ФОРМЫ КРЕМНИЯ В РАСТЕНИЯХ

© 2001 г.

М. П. КОЛЕСНИКОВ

Институт биохимии им. А.Н. Баха РАН, Москва

I. Введение. II. Кремний в организме животных и человека. III. Методы определения кремния в биологических объектах. IV. Содержание различных форм кремния в растениях. V. Распределение форм кремния по основным компонентам растительной ткани. VI. Кремний в пыльце растений. VII. Заключение.

І. ВВЕДЕНИЕ

Кремний — наиболее распространенный элемент в природе. Достаточно сказать, что в коре Земли на 1 атом углерода приходится 133 атома кремния [11]. В природе минеральный кремний встречается в четырехвалентном состоянии (Si⁴⁺) и входит в состав двуокиси кремния, кремнезема (SiO₂•nH₂O), олиго- и поликремниевых кислот, а также в структуру кристаллических решеток глинистых минералов, кварца, опала, кристобалита и тридимита. В анионной форме Si присутствует в силикатах — солях метакремниевой кислоты (H_2SiO_3) . В растительных и животных тканях Si находится в виде водорастворимых соединений типа ортокремниевой кислоты, ортокремниевых эфиров, а также в форме нерастворимых минеральных полимеров (поликремниевые кислоты и аморфный кремнезем, из которых состоят растительные опалы — фитолиты) и кристаллических примесей [7, 9, 10]. В составе органического вещества растительных тканей Si образует ортокремниевые эфиры оксиаминокислот, оксикарбоновых кислот, полифенолов, углеводов, стеринов, а также Si-N-производные аминокислот, аминосахаров и пептидов [9]. В организме животных и человека Si обнаружен практически во всех тканях и органах и на этом основании давно уже отнесен к группе биофильных элементов [9].

Не вызывает сомнений, что соединения кремния могли принимать участие и в процессах возникновения жизни. Во всяком случае об этом убедительно свидетельствуют результаты модельных экспери-

Принятые сокращения: KMK — кремниевомолибденовая кислота; KMC — кремниевомолибденовая синь; ΦMK — фосфорномолибденовая кислота; ΦMC — фосфорномолибденовая синь; ΓOC — гидрофильные органические соединения; BOC — высокомолекулярные органические соединения.

ментов — адсорбция на кремнийсодержащих минералах биологически важных молекул, асимметрические синтезы, образование белковоподобных полимеров. Каталитическая способность кремнийсодержащих минералов, вероятно, сыграла свою роль в добиологическом синтезе первичных полипептидов и полинуклеотидов.

Кремний является обязательным элементом тканей современных растений и животных. Естественно, что поэтому он присутствует во всех пищевых продуктах растительного происхождения, в том числе в муке, виноградном соке, вине и пиве, а также в зернах проса, овса, риса и в некоторых корнеплодах, например, в земляной груше [10]. Организм человека должен усваивать до 20 г кремния ежедневно. Снижение количества кремния, поступающего в организм с пищевыми продуктами и питьевой водой, приводит к атеросклерозу. Обнаружена зависимость между концентрацией Si в питьевой воде и сердечно-сосудистыми заболеваниями [9, 10]. Кремнезем используется в гомеопатической практике в целях восстановления нарушенного кремниевого обмена и функции соединительных тканей.

Биохимические аспекты метаболизма кремния до сих пор не изучены. Полагают, что в силикатных бактериях имеются ферменты — силиказы, ответственные за разрушение связей Si—O в кристаллических решетках глинистых минералов, а также связей Si—C в кремнийорганических соединениях. Однако, в чистом виде эти ферменты не выделены. В клетках *Proteus mirabilis* Si конкурирует с фосфором. Если эти бактерии культивировать в кремнийсодержащей среде в отсутствии фосфора, то фосфор, входящий в их состав, постепенно замещается кремнием. Кремний поступает в клетки этих бактерий в виде аниона силиката или в форме соединения с фосфоглицериновым альдегидом и частично связывается через атом азота с белками, аминокислотами и аминосахарами, а также с углеводами посредством образования связи Si—O—C [51—55].

В растительных тканях кремний входит в состав полиуронидов (пектиновой и альгиновой кислот). На одну молекулу пектина цитрусовых (мол. масса 100—200 кда) приходится от 10 до 20 атомов Si. Ферментативный гидролиз пектинов и гиалуроновой кислоты показывает, что Si связан в них с органическим веществом ковалентными связями, выполняя роль «сшивающего» элемента. Обнаружен Si и в мукополисахаридах, входящих в состав соединительных тканей. Полагают, что Si может служить «сшивающим» агентом элементов микротрубочек клеток, а также в микротельцах митохондрий, присутствующих в участках кальцификации костной ткани. Гепарин, являющийся компонентом противосвертывающей системы крови, содержит более 0,1% Si [9—11].

