, 143] является примером, которому у мевалонатного пути нет аналогов. НМВРР является также самым мощным активатором γδ-Т-лимфоцитов [77]. Накопление другого метаболита МЕР-пути, а именно МЕсРР, которое, вероятно, является не только результатом, но и ответом на стресс (и, следовательно, предполагается его участие в антистрессорных реакциях клетки) [140], представляет собой еще одну возможную стадию этого пути, на которой его интермедиаты выводятся для участия в других метаболических реакциях. У хламидий (а возможно и у других организмов) МЕсРР служит регулятором ДНК-белковых взаимодействий. препятствуя связыванию ДНК гистон-подобным белком [68].

IV. КОМПАРТМЕНТАЛИЗАЦИЯ И ВЗАИМОДЕЙСТВИЕ ДВУХ ПУТЕЙ СИНТЕЗА ИЗОПРЕНОИДОВ

Использование двух путей для биосинтеза ИП одновременно обнаружено лишь у высших растений [109] и некоторых микроорганизмов [27, 71, 100, 183]. Их функционирование в одной и той же клетке ставит вопросы о механизмах их регуляции и взаимодействии. Особенно интригующей, вследствие отсутствия внутренних мембран, представляется ситуация у микроорганизмов, которые, к сожалению еще мало исследованы.

У патогенной бактерии *Listeria monocytogenes* функционируют оба пути, поэтому, возможно, ингибирование одного из них не сказывается на выживании этого организма [27]. У *S. griseolosporeus* MVA-путь не является жизненно необходимым [71]. Относительно биосинтеза ИП у *Streptomyces aeriouvifer* и другого актиномицета *Actinoplanes sp. A40644* известно, что на ранних стадиях роста эти организмы используют MEP-путь, в то время как на поздних включается MVA-путь [182, 183]. Учитывая, что вторичные метаболиты обычно синтезируются при переходе в стационарную фазу, есть основания полагать, что основная роль MEP-пути у *Streptomyces* – обеспечение первичного метаболизма, в то время как во вторичном основную роль играет MVA-путь. Информации об объемах синтеза ИП посредством каждого из путей мало. Имеются оценки продукции терпеноидного антибиотика терпентецина. В этом случае 60% необходимого IPP поставляет MVA-, а 40% – MEP-путь [71].

Более сложная ситуация существует в растительной клетке. Как уже указывалось, в хлоропластах растений ИП синтезируются по MEP-, а в цитозоле — по MVA-пути. Таким образом, хотя оба пути функционируют одновременно, физически они изолированы друг от друга. Из схемы на рис. 2 видно, что оба пути используются для синтеза как первичных, так и вторичных метаболитов. Однако нельзя говорить о преимущественном участии какого-либо из них в том или ином процессе метаболизма [109, 179, 180].

В годы, предшествовавшие открытию МЕР-пути, еще было мало данных о существовании физиологически значимого транспорта ИП метаболитов из цитозоля в хлоропласты или в обратном направлении [7, 8]. Однако, после обнаружения альтернативного пути, довольно быстро стали накапливаться данные, количественно и качественно характеризующие интенсивность обмена изопреновыми единицами между ИП-синтезирующими компартментами растительной клетки. Естественно, что эти характеристики в зависимости от типа клеток и их физиологического состояния варьируют в широких пределах [156]. Например, в иголках сосны отсутствует включение метки из МVА при выделении изопрена [213], который образуется из DMAPP в хлоропластах. Если учесть большие масштабы этого процесса у растений [185], следует признать полное отсутствие или незначительность поступления DMAPP/IPP в хлоропласты сосны. В то же время при анализе этого процесса у дуба, тополя, мирта, жостера и бархатных бобов выяснилось, что от 9 до 28% продуцируемого изопрена имеет

цитозольное происхождение [15, 85, 176]. Интересный пример представляют одноклеточные зеленые водоросли *Chlorophyta*. У этой группы синтез всех ИП, как цитозольных, так и пластидных, осуществляется исключительно по МЕР-пути [178]. В общем же случае, при нормальных физиологических условиях объем встречного транспорта ИП и их предшественников оценивается величиной менее 1%. [48, 54, 109]. Считается, что обмен интермедиатами двух путей обычно происходит на уровне IPP и/или фарнезилдифосфата [80, 86, 156, 177].

В опытах на проростках нескольких видов растений показано, что такой обмен недостаточен, чтобы полностью компенсировать нарушение синтеза ИП в соответствующем компартменте. Так, у Arabidopsis thaliana альбино-фенотип мутантов, дефектных по генам МЕР-пути, дефицит не может быть преодолен импортом предшественников ИП из цитозоля [21, 32, 57]. Также не удается восстановить синтез пигментов хлоропластов за счет цитоплазматических ИП и при обработке проростков A. thaliana или зеленых плодов томатов фосмидомицином [155, 158]. В свою очередь, и поток метаболитов из хлоропластов оказывается недостаточным. чтобы полностью скомпенсировать ингибирование мевинолином синтеза цитозольных ИП у томатов [159]. Однако известны случаи, когда путем импорта метаболитов другого пути небольшие нарушения практически удается исправить. Так, в ярко-желтых клетках табака (ТВУ-2) ингибирование роста фосмиломицином можно преодолеть добавкой экзогенной МVA в среду культивирования. В то же время добавка дезоксиксилулозы восстанавливала нарушенное введением мевинолина ингибирование конечным продуктом ключевого фермента МVA-пути 3-гидрокси-3-метилглутарил-СоА редуктазы. При этом если ингибиторы обоих путей добавлены одновременно, то относительное включение MVA в пластохинон в хлоропластах усиливается [74]. У нуль-мутанта A. thaliana по гену DXP-синтазы добавление MVA восстанавливало на свету взаимодействие тилакоидных мембран хлоропластов, а в темноте, в этиопластах – образование проламмелярных тел и пластоглобул [127]. У А. thaliana установлено существование двух механизмов адаптации к нарушению синтеза ИП. Если выживание при ингибировании MVA-пути обеспечивается за счет регуляции синтеза МVA, то при ингибировании МЕР-пути фосмидомицином – за счет увеличения импорта в пластилы цитозольных ИП [158].

В клетках *Catharanthus roseus* примерно 6% (от количества включавшегося в пигменты хлоропластов) метки ¹³С-1-дезокси-D-ксилулозы обнаруживалось в цитозольных фитостеролах [24]. Также в опытах по включению меченой ¹³С-1-дезокси-D-ксилулозы наблюдали, что синтезированный в пластидах геранилдифосфат используется цитозольной фарнезилтрансферазой для синтеза фарнезилдифосфата. При этом источником третьей изопреновой единицы сесквитерпенов служит IPP цитозоля [14]. Вообще, ситуация, когда оба пути объединяют усилия в синтезе «химерных» ИП, не уникальна. Так, например, синтезируются β -ситостеролы и стигмастеролы у *Croton sublyratus*. Вклад изопреновых единиц обоих путей примерно одинаков [46]. Имеются примеры химерных ИП с локализацией в пластидах. У печеночных мхов обнаружена конденсация IPP хлоропластов и цитоплазматического фарнезилдифосфата мевалонатного происхождения с последующим включением в дитерпеноиды и в фитольную часть хлорофилла [80, 81, 86, 128, 129, 199].

Еще одним, довольно распространенным вариантом взаимодействия МЕР- и МVА-путей у растений является видоспецифичный синтез ИП, когда одни и те же или близкие ИП у родственных организмов синтезируются разными путями [87, 118].

Среди особенностей функционирования биосинтеза ИП по МЕР-пути в растениях стоит кратко обратить внимание на регуляторные аспекты, подробно описанные в обзоре Родригеса-Консепсьон и Бороната [156]. Экспрессируемые последовательности (EST) DXPи HMBPP-синтаз составляют 2 промилле, а для IPP/DMAPP-синтазы 1 промилле от всех EST в библиотеках *A. thaliana*. В *C. roseus* ферменты MEP-пути экспрессируются совместно [34]. Все гены MEPпути локализованы в ядре, поэтому все ферменты имеют пластидную сигнальную последовательность [156]. Результаты исследований говорят, что ключевыми ферментами этого пути синтеза у растений являются DXP-синтаза [58, 114, 203, 204] и, вероятно, DXP-редуктоизомераза [38, 116, 201, 203], а для микроорганизмов установлена регуляторная роль CDP-ME киназы (хламидии) [68] и IPP/DMAPPсинтазы (*E. coli*) [45].

В митохондриях МЕР-путь отсутствует и для биосинтеза пренильных цепей убихинонов используется цитозольный IPP [109].