Возможно, Si участвует и в иммунных реакциях (гемаглютинирование). Фермент, освобождающий кремний из его соединений, был обнаружен Клаусом Шварцем в поджелудочной железе, желудке и почках животных. Фермент присутствует в мембранно-связанной форме в митохондриях и микросомах [10].

Рассматривая биологическое значение кремния, следует сказать о создании кремниевых аналогов лекарственных препаратов путем замены одного или нескольких атомов углерода кремнием. Полагают, что такая замена (образование «сила-производных») не приводит к заметному изменению физических и химических свойств соединения. Например, ацетаты 2-(триметилметил) этанола и 2-(триметилсилил)этанола обладают одинаковым холинэргическим и спазмолитическим действием. Соответствующие соединения Si легче синтезируются и поэтому более доступны [9]. Транквилизатор мепробамат $C_3H_7(CH_3)C(CH_2OCONH_3)$, и его сила-производное $C_2H_2(CH_2)$ Si(CH_2OCONH_2), также одинаково влияют на двигательную активность животных и ингибируют NADH-оксидазу. В отличие от углерода Si имеет значительно меньшую электроотрицательность, в полтора раза больший ковалентный радиус атома и содержит вакантные 3d-орбитали. Эти свойства позволяют ожидать от *сила*-аналогов физиологически активных соединений особого, специфического действия на организм [10].

В медицине применяется препарат силистрен (silistren) — тетрагликолевый эфир ортокремниевой кислоты: $Si(OCH_2COOH)_4$. Модификация биологически активных органических соединений введением в их молекулы кремнийсодержащих групп повышает их растворимость в липидах, способствует лучшей проницаемости лекарственных препаратов через клеточные мембраны, а в отдельных случаях — даже пролонгирует их действие и усиливает фармакологический эффект [9].

Кремний является обязательным компонентом препаратов мумие, некоторые фармакологические свойства которых (например, ускорение сроков заживления переломов костей), вероятно, связаны с присутствием этого элемента [25]. Трисиликат магния используется в медицине как адсорбирующее и противокислотное средство при повышенной кислотности желудочного сока и для лечения язвенной болезни. Силикат алюминия и тальк служат составной частью паст и мазей при лечении кожных заболеваний, ожогов и язв. В народной медицине отвары из кремниефильных растений (хвоща, тысячелистника) используются при нарушениях свертываемости крови. Полученные из хвоща препараты применяются при лечении заболеваний верхних дыхательных путей, туберкулеза и рекомендуются также для активирования процессов жизнедеятельности кожи [9—10].

Кремниевая кислота в щелочных растворах (pH > 8,0) существует в форме силиката (аниона метакремниевой кислоты — SiO_3^{2-}). При pH 1—8 в разбавленных растворах (~0,1 мг Si/мл) устойчива растворимая в воде мономерная форма ортокремниевой кислоты — H_4SiO_4 [3, 23]. При увеличении концентрации (в том же диапазоне pH) ортокремниевая кислота полимеризуется, образуя олиго- и поликремниевые кислоты, и, наконец, переходит в коллоидное состояние. Аналогичный процесс наблюдается, в частности, в клеточном соке растений по мере увеличения в нем содержания кремния. Концентрация SiO_2 в почвенных растворах в среднем составляет 30—40 мг/л, а в клеточном соке «кремниефильных» растений — значительно выше. Например, в хвоще в первые три дня весеннего роста содержится насыщенный раствор (0,015—0,024%) кремниекислоты [82]. В кле-

2 OH HOOC –
$$CH_2$$
– NH – Si – OH OH

Рис. 1. Вероятные формы соединий кремния с органическим веществом растительных тканей.

- 1. «Силиконовая оболочка» белкового слоя клеточной мембраны, образованная ортокремниевой и олигокремниевой кислотами (связи Si—O с оксигруппами аминокислот).
- 2. Образование Si-N связи с аминогруппой аимноксилоты.
- 3. Si как «сшивающий мостик» в полисахаридах (Si–O–C связи с сахарными остатками).

точном соке мономерная ортокремниевая кислота превращается в гели SiO, •nH,O, которые откладываются на поверхности клеточных стенок, связываясь с полисахаридами и протеинами [49, 62, 66]. Вероятные формы соединений кремния с органическим веществом растительных тканей приведены на рис. 1. Количество доступного растениям кремния оценивают, извлекая его из почвы экстракцией СН,СООН. Полагают, что эта фракция почвенного кремния обеспечивает потребность растений в указанном элементе [80].

В предлагаемом обзоре приводятся данные о содержании кремния в организме животных и человека и в растениях различных географических зон, обобщены методические приемы анализа Si в растениях. Описан метод количественного определения органогенного (связанного с органическим веществом растительных тканей) кремния, на основе которого разработана схема анализа

форм этого элемента в растениях. Отдельно рассмотрены формы Si, связанные с основными компонентами растительной ткани (белками, липидами и пектинами), а также формы Si, входящие в состав растительной пыльцы и перги.

II. КРЕМНИЙ В ОРГАНИЗМЕ ЖИВОТНЫХ И ЧЕЛОВЕКА

В результате многолетних исследований, обзор которых приводится в монографиях М.Г.Воронкова с соавт., кремний уже не считается только инертным элементом, а совершенно справедливо отнесен к группе элементов, необходимых для нормального роста и развития организма животных и человека [9–11]. Экспериментальные данные позволяют уверенно говорить о явлении «силикотропизма» (живые ткани проявляют определенное сродство к SiO₂). Кремний содержится в гипофизе $(3,8 \cdot 10^{-2} \%)$, в твердой мозговой оболочке и в белом веществе головного мозга $(5,3\cdot10^{-5}\%)$, в спинномозговой жидкости, в хрусталике глаза и щитовидной железе $(1,9 \cdot 10^{-2} \%)$, а также в тканях почек, сердца и других органов [8, 12, 13, 21, 28, 32, 33,61]. В стенках артерий у новорожденных обнаружено 7,3•10⁻³ % кремния. Среднее содержание SiO₂ в организме человека имеет величину $n \cdot 10^{-3}\%$ [9, 34]. Кремний активно участвует в процессе роста волос, где его содержание достигает 0,02—0,36% в сухом веществе [9, 21], поэтому в народной медицине и гомеопатии для укрепления волос и улучшения их роста применяются отвары из «кремниефильных» растений.

В организме животных и человека кремний присутствует в трех основных формах [9, 29, 38]. К первой группе относятся неорганические водорастворимые соединения Si, которые способны мигрировать сквозь клеточные мембраны и легко выволятся из организма. Эти соединения, проникающие внутрь клеток, накапливаются в ядрах и митохондриях [30, 67, 84, 85], и, в частности, в митохондриях клеток почек [71]. Вторую группу (как и в растительных тканях) составляют соединения Si, растворимые в органических растворителях (орто- и олигокремниевые эфиры углеводов, стеринов, холина и фосфолипидов). Сюда же относятся и ортокремниевые эфиры соединений белковой природы. В составе третьей группы обнаруживаются нерастворимые полимерные соединения Si (поликремниевые кислоты и аморфный кремнезем). Эти соединения имеют вторичное происхождение (аналогично «фитолитам» растительных тканей), а их отложения в организме ассоциированы с органическими молекулами, содержащими гидроксильные и аминогруппы. Примером могут служить кремниепротеиновые образования («камни») почек и желчного пузыря.

По современным представлениям Si необходим организму для обеспечения защитных функций, процессов обмена и дезинтоксикации [68]. Кремний вносит существенный вклад в функционирование соединительных тканей [50, 62], придает прочность, эластичность и непроницаемость стенкам кровеносных сосудов и препятствует проникновению липидов в плазму крови. Кремний входит в состав эластина кровеносных сосудов, и при атеросклерозе, когда содержание SiO₂ в соединительных тканях резко падает, наблюдается снижение эластичности стенок артерий одновременно с возрастанием их проницаемости [70]. Последнее свойство приводит к проникновению липидов в плазму крови и к их отложению внутри кровеносных сосудов. Кремний рассматривается как биологический «сшивающий» агент, участвующий в образовании молекулярной «архитектуры» полисахаридов и их комплексов с белками. Эта фракция Si придает элластичность соединительным тканям [75]. Кремний способствует биосинтезу коллагена [40], образованию и кальцификации костных тканей, а в шерсти и рогах животных связывает поперечными мостиками молекулы кератина, обеспечивая им прочность и гидрофобные свойства. Кремний участвует в метаболизме фосфора и в липидном обмене [47, 72], а также в поддержании своего равновесия с кальцием, которое тесно связано с процессами старения организма [36]. Участие кремния в метаболизме фосфолипидов проявляется, например, в том, что в их составе он может частично заменять фосфор. Установлено, что метаболизм Si регулируется гормональной системой [31, 39]. Вместе с тем избыток кремния может приводить и к неблагоприятным последствиям (силикозы, связаные с вдыханием силикатной пыли, и образование камней в почках).

Экспериментально показано, что на бескремниевой диете животные отстают в росте; у них ухудшается состояние шерсти и костей; при добавлении Si к пище указанные нарушения исчезают [37, 69, 78]. Введение кремния в пищевой рацион животных ускоряет рост молодых костей, способствует кальцификации и сращиванию поврежденных костных тканей [48, 78, 79, 74, 76].