В заключение этого раздела упомянем о неясной ситуации относительно количества путей биосинтеза ИП у простейших, имеющих особую органеллу, апикопласт. Считается что ее эволюционным предшественником являются пластиды. К организмам, имеющим апикопласт, относятся возбудители малярии из рода *Plasmodium* и токсоплазмоза (*Toxoplasma*). У малярийного плазмодия наличие MEP-пути твердо установлено [83]. Но, исходя из того, что у этого организма происходит эффективное включение ¹⁴С-мевалоната в фарнезилдифосфат, для *P. falciparum* весьма высока вероятность сосуществования MEP- и MVA-путей [119].

V. МЕДИЦИНСКИЕ ПРОБЛЕМЫ

То, что у патогенных микроорганизмов и человека биосинтез жизненно необходимых ИП протекает совершенно различными метаболическими путями, имеет важные последствия медицинского характера. С одной стороны, это открывает дополнительные возможности для поиска новых лекарств. С другой стороны, отдельные метаболиты MEP-пути принимают важное участие в иммунном ответе, модулируя который можно отыскать новые методы лечения таких болезней, как, например, некоторые виды рака.

Повышенный интерес к поиску ингибиторов немевалонатного пути, которые могли бы стать «новыми антибиотиками», обусловлен большим количеством использующих его патогенных микроорганизмов. Среди них и ежегодно уносящие миллионы жизней возбудители туберкулеза и малярии. По оценкам американского Национального Института аллергии и инфекционных заболеваний каждый год около 2 миллиардов человек инфицируется туберкулезом, из которых у 8 миллионов развивается активная форма, а 3 миллиона умирают (http://www.niaid.nih.gov/factsheets/tb.htm). Ежегодно на планете заболевает малярией около 300 миллионов человек, причем около 2 млн. с летальным исходом [117]. Большую опасность для человечества представляют и возбудители таких опасных заболеваний, как чума, сибирская язва, туляремия, холера, проказа, тиф, дифтерия, коклюш и др. К организмам, представляющим мишень для новых антибиотиков, относятся также возбудители ряда заболеваний, переносимых с пищей и водой (ботулизм, сальмонеллез и др.), язвенной болезни, ОРЗ, болезней мочеполового тракта.

Известные в настоящее время возбудители болезней человека и животных, использующих МЕР-путь, перечислены в таблице. В основном, она составлена на основе данных Эберля и Теста с соавторами [53, 196] с учетом подразделений на категории опасности, введенные Центром лечения и профилактики заболеваний при американском министерстве здравоохранения (Department of Health and Human Services, Center for Disease Control and Prevention) (http://www.bt.cdc.org/Agent/Agentlist.asp). По этой классификации, в наиболее опасную категорию (категорию А) отнесены организмы, которые могут быть использованы в военных целях и/или обладающие такими характеристиками, как высокая инфекционность и смертность, которые могут вызывать панику среди населения и требуют специальных мероприятий со стороны общественных служб. Менее опасные организмы, которые также могут быть использованы в качестве биологического оружия, отнесены к категории Б. Возможность такого «практического применения» патогенов, естественно, придает особое значение изучению различных аспектов МЕР-пути.

Метилэритритолфосфатный путь биосинтеза изопреноидов

- 2	Λ	1
2	Ŧ	T

	Таблица		Окончание табл.
Заболевания человека и :	животных, вызываемые организмами.	1	2
использующих МЕ	Р-путь биосинтезя изопреноилов		
(по [53 196] с изменениями	Пояснения см. в тексте)	Erlichia chaffensis	Возбудитель заболевания, сходного с пятнис-
			той лихорадкой Скалистых гор (переносится
Возоудитель	Заболевание	Enterococcus faecalis	клещами) Болезни монерых путей: ранерые инфекции
1	2	Enerococcus juecuns Escherichia coli	Условно-патогенный организм
Rater	ория А	Haemonhilus ducrevi	Условно-натогенный организм Магкий шанкр
Bacilius anthracis	Сиоирская язва	Haemonhilus influenzae	Летские ОРЗ: бактеремия: острый бактериаль-
	Ботулизм	maemophilus influenzae	ный менингит
Francisella tularensis	Туляремия	Helicobacter nylori	Язвенная болезнь
Tersinia pestis	Чума	Klebsiella gerogenes	Инфекции моневого тракта
Кате	гория Б	Klebsiella proumoniae	Пиермония: инфекции монерого тракта
Brucella melitensis	Мальтийская лихорадка; бруцеллез (козы)	L'entospira interrogans	Пантоспироз: асаптический манингит
Brucella suis	Бруцеллез (свиньи)	Listeria monoentogenia	
Clostridium perfringes	Газовая гангрена	Lisieria monocyiogenic Mauri a ini a la anna luti a a	Листериоз, пищевые инфекции
Escherichia coli 0157:H7	Энтерогеморрагии	Mannheimia haemoiyiica Maamaalla aataanka lia	
Salmonella enterica	Сальмонеллез	Moraxella catarrhalis	инфекции среднего уха; паразит слизистои
Salmonella enteritidis	Сальмонеллез		ооолочки кишечника
Salmonella typhi	Брюшной тиф	Mycobacterium ieprae	Проказа
Salmonella typhimurium	Сальмонеллез; гастроэнтерит	Mycobacterium smegmatis	Бактеремии
Burkholderia mallei	Сап	Mycobacterium tuberculosis	Туоеркулез
Burkholderia pseudomallei	Мелиодоз (болезнь Стентона, болезнь Флетчера)	Mycoplasma penetrans	Внутриклеточный паразит человека, обычно
Chlamvdophila caviae (Chlamv-	Орнитоз (пситтакоз, попугайная болезнь)		поражает при СПИДе
dia psittaci)		Neisseria gonorrhoeae	Гонорея
Vibrio cholerae	Холера	Neisseria meningitidis	Менингит
Пругие потог		Neorickettsia sennetsu	Моноцитарная ангина; лихорадка sennetsu
Activobacillus	Периодоции	Plasmodium falciparum	Малярия
actinomycetecomitans	периодонтит	Porphyromonas gingivalis	Периодонтальная болезнь
Anaplasma phagocytophilum	Гранилонити и эрлихиог целорека (переносится	Prevotella intermedia	Периодонтальная болезнь
mapiasma phagocytophitam	транулоцитный эрлихиоз человека (переносится	Pseudomonas aerugenosa	Возбудитель госпитальных инфекций
Ractaroidas fragilis	клощами) Условно-патогеный организм: представитель	Psychrobacter sp.	Менингит; бактеремии, глазные инфекции
Ducterolities fragilis	норманьной микрофлоры кишенника	Serratia marcescens	Болезни мочевых путей; муковисцидозные ин-
Rifidihactarium longum	пормальной микрофлоры кишечника Условно-патогеный организм: представитель		фекции
Difiaibacierium iongum	нормальной микрофлоры кишенника и	Shigella dysenteriae	Бактериальная дизентерия
	мочеполового тракта	Shigella flexneri	Пищевые инфекции
Rordetella bronchisentica	Респираторные заболевания	Tannerella forsynthensis	Периодонтальная болезнь
Bordetella pertussis	Коклюш	Toxoplasma gondii	Токсоплазмоз
Burkholderia cenacia	Undernan anyarean noro aparta	Treponema denticola	Периодонтальная болезнь
Campulohactar jajuni	Пишевой патогон, настая принина тиаррен	Treponema pallidum	Сифилис
Chlamydia trachomatia	Тищевой натоген, частая причина диаррей	Tropheryma whipplei	Болезнь Уиппла
Chiamyala trachomalis	хома: никлюзивший контроктивит	Vibrio parahaemolyticus	Диарея; лихорадки
Chlamydonhila praymoniae		Yersinia enterolitica	Диарея; лихорадки; боли в животе
Clostridium difficile	Броплит и ппевмония человека Колит		
Clostridium totar:	колин Столбици		погены животных
Commahactarium diphtariaa	Пифтерия		Плевропневмония свинеи
Corunebucierium alphieriae	См. окончание табл.	Pasteurella multocida	заоолевания кроликов

340

ПОИСК НОВЫХ АНТИБИОТИКОВ НА ОСНОВЕ ИНГИБИТОРОВ МЕР-ПУТИ

Принцип действия антибиотиков, в общем случае, базируется на существовании различий у человека и животных, с одной стороны, и патогенных микроорганизмов — с другой, в свойствах ферментов, связанных с жизненно важными процессами. К сожалению, не так уж много основных метаболических путей, которые бы кардинально различались у про- и эукариот. Не считая синтеза микроорганизмами клеточной стенки, пожалуй, трудно привести другие примеры, когда действие антибиотиков направлено на процессы, полностью отсутствующие у эукариот, а следовательно, обладающие меньшей вероятностью побочного действия. Наличие у человека и у многих возбудителей болезней различных путей синтеза ИП служит основой для поиска гербицидов и антибиотиков совершенно нового класса [196, 207]. В качестве таковых могут выступить и специфические ингибиторы MEP-пути ввиду его отсутствия у человека. Успешность данного подхода была продемонстрирована при лечении малярии.