Растительная пища (в частности, пшеничные отруби) несет в себе не только набор витаминов и незаменимых аминокислот, но и биофильный кремний, физиологическая потребность в котором несомненна. Ежедневно человеку требуется не менее $20-30\,\mathrm{mr}\,\mathrm{SiO}_2$, которая поступает с водой, овощами и фруктами; уменьшение этой дозы может приводить к лимфатическим заболеваниям, рахиту, туберкулезу и злокачественным опухолям [9]. Подчеркивается, что физиологически активным (в отличие от неорганических силикатов) в первую очередь является «растительный» кремний, поэтому Si рассматривается как

важный компонент растительных кормов и продуктов питания [9]. Ниже рассматриваются различные методы определения кремния в биологических объектах и приводятся новые данные по содержанию форм этого элемента в растениях.

III. МЕТОДЫ ОПРЕДЕЛЕНИЯ КРЕМНИЯ В БИОЛОГИЧЕСКИХ ОБЪЕКТАХ

Современные методы определения Si в растительных и животных тканях основаны на переводе всех форм этого элемента в мономерную форму ортокремниевой кислоты (H_4SiO_4) озолением материала, сплавлением золы с содой и выщелачиванием сплава [90]. Монокремниевая кислота реагирует с молибденовой кислотой, образуя кремниевомолибденовую кислоту (КМК), которая далее восстанавливается до интенсивно окрашенной кремниевомолибденовой сини (КМС). На этом основан известный фотометрический метод определения Si в растворе [6, 23, 24, 26, 83]. Предложен также полярографический метод определения КМК [42, 43].

Фотометрическому определению Si мешают ионы фосфора (V), мышьяка (V) и германия, которые тоже образуют желтые гетерополикислоты с молибдатом. Для разделения Si и фосфора прибегают к осаждению последнего хлоридом железа и ацетатом натрия в присутствии NaOH [64]. Применяется также избирательная экстракция фосфорномолибденовой кислоты (ФМК) из кислого раствора этилацетатом и изоамилацетатом [42, 43]. В этом случае, варьируя нормальность серной кислоты, можно достичь таких условий, при которых ФМК разрушается, а КМК сохраняется [64, 86]. Используют также различную скорость образования КМС и фосфорномолибденовой сини (ФМС), позволяющую определять фосфор и кремний в их смеси [77]. От фосфора (V), мышьяка (V), железа (III) и алюминия Si отделяют путем осаждения его с ниобием в качестве носителя [23, 59]. На колонках с анионитами можно изолировать Si от фосфатов и арсенатов. Способность Si образовывать летучие галогениды (например, SiF₄) позволяет отделить его, а также мышьяк и германий, от фосфора методом отгонки [3]. Из морской воды растворимый Si извлекают с помощью ионообменной хроматографии с последующим определением его масспектрометрическим методом [56].

Многие биологические и экологические исследования требуют определения только той фракции Si, которая химически связана с органическим веществом, например, при изучении ассимиляции соединений кремния в организме, при исследовании биологического круговорота кремния и при использовании этого элемента в качестве

индикатора переваримости кормов у растительноядных животных. Вместе с тем, растительный материал часто бывает загрязнен примесями минерального Si, в нем содержатся и другие формы кремния, не входящего в состав органического вещества. Кремний, химически связанный с органическим веществом растительной ткани, мы будем в дальнейшем называть органогенным. Методы экстракции и определения органогенного Si в настоящее время отсутствуют, и при оценке его содержания пользуются стандартными методами анализа общего кремния [23, 90]. Однако данный метод позволяет оценить лишь общее содержание Si — сумму растворимого, органогенного и полимерного. При сухом озолении весь органогенный Si попадает в состав золы в виде SiO $_2$, т.е. переходит в нерастворимое состояние и его невозможно отделить от других форм кремния.

Нами [16] разработан метод избирательной экстракции органогенного кремния, обеспечивающий раздельное определение минеральных и органогенных форм этого элемента, не прибегая к озолению растительного материала. Для этого были подобраны такие условия обработки растительного материала, при которых освобождается только Si, связанный с органическим веществом, тогда как аморфный кремнезем и поликремниевые кислоты остаются в нерастворимом состоянии и не мешают анализу. Основываясь на этом методе, мы разработали две схемы анализа форм кремния в растениях.

Краткая схема [16] использует три отдельные навески растительного материала. В первой навеске путем озоления и сплавления золы с Na₂CO₂, или прямым определением на рентгенфлуоресцентном анализаторе устанавливается общее содержание Si. Вторая навеска обрабатывается 25%-ным водным аммиаком (30 мин. при 80 °C) и в этом экстракте методом КМС определяется растворимый минеральный Si (мономерная форма ортокремниевой кислоты и силикаты – соли метакремниевой кислоты). Третья навеска подвергается кислотному гидролизу (конц. HNO₂, 10 мин. при 110 °C) для извлечения суммы органогенного и растворимого минерального Si. В полученном гидролизате определяется количество HNO₃-гидролизуемого Si, а при необходимости — фосфора и алюминия. Йо разности между количеством НОО3-гидролизуемого и NH4OH-растворимого кремния рассчитывается содержание органогенного Si, а по разности между содержанием общего Si (первая навеска) и HNO₃-гидролизуемого Si (третья навеска) — количество нерастворимого (полимерного) кремния — поликремниевых кислот, аморфного кремнезема, опала растительных фитолитов и примесей почвенных частиц и пыли.

Развернутая схема, включающая анализ пяти форм кремния [17], предполагает обработку двух отдельных навесок исследуемого мате-

риала. В первой (путем озоления и спекания золы с Na, CO,) устанавливается общее содержание всех форм кремния. Вторая навеска последовательно обрабатывается спирто-бензольной смесью, 25%-ным водным аммиаком (10 мин. при 80 °C) и конц. HNO, (10 мин. при 110 °C). Спирто-бензольный экстракт извлекает липиды, а связанный с ними Si освобождается кислотным гидролизом (2 M CF, COOH). Аммиачная обработка извлекает растворимый (минеральный) кремний и кремний, связанный с гидрофильными органическими соединениями (ГОС). Сумма этих форм Si определяется после кислотного гидролиза экстракта. Содержание Si фракции ГОС рассчитывается по разности между этой величиной и количеством растворимого Si (последний определяется непосредственно в аммиачном экстракте без его гидролиза). Кремний фракции ГОС представлен ортокремниевыми эфирами углеводов, оксикарбоновых и оксибензойных кислот и о-дифенолов. Азотная кислота извлекает Si, связанный с высокомолекулярными органическими соединениями (ВОС), составляющими органический «скелет» растительной ткани (белками, лигнином и полисахаридами – пектином и клетчаткой). Количество полимерного минерального Si рассчитывается по разности между общим содержанием этого элемента и суммой всех других его форм.

Кремний в препаратах из растительной ткани — в липидах, фосфолипидах и фракциях пектина — определяется специально разработанным микрометодом (экстракция 2М трифторуксусной кислотой, 10-20 мин. при 120 °C в закрытых тефлоновых пробирках). В модифицированном варианте используется фотохимическое восстановление Mo(VI) в составе KMK с применением рибофлавина в качестве фотосенсибилизатора. К 2,0 мл раствора, содержащего КМК, добавляют 0.5 мл $5 \cdot 10^{-5}$ М рибофлавина и 0.5 мл $5 \cdot 10^{-3}$ М $Na_2 - ЭДТА$. Раствор 10 мин. освещают синим светом лампы накаливания через комбинацию светофильтров ЖС-12 и СЗС-22 (освещенность в фокусе конденсора не менее $1,5 \cdot 10^5$ эрг/см²-сек). Фотометрические измерения с помощью спектрального хроматографического детектора (СКБ АМН) в микрокювете объемом 15 мкл и длиной оптического слоя 1,0 см позволяют определять оптическую плотность растворов в диапазоне 0-0.1 с точностью ± 0.001 о.е. Точность определения кремния составляет в этом случае $\pm 0,005\%$ [18].

По данным К.Шварца [75] щелочной гидролиз (0,1 н. NaOH, 2 часа при 100 °C) извлекает почти весь связанный Si из препаратов гиалуроновой кислоты, в то же время из пектина цитрусовых при такой обработке отщепляется лишь 29% кремния; и только 1 н. NaOH (2 ч при 100 °C) извлекает 77% связанного кремния. 0,2 н. HCl (pH 1,2) за 18 часов при 24 °C извлекает 58% связанного Si из гиалуроновой

кислоты, а из пектина при тех же условиях освобождается лишь 9% этого элемента. Энзиматический гидролиз пектинов и гиалуроновой кислоты не освобождает связанный Si, а приводит лишь к образованию низкомолекулярных продуктов, содержащих этот элемент в ковалентно связанном состоянии [75]. По нашим данным щелочной гидролиз (даже в том варианте, когда он полностью извлекает Si из пектинов и других полисахаридов) оказывается непригодным для анализа растительных тканей в целом, так как связанный Si экстрагируется из них лишь частично. Поэтому, необходимо использовать гидролитическое расщепление растительных тканей с помощью кислот [16].

Было испытано несколько вариантов кислотного гидролиза [16], однако, оптимальной оказалась 10 мин. обработка конц. HNO_3 при $110\,^{\circ}$ С. В этом случае из растительных тканей освобождалось максимальное количество Si и в то же время практически не растворялся минеральный кремний из кремнезема. В принятом нами варианте экстракции количество Si, попадающего в раствор из частичек почвы, незначительно и им можно пренебречь.