Естественным кандидатом на эту роль стал фосмидомицин, единственный в настоящее время известный специфический ингибитор немевалонатного пути, и его производные (формулы см. выше, в разделе об образовании МЕР).

Обнадеживающие результаты были получены уже в первых экспериментах. Фосмидомицин не только ингибировал штаммы *P. falciparum* с множественной лекарственной устойчивостью в опытах *in vitro*, но и показал значительный терапевтический эффект на инфицированных мышах. Как и ожидалось, его токсичность для мышей была низкой — 8 г/кг при пероральном введении и 5 г/кг при подкожном [83]. Однако, вследствие сильного отрицательного заряда молекулы фосмидомицина, его поступление в клетку является критическим этапом, приводя к снижению эффективности. Более гидрофобные соединения — производное фосмидомицина FR900098 и его дифенильные или ацилоксиалкильные эфиры — были при той же токсичности почти в 2 раза эффективное *in vitro* и *in vivo*, чем фосмидомицин [83, 132, 150].

В клинических испытаниях в Габоне фосмидомицин при его хорошей переносимости больными показал себя весьма эффективным средством против малярии. При пероральном введении каждые 8 часов в течение 3, 4 или 5 дней 1200 мг фосмидомицина в среднем к 44-му часу исчезали паразиты в крови и прекращались приступы лихорадки. Через две недели такой эффект достигался у 60, 88 и 89% пациентов, соответственно. На 28-й день выздоравливали 7 из 9 больных (78%) [108, 125]. Вторая серия клинических испытаний по аналогичной схеме (1200 мг фосмидомицина перорально каждые 8 часов в течение 7 дней) проводилась в Таиланде. В этом случае также достигалось быстрое (в среднем к 41-му часу) временное исчезновение приступов лихорадки и паразитов из кровотока. Но полное излечение (т.е. отсутствие паразитемии и лихорадки на 28-й день) отмечено только в 22% случаев. Из побочных эффектов отмечены лишь слабые расстройства кишечника у нескольких пациентов. Показатели стандартных гематологических и биохимических анализов были в пределах нормы в течение всего периода наблюдения [108].

Несмотря на эти обнадеживающие результаты, из-за высокой вероятности возврата симптомов заболеваний было предложено использовать фосмидомицин в комбинации с другими препаратами. Для клинических испытаний был отобран клиндамицин, бактериостатик из группы линкосаминов, который применялся для лечения малярии вместе с хинином [206]. Ранее была показана синергичность действия фосмидомицина и клиндамицина или линкомицина в экспериментах *in vitro* и *in vivo* на животных [207]. Клинические испытания в Африке выявили, что для детей 7-14 лет комбинация фосмидомицин-клиндамицин (перорально 30 и 5 мг/кг соответственно; 2 раза в день в течение 5 дней) была намного эффективнее, чем при использовании индивидуальных препаратов. В этом случае сокращалось время лечения (18 часов против 25 и 71 часа, соответственно) и наблюдалось 100% излечивание [29].

Несомненно, что будет продолжен поиск новых ингибиторов на базе фосмидомицина или модифицированных метаболитов МЕР-пути. Учитывая высокую стоимость подобных исследований на животных, идет поиск других экспериментальных моделей. В качестве таковых было предложено использование растений [112], планшеты с мутантом *S. typhimurium*, дефектным по гену *dxs* и способным к росту на MVA [196], высокопроизводительная скрининговая система с суррогатными (биотинилированными пептидами) лигандами для анализа ингибиторов DXP-редуктазы [67].

МОДУЛЯЦИЯ ИММУННОГО ОТВЕТА

При многих инфекциях, включая туберкулез и малярию, происходит специфическая активация и пролиферация Vγ9/Vσ2-T-лимфоцитов [53]. Это одна из больших субпопуляций Vγσ-T-клеток, которые в сумме составляют до 15% всех Т-лимфоцитов крови. Vγ9/Vσ2-T-клетки имеют две важные особенности. Во-первых, их ответ определяется только присутствием на мембране специфического для этих клеток рецептора (Vγ9/Vσ2 рецептора) и, таким образом, не нуждается в представлении антигена посредством системы комплемента. Во-вторых, Vγ9/Vσ2-T-клетки обладают уникальной способностью активироваться рядом низкомолекулярных фосфорилированных соединений непептидной природы. Этот процесс протекает только у человека и приматов. Физиологическое его значение в настоящее время не ясно. Возможная роль этих фактов в эволюции обсуждается в обзоре Эберля и др. [53].

Идентификации таких природных фосфоантигенов предшествовало наблюдение, что человеческие $\gamma \sigma$ -Т-клетки активируются экстрактами *Mycobacterium tuberculosis*. Выделеннный из этих экстрактов IPP вызывал их пролиферацию и был признан в качестве природного активирующего лиганда [194]. Позднее из микобактерий [28, 47], а затем и из *E. coli* [61] было выделено фосфорилированное соединение — стимулятор $\gamma \sigma$ -Т-клеток с молекулярной массой равной 262 Да, которому авторы приписали структуру 3-формил-1-бутилпирофосфата. Что же касается IPP, то в дальнейшем было установлено, что его внутриклеточная концентрация в клетках микроорганизмов в обычных условиях слишком мала, чтобы оно могло рассматриваться в качестве естественного активатора $\gamma \sigma$ -Т-клеток [82].

В этой же работе был сделан важный вывод о корреляции между наличием МЕР-пути и способностью к стимуляции Vу9/Vo2-T-клеток. Оказалось, что экстракты из клеток микроорганизмов, синтезирующих ИП по МVА-пути, такой способностью не обладают [82]. При анализе мутантов *E. coli*, у которых были удалены или разорваны различные гены МЕР-пути, выяснилось, что истинным природным лигандом Vγ9/Vσ2-T-клеток скорее всего является один из продуктов поздних генов, а именно гена ispH(lvtB). Так, экстракты из штамма, мутантного по этому гену, имели в 150 раз более высокую уо-Т-стимулирующую активность, чем из дикого типа E. coli, а из штаммов, дефектных по ispC(dxr) или ispG(gcpE), наоборот, обладали гораздо более низкой иммуногенностью [52]. Однако, иммунностимулирующую активность *ispC* мутанта удавалось восстановить добавкой к экстракту экзогенного 2-С-метил-Д-эритритола [20]. Поскольку было известно, что ни один из ранних метаболитов MEP-пути (DXP. MEP, CDP-ME, CDP-ME2P, MEcPP) не обладает какой-либо Т-клеточно-стимулирующей активностью [10, 61, 82, 149], был сделан вывод, что за нее отвечает неизвестное в то время вещество. В результате, из экстрактов ispH-нокаут мутанта было выделено и очищено низкомолекулярное (молекулярная масса 262 Да) фосфорсодержащее соединение, обладавшее способностью стимулировать Ууо9/Уо2-Т-клетки примерно в 10 тысяч раз сильнее (EC_{50} около 0,1 nM), чем IPP. Тем самым оно стало самым мощным и специфичным из всех известных активаторов этих клеток. Методами масс- и ЯМР-спектроскопии, в частности оверхаузеровской спектроскопии, это соединение

было идентифицировано как HMBPP [77], которое, как показали последующие исследования [16, 73, 92], является нормальным метаболитом MEP-пути. После сравнения масс-спектров HMBPP с опубликованными масс-спектрами 3-формил-1-бутилпирофосфата возникло предположение, что они принадлежат одному и тому же соединению. Об этом же говорят и некоторые отличия опубликованных ЯMP-спектров формил-1-бутилпирофосфата от ожидаемых для соединения с такой структурой [53, 77].

Показано, что среди всех лимфоцитарных клеток только V γ 9/V σ 2-T-клетки активируются HMBPP. Это приводит к секреции цитокинов и усиленной пролиферации этих клеток [52, 77]. Вследствие же цитотоксичности V γ σ 9/V γ σ 2-T для раковых клеток рассматривается возможность применения HMBPP при лечении множественной миеломы, B-миеломы неходжкинского типа и почечной карциномы [187].