Ранее отмечалось [6], что сжигание органического вещества с помощью HNO, не позволяет получить белую золу (черные частицы угля мешают анализу). В предложенном варианте метода [16] полное сжигание материала не требуется, а способ извлечения органогенного Si является начальной стадией «мокрого озоления», где в результате окислительной деструкции тканей наблюдается гидролитическое отщепление связанного с органическим веществом Si. Извлеченный кислотой Si в экстракте быстро переходит в коллоидное состояние и может частично выпадать в осадок. На этот факт обращалось внимание и в работах К.Шварца [75]. Указанный эффект усиливается при увеличении температуры и времени обработки. Чтобы сохранить освобожденный Si в растворимом состоянии, экстракт (вместе с остатком растительной ткани) после нейтрализации азотной кислоты необходимо выдерживать 5 мин. при рН 8,0 и 80 °C. Указанная предосторожность необходима, чтобы избежать потерь, которые вероятны, если кремниекислота в анализируемом растворе частично находится в коллоидном состоянии, особенно при содержании кремния в образце < 0.5%.

Основным конкурентом Si в реакции образования гетерополикислот с молибденовой кислотой является фосфор, который переходит в раствор при всех способах кислотной экстракции. При этом извлекается практически одинаковое количество ортофосфата в отличие от кремния, количество которого зависит от условий экстракции. Эксперименты с добавкой ортофосфата к образцу растительного материала показали, что разделение кремния и фосфора возможно даже в том случае, если количество добавленного ортофосфата превышает содержание Si в 4 раза [16].

IV. СОДЕРЖАНИЕ РАЗЛИЧНЫХ ФОРМ КРЕМНИЯ В РАСТЕНИЯХ

Данные табл. 1 показывают, что при достаточно близком содержании общего Si растения могут существенно различаться по соотношению отдельных форм этого элемента. В рассматриваемой табл. в столбцах под цифрой 1 указано содержание Si на абс. сухой вес, а под цифрой 2 — доля каждой формы Si от общего содержания элемента в растении. Для травянистых растений приводится количество Si в их надземных органах, а для кустарников и деревьев — содержание этого элемента в листьях.

В луговых и степных фитоценозах максимальное содержание органогенного Si наблюдается в злаках, осоках и представителях семейства ситниковых. В лесных сообществах много Si содержат листья папоротников, а самыми крупными его накопителями на подмосковных лугах являются представители семейства хвощей. За редким исключением содержание органогенного Si составляет более 50% от общего его количества в растении. В растениях пойменного Звенигородского луга общее содержание Si колеблется от 0.6% (клевер, Trifolium pratense) до 4.2% (хвош, Equisetum sylvaticum). Содержание органогенного Si составляет соответственно 0.3–2.3% от абс. cvx. массы. Доля органогенного Si от суммы всех форм кремния колеблется в пределах от 47,4% (клевер) до 89,1% (молодые листья пырея ползучего, Elytrigia repens). Растворимый кремний находится в пределах от 3,3% (ситник, *Juncus articulatus*) до 11,2% (хвощ лесной) от общего содержания Si; полимерные формы Si — от 6.0% (пырей) до 33.8%(хвощ лесной). По-разному аккумулируют кремний листья деревьев. Если в листьях двух видов ольхи (Alnus incana, A. glutinosa) содержится 0,9% кремния, то в листьях ивы (Salix viminalis) его значительно больше -2.1%.

Высоким общим содержанием кремния характеризуются надземные части растений сухой степи Северного Прикаспия: 1,6% (полынь австрийская, Artemisia austriaca) — 2,9% (полынь черная, Artemisia pauciflora). Исключение составляют листья вяза (Ulmus pumila), где обнаружено только 0,8% общего Si на сухую массу листа. Основными накопителями Si, кроме полыней, являются типчак (Festuca sulcata) и житняк (Agropyron desertorum). Содержание органогенного Si лежит в пределах от 0,6% (солянка, Salsola laricina) до 2,6% (Artemisia pauciflora), а его доля от общего суммарного кремния составляет 43,5% (грудница, Linosyris villosa) — 88,1% (Artemisia pauciflora). Единственным исключением являются представители семейства солянок (напрмер, Salsola laricina), где отмечен самый низкий процент органо-

Таблица 1 Содержание различных форм Si в листьях и надземных органах некоторых растений, в % на абс. сух. массу