VI. ЗАКЛЮЧЕНИЕ

Обнаружение и расшифровка реакций МЕР-пути значительно расширили наши знания о синтезе большой группы жизненно важных для всех организмов соединений, какими являются ИП. Несмотря на впечатляюще быстрый прогресс в изучении этого нового метаболического пути, нам представляется, что сделаны лишь первые шаги. Какие направления исследований немевалонатного пути синтеза изопреноидов могли бы стать наиболее актуальными в ближайшее время?

В плане получения фундаментальных биохимических знаний таковыми, без сомнения, станут изучение его распространения в природе и условий функционирования в различных группах организмов, взаимодействия с MVA-путем.

Интригующим является вопрос — исчерпывается ли разнообразие синтеза ИП двумя известными путями биосинтеза. По всей вероятности, могут быть обнаружены различные модификации ставших уже каноническими схем MEP- и MVA-путей. Получены данные о том, что при фотосинтетических условиях у цианобактерий в качестве прямых предшественников ИП могут использоваться не только GA3P и пируват, но и фосфорилированные сахара, являющиеся продуктами фотосинтеза и пентозофосфатного шунта. Предполагается, что в этом случае объединение классического и модифицированного MEP-путей происходит на уровне MEP [56, 142]. Также и при синтезе ИП по MVA-пути обнаружено участие других соединений, помимо изученных. Включение в стероиды всех без исключения атомов углеродного скелета лейцина у трипаносомы *Leishmania mexicana* говорит о том, что этот процесс протекает без предварительной деградации до уровня ацетил СоА. Ингибиторный анализ и подавление включения лейцина мевалонатом показывает, что лейцин или продукты его деградации включаются в MVA-путь на уровне 3-гидрокси-3-метил СоА [66].

Конечно же, будут продолжены исследования ферментов MEP-пути, изучение механизмов и способов регуляции катализируемых ими реакций. Учитывая различие путей синтеза ИП у человека и патогенных микроорганизмов, мы надеемся, что полученная информация может оказать неоценимую помощь в поиске новых антибиотиков.

Успешные результаты применения фосмидомицина при лечении малярии стимулируют дальнейшие работы по поиску специфических ингибиторов MEP-пути [170]. Разработано несколько скрининг-моделей [67, 112, 175, 196], позволяющих одновременно анализировать до десятков тысяч соединений на роль ингибиторов отдельных ферментов MEP-пути [67]. В качестве таковых проверяются и модифицированные производные природных субстратов. Разработка методов синтеза субстратов MEP-пути и их аналогов служит хорошей базой для таких исследований [42, 63–65, 94,121, 200].

Повышенное внимание к поиску новых антибиотиков в последнее время связано не только с традиционной задачей борьбы с инфекционными заболеваниями, но и с появившейся недавно весьма серьезной угрозой биотерроризма.

В настоящее время, конечно, нельзя предсказать все направления. по которым пойлет углубленное изучение МЕР-пути и его приклалных аспектов, но, несомненно, нас жлет немало неожиланностей. Например, изопрену (второму по объему после метана газу биогенного происхождения из поступающих в атмосферу [185], продукту МЕР-пути) ранее приписывалось лишь участие в модулировании термотолерантности растений [184]. Недавно же было показано, что при радикал-опосредованном фотоокислении изопрена образуется спиртовой аналог МЕР. Согласно оценкам авторов, его глобальная продукция может доходить до 40 миллионов тонн в год [40]. Имея низкую летучесть, это соединение должно легко конденсироваться, в том числе неподалеку от места образования изопрена – на листьях деревьев. И легко предположить возможность поглощения клетками 2-D-метилэритритола. Этот процесс представляет своего рода биосферный salvage-путь, являясь важным источником субстрата MEP-пути и возвращая выделенный растениями углерод.

Итак, несмотря на сложность прогнозов развития научных исследований, в одном можно быть уверенным — в ближайшие годы изучение немевалонатного пути биосинтеза изопреноидов принесет немало интересных результатов.

Автор выражает благодарность за обсуждение работы и ценные критические замечания Н.В.Соловьевой, В.А.Пасешниченко и Д.Н.Островскому.

ЛИТЕРАТУРА

- Демина Г.Р., Плешакова О.В., Сибельдина Л.А., Харатьян Е.Ф., Щипанова И.Н., Островский Д.Н. (1995) Биохимия, 60, 481–487.
- Лысак Е.И., Огрель О.Д., Харатьян Е.Ф., Щипанова И.Н., Островский Д.Н. (1995) Микробиология, 64, 437–441.
- Огрель О.Д., Фегединг К.В., Капрельянц А.С., Лысак Е.И., Нго Минь Шон, Судариков А.Б., Островский Д.Н. (1996) Биохимия, 61, 1294–1302.
- Островский Д.Н., Досанов К.Ш., Калюк А.Н., Огрель О.Д., Сибельдина Л.А., Харатьян Е.Ф., Щипанова И.Н.Шаров А.Н. (1994) Микробиология, 63, 431–438.
- Островский Д.Н., Лысак Е.И., Сибельдина Л.А., Харатьян Е.Ф., Щипанова И.Н.(1994) Доклады РАН, 337, 687–689.
- Островский Д.Н., Огрель О.Д., Бинков В.И., Таптыкова С.Д., Харатьян Е.Ф., Шашков А.С., Шумаев К.Б., Щипанова И.Н. (1992) Доклады РАН, 325, 1071–1076.
- 7. Пасешниченко В.А. Биосинтез и биологическая активность растительных терпеноидов и стероидов. сер. Биологическая химия. 25, ВИНИТИ, 1987, М.
- 8. Пасешниченко В.А. (1995) Физиология растений, **42**, 787–804.
- 9. Пасешниченко В.А. (1995) Биохимия, **63**, 171–182.
- Потапов В.Д., Бикетов С.Ф., Демина Г.Р., Лысак Е.И., Титарева Г.М., Бахтеева И.В., Островский Д.Н. (2001) Прикл. Биохим. Микробиол., 37, 274–278.
- 11. *Фробишер М.* Основы микробиологии. Мир, 1965, М.
- Щипанова И.Н., Харатьян Е.Ф., Сибельдина Л.А., Огрель О.Д., Островский Д.Н. (1992) Биохимия, 57, 862–872.
- 13. Adam, P., Hecht, S., Eisenreich, W., Kaiser, J., Grawert, T., Arigoni, D.,

Bacher, A., Rohdich, F. (2002) Proc. Natl. Acad. Sci. USA, **99**, 12108–12113.

- 14. *Adam, K.P., Thiel, R., Zapp, J.* (1999) Arch. Biochem. Biophys., **369**, 127–132.
- 15. *Affek, H.P., Yakir, D.* (2003) Plant Physiol., **131**, 1727–1736.
- Altincicek, B., Duin, E.C., Reichenberg, A., Hedderich, R., Kollas, A.K., Hintz, M., Wagner, S., Wiesner, J., Beck, E., Jomaa, H. (2002) FEBS Lett., 532, 437–440.
- Altincicek, B., Hintz, M., Sanderbrand, S., Wiesner, J., Beck, E., Jomaa, H. (2000) FEMS Microbiol. Lett., **190**, 329–333.
- Altincicek, B., Kollas, A., Eberl, M., Wiesner, J., Sanderbrand, S., Hintz, M., Beck, E., Jomaa, H. (2001) FEBS Lett., 499, 37–40.
- Altincicek, B., Kollas, A.K., Sanderbrand, S., Wiesner, J., Hintz, M., Beck, E., Jomaa, H. (2001) J. Bacteriol., 183, 2411–2416.
- Altincicek, B., Moll, J., Campos, N., Foerster, G., Beck, E., Hoeffler, J.F., Grosdemange-Billiard, C., Rodriguez-Concepcion, M., Rohmer, M., Boronat, A., Eberl, M., Jomaa, H. (2001) J. Immunol., 166, 3655–3658.
- Araki, N., Kusumi, K., Masamoto, K., Niwa, Y., Iba, K. (2000) Physiol. Plant., 108, 19–24.
- Arigoni, D., Eisenreich, W., Latzel, C., Sagner, S., Radykewicz, T., Zenk, M.H., Bacher, A. (1999) Proc. Natl. Acad. Sci. USA, 96, 1309–1314.
- 23. Arigoni, D., Giner, J.-L., Sagner, S., Wungsintaweekul, J., Zenk, M.H., Kis, K., Bacher, A., Eisenreich, W. (1999) Chem. Commun, 1127–1128.
- 24. Arigoni, D., Sagner, S., Latzel, C., Eisenreich, W., Bacher, A., Zenk, M.H. (1997) Proc. Natl. Acad. Sci. USA, 94, 10600–10605.
- Bailey, A.M., Mahapatra, S., Brennan, P.J., Crick, D.C. (2002) Glycobiology, 12, 813–820.

- 26. Bajguz, A., Asami, T. (2004) Planta, 218, 869-877.
- Begley, M., Gahan, C.G., Kollas, A.K., Hintz, M., Hill, C., Jomaa, H., Eberl, M. (2004) FEBS Lett., 561, 99–104.
- Belmant, C., Espinosa, E., Poupot, R., Peyrat, M.A., Guiraud, M., Poquet, Y., Bonneville, M., Fournie, J.J. (1999) J. Biol. Chem., 274, 32079–32084.
- Borrmann, S., Adegnika, A.A., Matsiegui, P.B., Issifou, S., Schindler, A., Mawili-Mboumba, D.P., Baranek, T., Wiesner, J., Jomaa, H., Kremsner, P.G. (2004) J. Infect. Dis., 189, 901–908.
- Bouvier, F., d'Harlingue, A., Suire, C., Backhaus, R.A., Camara, B. (1998) Plant Physiol., 117, 1423–1431.
- Broers, S. T.J. Ph. D. Thesis, Nb ETH 10978, Eidgenossische Technische Hochshule, Zurich, Switzerland, 1994.
- Budziszewski, G.J., Lewis, S.P., Glower, L.W., Reineke, J., Jones, G., Ziemnik, L.S., Lonowski, J., Nyfeler, B., Aux, G., Zhou, Q. (2001) Genetics, 159, 1765–1778.
- 33. *Bu'Lock, J.D.* (1961) Adv. Appl. Microbiol., **3**, 293–342.
- 34. Burlat, V., Oudin, A., Courtois, M., Rideau, M., St-Pierre, B. (2004) Plant J., **38**, 131–141.
- 35. *Campbell, T.L., Brown, E.D.* (2002) J. Bacteriol., **184**, 5609–5618.
- Campos, N., Rodriguez-Concepcion, M., Sauret-Gueto, S., Gallego, F., Lois, L.M., Boronat, A. (2001) Biochem. J., 353, 59-67.
- Campos, N., Rodriguez-Concepcion, M., Seemann, M., Rohmer, M., Boronat, A. (2001) FEBS Lett., 488, 170–173.
- Carretero-Paulet, L., Ahumada, I., Cunillera, N., Rodriguez-Concepcion, M., Ferrer, A., Boronat, A., Campos, N. (2002) Plant Physiol., 129, 1581–1591.
- Charon, L., Hoeffler, J.F., Pale-Grosdemange, C., Lois, L.M., Campos, N., Boronat, A., Rohmer, M. (2000) Biochem. J., 346, 737–742.
- 40. Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,

- *Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P., Maenhaut, W.* (2004) Science, **303**,1173–1176.
- 41. Connoly, J.D., Hill, R.A. Dictionary of Terpenoids. 1992, NY.: Chapman and Hall.
- 42. Cox, R.J., Andres-Gomez, A., Godfrey, C.R. (2003) Org. Biomol. Chem., 1, 3173–3177.
- Croteau, R., Kutchan, T.M., Lewis, N.G. Natural products (secondary metabolites). In: Biochemistry and Molecular Biology of Plants (Buchanan B., Gruissem W., Jones R., Eds.), 2000, Rockville: American Society of Plant Biologists, 1250–1268.
- 44. *Cunningham, F.X., Jr, Gantt, E.* (2000) Plant Cell Physiol., **41**, 119–123.
- 45. Cunningham, F.X., Jr, Lafond, T.P, Gantt, E. (2000) J. Bacteriol., 182, 5841–5848.
- 46. *De-Eknamkul, W., Potduang, B.* (2003) Phytochemistry, **62**, 389–398.
- 47. *De Libero* (1997) Immunol. Today, **18**, 22–26.
- 48. Disch, A., Schwender, J., Muller, C., Lichtenthaler, H.K., Rohmer, M. (1998) Biochem. J., **333**, 381–388.
- 49. Dubey, V.S., Bhala, R., Luthra, R. (2003) J. Biosci., **28**, 101–110.
- 50. Duvold, T., Bravo, J.-M., Pale-Grosdemange, C., Rohmer, M. (1997) Tetrahedron Lett., **38**, 4769–4772.
- Duvold, T., Cali, P., Bravo, J.-M., Rohmer, M. (1997) Tetrahedron Lett., 38, 6181–6184.
- Eberl, M., Altincicek, B., Kollas, A.K., Sanderbrand, S., Bahr, U., Reichenberg, A., Beck, E., Foster, D., Wiesner, J., Hintz, M., Jomaa, H. (2002) Immunology, **106**, 200–211.
- 53. Eberl, M., Hintz, M., Reichenberg, A., Kollas, A.K., Wiesner, J., Jomaa, H. (2003) FEBS Lett. **544**, 4–10.
- 54. *Eisenreich, W., Rohdich, F., Bacher, A.* (2001) Trends Plant Sci., **6**, 78–84.
- 55. Ershov, Y., Gantt, R.R., Cunningham, F.X., Gantt, E. (2000) FEBS Lett., **473**, 337–340.

 Ershov, Y.V., Gantt, R.R., Cunningham, F.X., Jr, Gantt, E. (2002) J. Bacteriol., 184, 5045–5051.

Метилэритритолфосфатный путь биосинтеза изопреноидов

- Estevez, J.M., Cantero, A., Romero, C., Kawaide, H., Jimenez, L.F., Kuzuyama, T., Seto, H., Kamiya, Y., Leon, P. (2000) Plant Physiol., **124**, 95–104.
- Estevez, J.M., Cantero, A., Reindl, A., Reichler, S., Leon, P. (2001) J. Biol. Chem., 276, 22901–22909.
- Fellermeier, M., Raschke, M., Sagner, S., Wungsintaweekul, J., Schuhr, C.A., Hecht, S., Kis, K., Radykewicz, T., Adam, P., Rohdich, F., Eisenreich, W., Bacher, A., Arigoni, D., Zenk, M.H. (2001) Eur. J. Biochem., 268, 6302–6310.
- 60. Fellermeier, M., Sagner, S., Spiteller, P., Spiteller, M., Zenk, M.H. (2003) Phytochemistry, **64**, 199–207.
- Feurle, J., Espinosa, E., Eckstein, S., Pont, F., Kunzmann, V., Fournie, J.J., Herderich, M., Wilhelm, M. (2002) J. Biol. Chem., 277, 148–154.
- 62. Flesh, G., Rohmer, M. (1988) Eur. J. Biochem., **175**, 405–411;
- 63. Fox, D.T., Poulter, C.D. (2002) J. Org. Chem., **67**, 5009–5010.
- 64. Giner, J.L., Ferris, W.V., Jr. (2002) Org. Lett., **4**, 1225–1226.
- 65. Giner, J.L., Ferris, W.V., Jr, Mullins, J.J. (2002) J. Org. Chem., **67**, 4856–4859.
- Ginger, M.L., Chance, M.L., Sadler, I.H., Goad, L.G. (2001) J. Biol. Chem., 276, 11674–11682.
- Gottlin, E.B., Benson, R.E., Conary, S., Antonio, B., Duke, K., Payne, E.S., Ashraf, S.S., Christensen, D.J. (2003) J. Biomol. Screen., 8, 332–339.
- Grieshaber, N.A., Fischer, E.R., Mead, D.J., Dooley, C.A., Hackstadt, T. (2004) Proc. Natl. Acad. Sci. USA, 101, 7451–7456.
- 69. Grolle, S., Bringer-Meyer, S., Sahm, H. (2000) FEMS Microbiol. Lett., 191, 131–137.
- Hahn, F.M., Hurlburt, A.P., Poulter, C.D. (1999) J. Bacteriol., 181, 4499– 4504.