	Формы кремния						
Растения	Растения					нераст- воримый	
	90	1	2	1	2	1	2
1	2	3	4	5	6	7	8
Московская обл., Звенигород							
Achillea millefolium, тысячелистник	2,4	1,8	74,3	0,2	9,5	0,4	16,2
Alnus glutinosa, ольха клейкая	0,9	0,5	61,4	0,1	8,0	0,3	30,7
Alnus incana, ольха серая	0,9	0,7	72,0	0,1	7,5	0,1	20,4
Bidens tripartita, череда	1,5	0,9	60,4	0,1	5,8	0,5	33,8
Bromus inermus, костёр	1,9	1,6	84,5	0,1	5,7	0,2	9,8
Carex hirta, осока	1,6	1,4	87,7	0,1	5,5	0,1	6,8
Dactylis glomerata, ежа	2,2	1,8	84,8	0,1	5,5	0,3	9,7
Driopteris filix-mas, папоротник	2,9	1,9	67,3	0,1	5,2	0,9	27,5
Echinochloa crus-galli, ежовник	2,9	2,1	72,3	0,3	10,9	0,5	16,8
Elytrigia repens, пырей	2,0	1,8	89,1	0,1	5,0	0,1	6,0
Equisetum arvense, хвощ	2,7	2,2	80,6	0,2	7,7	0,3	11,7
Festuca pratensis, овсяница	1,7	1,4	83,9	0,1	7,2	0,2	8,9
Hypericum maculatum, зверобой	2,0	1,4	73,1	0,1	6,1	0,5	20,8
Juncus articulatus, ситник	2,2	1,6	72,7	0,1	4,6	0,5	22,7
Lusula pilosa, ожика	2,1	1,5	72,0	0,1	4,8	0,5	23,2
Phleum pratense, тимофеевка	1,8	1,3	74,3	0,1	7,8	0,4	17,9
Poa pratense, мятлик	1,7	1,4	84,3	0,2	9,9	0,1	5,8
Polygonum aviculare, горец	2,0	1,4	70,6	0,1	5,6	0,5	23,8
Primula veris, первоцвет	1,0	0,7	75,3	0,1	4,1	0,2	20,6
Tanacetum vulgare, пижма	2,6	1,8	71,2	0,2	8,2	0,6	20,6
Trifolium pratense, клевер	0,6	0,3	47,4	0,1	7,0	0,2	45,6
Северный Пр	икасг	тий					
Agropyron desertorum, житняк	2,3	1,7	71,8	0,2	6,4	0,4	21,8
Artemisia austriaca, полынь	1,6	0,9	59,6	0,1	3,9	0,6	36,5
Artemisia pauciflora, полынь	2,9	2,6	88,1	0,1	3,1	0,2	8,8
Ferula varia, ферула	1,0	0,8	80,0	0,1	10,0	0,1	10,0
Kochia prostrata, прутняк	2,0	1,3	64,2	0,1	7,0	0,6	28,9
Limonium sp., кермек	1,8	1,2	66,7	0,1	5,5	0,5	27,8
Linosyris villosa, грудница	1,8	0,8	44,4	0,1	5,5	0,9	50,1
Poa bulbosa, мятлик	2,2	1,5	68,7	0,1	4,2	0,6	27,2
Polygonum patulum, горец	1,8	1,1	61,1	0,1	5,5	0,6	33,4
Salsola laricina, солянка	1,9	0,6	29,6	0,3		1,0	57,7
Salvia nemorosa, шалфей	1,6	1,2	71,9	0,1	6,1	0,3	22,0
Thymus marschallianus, тимьян	2,2	1,7	81,0	0,1	5,0	0,4	14,0
см. продолжение табл. 1							пабл. 1