- Hamano, Y., Dairi, T., Yamamoto, M., Kuzuyama, T., Itoh, N., Seto, H. (2002) Biosci. Biotechnol. Biochem., 66, 808–819.
- 72. *Harker, M., Bramley, P.M.* (1999) FEBS Lett., **448**, 115–119.
- Hecht, S., Eisenreich, W., Adam, P., Amslinger, S., Kis, K., Bacher, A., Arigoni, D., Rohdich, F. (2001) Proc. Natl. Acad. Sci. USA, 98, 14837–14842.
- Hemmerlin, A., Hoeffler, J.F., Meyer, O., Tritsch, D., Kagan, I.A., Grosdemange-Billiard, C., Rohmer, M., Bach, T.J. (2003) J. Biol. Chem., 278, 26666–26676.
- Herz, S., Wungsintaweekul, J., Schuhr, C.A., Hecht, S., Luttgen, H., Sagner, S., Fellermeier, M., Eisenreich, W., Zenk, M.H., Bacher, A., Rohdich, F. (2000) Proc. Natl. Acad. Sci. USA, 97, 2486–2490.
- Hill, R.E., Himmeldirk, K., Kennedy, I.A., Pauloski, R.M., Sayer, B.G., Wolf, E., Spenser, I.D. (1996) J. Biol. Chem., 271, 30426–30435.
- 77. Hintz, M., Reichenberg, A., Altincicek, B., Bahr, U., Gschwind, R.M., Kollas, A.K., Beck, E., Wiesner, J., Eberl, M, Jomaa, H. (2001) FEBS Lett., 509, 317–322.
- Hoeffler, J.F., Tritsch, D., Grosdemange-Billiard, C., Rohmer, M. (2002) Eur. J. Biochem., 269, 4446–4457.
- 79. Hunter, W.N., Bond, C.S., Gabrielsen, M., Kemp, L.E. (2003) Biochem. Soc. Trans., **31**, 537–542.
- Itoh, D., Karunagoda, R.P., Fushie, T., Katoh, K., Nabeta, K. (2000) J. Nat. Prod., 63, 1090–1093.
- Itoh, D., Kawano, K., Nabeta, K. (2003)
 J. Nat. Prod., 66, 332–336.
- Jomaa, H., Feurle, J., Luhs, K., Kunzmann, V., Tony, H.P., Herderich, M., Wilhelm, M. (1999) FEMS Immunol. Med. Microbiol., 25, 371–378.
- Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Turbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H.K., Soldati, D., Beck, E. (1999) Science, 285, 1573–1576.

- Kaneda, K., Kuzuyama, T., Takagi, M., Hayakawa, Y., Seto, H. (2001) Proc. Natl. Acad. Sci. USA, 98, 932–937.
- Karl, T., Fall, R., Rosenstiel, T.N., Prazeller, P., Larsen, B., Seufert, G., Lindinger, W. (2002) Planta, 215, 894–905.
- Karunagoda, R.P., Itoh, D., Katoh, K., Nabeta, K. (2001) Biosci. Biotechnol. Biochem., 65, 1076–1081.
- Kasahara, H., Takei, K., Ueda, N., Hishiyama, S., Yamaya, T., Kamiya, Y., Yamaguchi, S., Sakakibara, H. (2004) J. Biol. Chem., 279, 14049–14054.
- Kemp, L.E., Bond, C.S., Hunter, W.N. (2001) Acta Crystallogr. D. Biol. Crystallogr., 57, 1189–1191.
- Kemp, L.E., Bond, C.S., Hunter, W.N. (2002) Proc. Natl. Acad. Sci. USA, 99, 6591–6596.
- 90. *Kemp, L.E., Bond, C.S., Hunter, W.N.* (2003) Acta Crystallogr. D. Biol. Crystallogr., **59**, 607–610.
- Kishida, H., Wada, T., Unzai, S., Kuzuyama, T., Takagi, M., Terada, T., Shirouzu, M., Yokoyama, S., Tame, J.R., Park, S.Y. (2003) Acta Crystallogr. D. Biol. Crystallogr., 59, 23–31.
- 92. Kollas, A.K., Duin, E.C., Eberl, M., Altincicek, B., Hintz, M., Reichenberg, A., Henschker, D., Henne, A., Steinbrecher, I., Ostrovsky, D.N., Hedderich, R., Beck, E., Jomaa, H., Wiesner, J. (2002) FEBS Lett., 532, 432–436.
- Koppisch, A.T., Fox, D.T., Blagg, B.S., Poulter, C.D. (2002) Biochemistry, 41, 236–243.
- 94. *Koppisch, A.T., Poulter, C.D.* (2002) J. Org. Chem., **67**, 5416–5418.
- 95. Krall, L., Raschke, M., Zenk, M.H., Baron, C. (2002) FEBS Lett., **527**, 315–318.
- 96. Kuroda, Y., Okuhara, M., Goto, T., Okamoto, M., Terano, H., Kohsaka, M., Aok, H., Imanaka, H. (1980) J. Antibiot., **33**, 29–35.
- 97. *Kuzuyama, T.* (2002) Biosci. Biotechnol. Biochem., **66**, 1619–1627.
- 98. *Kuzuyama, T., Takagi, M., Kaneda, K., Dairi, T., Seto, H.* (2000) Tetrahedron Lett., **41**, 703–706.

- 99. Kuzuyama, T., Takagi, M., Kaneda, K., Dairi, T., Seto, H. (2000) Tetrahedron Lett., 41, 2925–2928.
- 100. Kuzuyama, T., Takagi, M., Takahashi, S., Seto, H. (2000) J. Bacteriol., 182, 891–897.
- Kuzuyama, T., Shimizu, T., Takahashi, S., Seto, H. (1998) Tetrahedron Lett., 39, 7913–7916.
- 102. Kuzuyama, T., Takahashi, S., Watanabe, H., Seto, H. (1998) Tetrahedron Lett., 39, 4509–4512.
- 103. Lange, B.M., Croteau, R. (1999) Arch. Biochem. Biophys., 365, 170-174.
- 104. Lange, B.M., Croteau, R. (1999) Proc. Natl. Acad. Sci. USA, 96, 13714–13719.
- 105. Lange, B.M., Rujan, T., Martin, W., Croteau, R. (2000) Proc. Natl. Acad. Sci. USA, 97, 13172–13177.
- 106. Lange, B.M., Wildung, M.R., McCaskill, D., Croteau, R. (1998) Proc. Natl. Acad. Sci. USA, **95**, 2100–2104.
- 107. Lawrence, S.D., Cline, K., Moore, G.A., (1997) Plant Mol. Biol., **33**, 483–492.
- 108. Lell, B., Ruangweerayut, R., Wiesner, J., Missinou, M.A., Schindler, A., Baranek, T., Hintz, M., Hutchinson, D., Jomaa, H., Kremsner, P.G. (2003) Antimicrob. Agents Chemother., 47, 735–738.
- 109. *Lichtenthaler, H.K.*(1999) Annu. Rev. Lant Physiol. Plant Mol. Biol., **50**, 47–65.
- 110. *Lichtenthaler, H.K.*(2000) Biochem. Soc. Trans., **28**, 785–789.
- 111. Lichtenthaler, H.K., Schwender, J., Disch, A., Rohmer, M. (1997) FEBS Lett., **400**, 271–274.
- 112. Lichtenthaler, H.K., Zeidler, J., Schwender, J., Muller, C. (2000) Z. Naturforsch., **55C**, 305–313.
- 113. Lois, L.M., Campos, N., Putra, S.R., Danielsen, K., Rohmer, M., Boronat, A. (1998) Proc. Natl. Acad.Sci. USA, 95, 2105–2110.
- 114. Lois, L.M., Rodriguez-Concepcion, M., Gallego, F., Campos, N., Boronat, A. (2000) Plant J., 22, 503–513.

- 115. Luttgen, H., Rohdich, F., Herz, S., Wungsintaweekul, J., Hecht, S., Schuhr, C.A., Fellermeier, M., Sagner, S., Zenk, M.H., Bacher, A., Eisenreich, W. (2000) Proc. Natl. Acad. Sci. USA. 97, 1062–1067.
- 116. Mahmoud, S.S., Croteau, R.B. (2001) Proc. Natl. Acad. Sci. USA, 98, 8915–8920.
- 117. *Martens, P., Hall, L.* (2000) Emerg. Infect. Dis., **6**, 103–109.
- 118. Masse, G., Belt, S.T., Rowland, S.J., Rohmer, M. (2004) Proc. Natl. Acad. Sci. USA, **101**, 4413–4418.
- 119. Mbaya, B., Rigomier, D., Edorh, G.G., Karst, F., Schrevel, J. (1990) Biochem. Biophys. Res. Commun., 173, 849–854.
- 120. McAteer, S., Coulson, A., McLennan, N., Masters, M. (2001) J. Bacteriol., 183, 7403–7407.
- 121. Meyer, O., Grosdemange-Billiard, C., Tritsch, D., Rohmer, M. (2003) Org. Biomol. Chem., 1, 4367–4372.
- 122. Miallau, L., Alphey, M.S., Kemp, L.E., Leonard, G.A., McSweeney, S.M., Hecht, S., Bacher, A., Eisenreich, W., Rohdich, F., Hunter, W.N. (2003) Proc. Natl. Acad. Sci. USA, 100, 9173–9178.
- 123. Miller, B., Heuser, T., Zimmer, W. (1999) FEBS Lett., **460**, 485–490.
- 124. Miller, B., Heuser, T., Zimmer, W. (2000) FEBS Lett., **481**, 221–226.
- 125. Missinou, M.A., Borrmann, S., Schindler, A., Issifou, S., Adegnika, A.A., Matsiegui, P.B., Binder, R., Lell, B., Wiesner, J., Baranek, T., Jomaa, H., Kremsner, P.G. (2002) Lancet, 360, 1941–1942.
- 126. Mueller, C., Schwender, J., Zeidler, J., Lichtenthaler, H.K. (2000) Biochem. Soc. Trans., 28, 792–793.
- 127. Nagata, N., Suzuki, M., Yoshida, S., Muranaka, T. (2002) Planta, **216**, 345–350.
- 128. Nabeta, K., Ishikawa, T., Kawae, T., Okuyama, H. (1995) J. Chem . Soc., Chem. Commun., 681–682.

- 129. Nabeta, K., Kawae, T., Kikuchi, T., Saitoh, T., Okuyama, H. (1995) J. Chem . Soc., Chem. Commun., 2529–2530.
- Ogrel, O.D., Fegeding, K.V., Kharatian, E.F., Sudarikov, A.B., Ostrovsky, D.N. (1996) Curr. Microbiol., 32, 225–228.
- Okuhara, M., Kuroda, Y., Goto, T., Okamoto, M., Terano, H., Kohsaka, M., Aoki, H., Imanaka, H. (1980) J. Antibiot., 33, 24–28.
- 132. Ortmann, R., Wiesner, J., Reichenberg, A., Henschker, D., Beck, E., Jomaa, H., Schlitzer, M. (2003) Bioorg. Med. Chem. Lett., **13**, 2163–2166.
- 133. Ostrovsky, D., Amirov, R., Kharatian, E., Ogrel, O., Stepanov, S., Sibeldina, L., Shipanova, I., Taptykova, S. (1994) Biofactors, **4**, 151–154.
- 134. Ostrovsky, D., Diomina, G., Lysak, E., Matveeva, E., Ogrel, O., Trutko, S. (1998) Arch. Microbiol., **171**, 69–72.
- Ostrovsky, D., Diomina, G., Shipanova, I., Sibeldina, L., Shashkov, A. (1994) Biofactors, 4, 155–159.
- 136. Ostrovsky, D., Kharatian, E., Dubrovsky, T., Ogrel, O., Shipanova, I., Sibeldina, L. (1992) Biofactors, 4, 63–68.
- 137. Ostrovsky, D., Kharatian, E., Lysak, E., Shipanova, I., Sibeldina, L. (1995) Biofactors, **5**, 1–4.
- 138. Ostrovsky, D., Kharatian, E., Malarova, I., Shipanova, I., Sibeldina, L., Shashkov, A., Tantsirev, G. (1992) Biofactors, **3**, 261–264.
- 139. Ostrovsky, D., Shashkov, A., Sviridov, A. (1993) Biochem. J., **295**, 901–902.
- 140. Ostrovsky, D., Shipanova, I., Sibeldina, L., Shashkov, A., Kharatian, E., Malyarova, I., Tantsyrev, G. (1992) FEBS Lett., **298**, 159–161.
- 141. Page, J.E., Hause, G., Raschke, M., Gao, W., Schmidt, J., Zenk, M.H., Kutchan, T.M. (2004) Plant Physiol., **134**,1401–1413.
- 142. Poliquin, K., Ershov, Y.V., Cunningham, F.X., Woreta, T.T., Gantt, R.R., Gantt, E. (2004) J. Bacteriol., **186**.

- 143. Poquet, Y., Constant, P., Halary, F., Peyrat, M.A., Gilleron, M., Davodeau, F., Bonneville, M., Fournie, J.J. (1996) Eur. J. Immunol., **212**, 110–117.
- 144. Porter, J.W., Spurgeon, S.L. (Eds) Biosynthesis of Isoprenoid Compounds. 1981, NY.: John Wiley and Sons.
- 145. Proteau, P.J., Woo, Y.H., Williamson, R.T., Phaosiri, C. (1999) Org. Lett., 1, 921–923.
- 146. *Putra, S.R., Lois, L.M., Campos, N., Boronat, A., Rohmer, M.* (1998) Tetrahedron Lett., **39**, 23–26.
- 147. Querol, J., Campos, N., Imperial, S., Boronat, A., Rodriguez-Concepcion, M. (2002) FEBS Lett., **514**, 343–346.
- 148. Radykewicz, T., Rohdich, F., Wungsintaweekul, J., Herz, S., Kis, K., Eisenreich, W., Bacher, A., Zenk, M.H., Arigoni, D. (2000) FEBS Lett., 465, 157–160.
- 149. Reichenberg, A., Hintz, M., Kletschek, Y., Kuhl, T., Haug, C., Engel, R., Moll, J., Ostrovskii, D.N., Jomaa, H., Eberl, M. (2003) Bioorg. Med. Chem Lett., 13, 1257–1260.
- Reichenberg, A., Wiesner, J., Weidemeyer, C., Dreiseidler, E., Sanderbrand, S., Altincicek, B., Beck, E., Schlitzer, M., Jomaa, H. (2001) Bioorg. Med. Chem. Lett., 11, 833–835.
- Reuter, K., Sanderbrand, S., Jomaa, H., Wiesner, J., Steinbrecher, I., Beck, E., Hintz, M., Klebe, G., Stubbs, M.T. (2002) J. Biol. Chem., 277, 5378–5384.
- 152. Ricagno, S., Grolle, S., Bringer-Meyer, S., Sahm, H., Lindqvist, Y., Schneider, G. (2004) Biochim. Biophys. Acta, **1698**, 37–44.
- 153. Richard, S.B., Bowman, M.E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A.M., Cane, D.E., Noel, J.P. (2001) Nat. Struct. Biol., 8, 641–647.
- 154. Richard, S.B., Ferrer, J.L., Bowman, M.E., Lillo, A.M., Tetzlaff, C.N., Cane, D.E., Noel, J.P. (2002) J. Biol. Chem., **277**, 8667–8672.
- 155. Rodriguez-Concepcion, M., Ahumada, I., Diez-Juez, E., Sauret-Gueto, S., Lois, L.M., Gallego, F., Carretero-

- *Paulet, L., Campos, N., Boronat, A.* (2001) Plant J., **27**, 213–222.
- 156. *Rodriguez-Concepcion, M., Boronat, A.* (2002) Plant Physiol., **130**, 1079–1089.
- 157. Rodriguez-Concepcion, M., Campos, N., Lois, L.M., Maldonado, J.-F., Hoeffler, J.F., Grosdemange-Billiard, C., Rohmer, M., Boronat, A. (2000) FEBS Lett., **473**, 328–332.
- Rodriguez-Concepcion, M., Fores, O., Martinez-Garcia, J.F., Gonzalez, V., Phillips, M.A., Ferrer, A., Boronat, A. (2004) Plant Cell., 16, 144–156.
- 159. *Rodriguez-Concepcion, M., Gruissem, W.* (1999) Plant Physiol., **119**, 41–48.
- 160. Rohdich, F., Eisenreich, W., Wungsintaweekul, J., Hecht, S., Schuhr, C.A., Bacher, A. (2001) Eur. J. Biochem., **268**, 3190–3197.
- 161. Rohdich, F., Hecht, S., Gartner, K., Adam, P., Krieger, C., Amslinger, S., Arigoni, D., Bacher, A., Eisenreich, W. (2002) Proc. Natl. Acad. Sci. USA, 99, 1158–1163.
- 162. Rohdich, F., Kis, K., Bacher, A., Eisenreich, W. (2001) Curr. Opin. Chem. Biol. **5**, 535–540.
- 163. Rohdich, F., Wungsintaweekul, J., Eisenreich, W., Richter, G., Schuhr, C.A., Hecht, S., Zenk, M.H., Bacher, A. (2000) Proc. Natl. Acad. Sci. USA, 97, 6451–6456.
- 164. Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A., Zenk, M.H. (1999) Proc. Natl. Acad. Sci. USA, 96, 11758–11763.
- 165. Rohdich, F., Wungsintaweekul, J., Luttgen, H., Fischer, M., Eisenreich, W., Schuhr, C.A., Fellermeier, M., Schramek, N., Zenk, M.H., Bacher, A. (2000) Proc. Natl. Acad. Sci. USA, 97, 8251–8256.
- 166. Rohdich, F., Zepeck, F., Adam, P., Hecht, S., Kaiser, J., Laupitz, R., Grawert, T., Amslinger, S., Eisenreich, W., Bacher, A., Arigoni, D. (2003) Proc. Natl. Acad. Sci. USA, 100, 1586–1591.

- 167. *Rohmer, M.* (1993) Pure Appl. Chem., **65**, 1293–1298.
- 168. *Rohmer, M.* (1998) Prog. Drug Res., **50**, 135–154.
- 169. Rohmer, M., Bouvier-Nave, P., Ourisson, G. (1984) J. Gen. Microbiol., 130, 1137–1150.
- 170. Rohmer, M., Grosdemange-Billiard, C., Seemann, M., Tritsch, D. (2004) Curr. Opin. Investig. Drugs, 5, 154–162.
- 171. Rohmer, M., Khani, M., Simonin, P., Sutter, B., Sahm, H. (1993) Biochem. J., **295**, 517–524.
- 172. Rohmer, M., Seemann, M., Horbach, S., Bringer-Meyer, S., Sahm, H. (1996) J. Am. Chem. Soc., **118**, 2564.
- 173. *Sacchettini, J.C., Poulter, C.D.* (1997) Science, **277**, 1788–1789.
- 174. Sakamoto, I., Ichimura, K., Ohrui, H. (2000) Biosci. Biotechnol. Biochem., 64, 915–1922.
- 175. Sauret-Gueto, S., Ramos-Valdivia, A., Ibanez, E., Boronat, A., Rodriguez-Concepcion, M. (2003) Biochem. Biophys. Res. Commun., 307, 408–415.
- 176. Schnitzler, J.P., Graus, M., Kreuzwieser, J., Heizmann, U., Rennenberg, H., Wisthaler, A., Hansel, A. (2004) Plant Physiol., 135,152–160.
- 177. Schwarz, M. K., Ph. D. Thesis, Nb ETH 10951, Eidgenossische Technische Hochshule, Zurich, Switzerland, 1994.
- 178. Schwender, J., Gemunden, C., Lichtenthaler, H.K. (2001) Planta, **212**, 416–423.
- 179. Schwender, J., Muller, C., Zeidler, J., Lichtenthaler, H.K. (1999) FEBS Lett., **455**, 140–144.
- 180. Schwender, J., Zeidler, J., Groner, R., Muller, C., Focke, M., Braun, S., Lichtenthaler, F.W., Lichtenthaler, H.K. (1997) FEBS Lett., 414, 129– 134.
- 181. Seemann, M., Bui, B.T., Wolff, M., Tritsch, D., Campos, N., Boronat, A., Marquet, A., Rohmer, M. (2002)

Angew. Chem. Int. Ed. Engl., **41**, 4337–4339.

- 182. Seto, H., Orihara, N., Furihata, K. (1998) Tetrahedron Lett., **39**, 9497–9500.
- 183. *Seto, H., Watanabe, H., Furihata, K.* (1996) Tetrahedron Lett., **37**, 7979.
- 184. *Sharkey, T.D., Chen, X., Yeh, S.* (2001) Plant Physiol., **125**, 2001–2006.
- 185. Sharkey, T.D., Yeh, S. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 407–436.
- 186. *Shigi, Y. J.* (1989) J. Antimicrob. Chemoth. **24**, 131–145.
- 187. Sicard, H., Al Saati, T., Delsol, G., Fournie, J.J. (2001) Mol. Med., 7, 711–722.
- 188. *Sinensky, M.* (2000) Biochim. Biophys. Acta, **1484**, 93–106.
- 189. Sprenger, G.A., Schorken, U., Wiegert, T., Grolle, S., Graaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S., Sahm, H. (1997) Proc. Natl. Acad. Sci. USA, 94, 12857–12862.
- 190. Steinbacher, S., Kaiser, J., Eisenreich, W., Huber, R., Bacher, A., Rohdich, F. (2003) J. Biol. Chem., 278, 18401–18407.
- 191. Steinbacher, S., Kaiser, J., Wungsintaweekul, J., Hecht, S., Eisenreich, W., Gerhardt, S., Bacher, A., Rohdich, F. (2002) J. Mol. Biol., 316, 79–88.
- 192. Takagi, M., Kuzuyama, T., Kaneda, K., Dairi, T., Seto, H. (2000) Tetrahedron Lett., 41, 3395–3398.
- 193. Takahashi, S., Kuzuyama, T., Watanabe, H., Seto, H. (1998) Proc. Natl. Acad. Sci. USA, **95**, 9879–9884.
- 194. Tanaka, Y., Morita, C.T., Nieves, E., Brenner, M.B., Bloom, B.R. (1995) Nature, **375**, 155–158.
- 195. Tazoe, M., Ichikawa, K., Hoshino, T. (2002) Biosci. Biotechnol. Biochem., 66, 934–936.
- 196. *Testa, C.A., Brown, M.J.* (2003) Curr. Pharm. Biotechnol., **4**, 248–259.

- 197. Testa, C.A., Cornish, R.M., Poulter, C.D. (2004) J. Bacteriol., 186, 473–480.
- 198. *Therisod, M., Fischer, J.C., Estramareix, B.* (1981) Biochem. Biophys. Res. Commun., **98**, 374–379.
- 199. *Thiel, R., Adam, K.P.* (2002) Phytochemistry, **59**, 269–274.
- 200. Urbansky, M., Davis, C.E., Surjan, J.D., Coates, R.M. (2004) Org. Lett., **6**, 135–138.
- 201. Veau, B., Courtois, M., Oudin, A., Chenieux, J.C., Rideau, M., Clastre, M. (2000) Biochim. Biophys. Acta., 1517, 159–163.
- Wada, T., Kuzuyama, T., Satoh, S., Kuramitsu, S., Yokoyama, S., Unzai, S., Tame, J.R., Park, S.Y. (2003) J. Biol. Chem., 278, 30022–30027.
- 203. *Walter, M.H., Fester, T., Strack, D.* (2000) Plant J., **21**, 571–578.
- 204. *Walter, M.H., Hans, J., Strack, D.* (2002) Plant J., **31**, 243–254.
- 205. Wanke, M., Skorupinska-Tudek, K., Swiezewska, E. (2001) Acta Biochim. Pol., **48**, 663–72.
- 206. Wiesner, J., Borrmann, S., Jomaa, H. (2003) Parasitol. Res., **90** (Suppl 2), S71–76.
- 207. Wiesner, J., Henschker, D., Hutchinson, D.B., Beck, E., Jomaa, H. (2002)

Antimicrob. Agents Chemother., **46**, 2889–2894.

- 208. Wiesner, J., Hintz, M., Altincicek, B., Sanderbrand, S., Weidemeyer, C., Beck, E., Jomaa, H. (2000) Exp. Parasitol., 96, 182–186.
- 209. Wolff, M., Seemann, M., Tse Sum Bui, B., Frapart, Y., Tritsch, D., Garcia-Estrabot, A., Rodriguez-Concepcion, M., Boronat, A., Marquet, A., Rohmer, M. (2003) FEBS Lett., 541, 115–120.
- 210. Wungsintaweekul, J., Herz, S., Hecht, S., Eisenreich, W., Feicht, R., Rohdich, F., Bacher, A., Zenk, M.H. (2001) Eur. J. Biochem., 268, 310–316.
- Yajima, S., Nonaka, T., Kuzuyama, T., Seto, H., Ohsawa, K. (2002) J. Biochem. (Tokio), **131**, 313–317.
- 212. *Yokota, A., Sasajima, K.* (1986) Agric. Biol. Chem., **50**, 2517–2524.
- 213. Zeidler, J., Lichtenthaler, H.K. (2001) Planta, **213**, 323–326.
- 214. Zeidler, J., Schwender, J., Mueller, C., Lichtenthaler, H.K. (2000) Biochem. Soc. Trans., 28, 796–798.
- 215. Zeidler, J.G., Schwender, J., Wiesner, J., Lichtnthaler, H.K., et al (1998) Z. Naturforsch., **53C**, 980–986.
- 216. Zhou, D., White, R. H. (1991) Biochem. J., **273**, 627–634.