				n	подолж	сение г	пабл. 1
1	2	3	4	5	6	7	8
Тебердинский заповедник, Кавк	ор оп	. muñ	OZZIŽ	113/E (*)	2800 2	٠,	
Аntennaria dioica, кошачья лапка	as, an 0,8	ыни 0,6	72,2		12,6	0,1	15,2
Carex umbrosa, осока	1,8	1,1	63,6	0,1 $0,2$		0.5	25,6
Deschampsia flexuosa, луговик	2,5	1,1	72,5	0,2 $0,2$	9,7	0,5	17,8
Festuca ovina, овсяница	2,3	1,9	83,9	0,2 $0,2$	9,4	0,3	6,7
Gnaphalium supinum, сушеница	1,3	1,0	79,9		11,2	0,1	8,9
Hedysarum caucasicum, копеечник	1,3	0,9	71,3	0,2 $0,1$	7,8	0.3	20,9
Leontodon hispidus, куль-баба	1,1	0,8	71,9	,	10,6	0,3	17,5
Matricaria caucasica, ромашка	1,3	1,1	81,3		10,5	0,2 $0,1$	8,2
Nardus stricta, белоус	1,7	1,1	71,5		11,0	0.3	17,5
Phleum alpinum, тимофеевка	1,9	1,5	80,4	0,2 $0,2$	9,0	0,3	10,6
Scorzonera cava, козелец	1,9	1,4	73,2	0,2 $0,1$	5,7	0,2 $0,4$	21,1
Sibbaldia procumbens, сиббальдия	1,3	1,0	73,7		10,5	0,7	15,8
Taraxacum stevehu, одуванчик	1,6	1,3	80,9	0,1	5,7	0,2	13,4
					,	0,2	13,4
Ботанический сад МГУ им. М						0.0	10.0
Achillea filipendulina, тесячелистник	2,0	1,7	83,8	0,1	5,4	0,2	10,8
Armeniaca sibirica, абрикос	1,7	1,1	65,9	0,1	6,9	0,5	27,2
Asparagus officinalis, спаржа	0,8	0,5	66,2		15,6	0,2	18,2
Betonica foliosa, буквица	1,1	0,7	64,9		14,9	0,2	
Cercidiphyllum japonicum, багряник	1,9	1,4	73,7		12,4	0,3	13,9
Eleutherococcus senticosus, элеутерокок	1,3	0,9	69,2		15,8	0,2	15,0
Festuca inarmata, овсяница	2,1	1,5	69,7		10,9	0,4	19,4
Gentiana decumbens, горечавка	0,8	0,5	67,1	,	13,9	0,2	19,0
Hepatica nobilis, печёночница	1,0	0,7	74,1	0,1	6,7	0,2	19,2
Iberis sempervirens, иберис	2,5	1,5	61,4	0,3	12,7	0,7	25,9
Juglans mandshurica, китайский opex	2,2	1,5	67,7	0,2		0,5	21,2
Malus mandshurica, яблоня	1,6	0,9	59,5	0,2		0,5	29,7
Polygonatum maximoviczi, купена	0,6	0,3	59,6	0,2		0,1	24,6
Rhodiola linearifolia, родиола	2,9	1,5	52,0		17,4	0,9	30,6
Rhododendron sichotense, рододендрон	0,8	0,5	68,8		11,7	0,2	19,5
Sasa spiculosa, бамбук колосковый	3,1	1,4	46,9	0,1	4,6	1,6	48,5
Sedum hybridum, очиток	3,6	1,9	53,2	-	13,1	1,2	33,7
Taxus cuspidata, тисс	2,4	1,6	67,2	0,2	9,0	0,6	23,8
Южный Алтай, Баян	-Чага	н (28	300 м)				
Astragalus botriaides, астрагал	1,2	0,8	67,Ó	0,1	8,0	0,3	25,0
Festuca ovina, овсяница	2,5	1,8	71,3	0.1	6,8	0,6	21,9
Gentiana algida, горечавка	0,9	0,6	66,7	/	11,1	0,2	22,2
Kobresia myosuriodes, кобрезия	2,6	1,5	57,9		12,9	0,8	29,2
Potentilla nivea, лапчатка	1,1	0,7	64,0		18,0	0,2	18,0
Pulsatilla multifida, con-tpaba	0,9	0,6	68,1	0,1	9,6	0,2	22,3
* *			,		, -	,-	<i>y</i> -
Крым, Никитский бо Chamatrops humilis, пальма	танич 3,8	1,8	ии сад 48,2	0,2	5,5	1,8	46,3
Juniperus communis, можжевельник	2,8	$\frac{1,0}{2,1}$	76,2	0,2 $0,2$	5,5 7,6	0,5	16.2
Magnolia grandiflora, магнолия	2,8	1,3	53,0	0,2 $0,2$	9,4	1,0	37,6
Musa basjoo, банан	1,9	0,9	49,2	0,2 $0,1$	4,6	0,9	46.2
Phyllostachys nigra, бамбук	$\frac{1}{2}$, $\frac{1}{7}$	1,2	47,4	$0,1 \\ 0,2$	6,0	1,3	46,6
1 nyuosiacnys nigra, bambyk	۷,1	1,4	7/,4	0,2	0,0	1,3	70,0

					окон	ічание і	табл. <u>1</u>
1	2	3	4	5	6	7	8
Ph. Viridiglaucescens, бамбук	3,9	1,7	43,7	0,2	4,8	2,0	51,5
Quercus pubescens, дуб	2,2	1,2	52,2	0,1	4,9	0,9	42,8
Trachycarpus fortunei, пальма веерная	4,7	2,1	44,8	0,2	4,9	2,4	50,3
Растения, выращенные в	услов	иях с	ранж	ереи			
Amaranthus cruentus, амарант	1,7	1,3	75,2	0,1	7,1	0,3	17,7
A. tricolor, амарант	1,8	1,3	74,0	0,1	7,9	0,4	18,1
Chrysanthemum coronarium, хризантема	1,4	1,1	78,5	0,1	7,2	0,2	14,3
Crassula sp., зеленый лист, толстянка	3,7	1,9	50,4	0,5	13,7	1,3	35,9
Crassula sp., сухой лист	21,4	0,0	0,0	1,1	5,3	20,3	94,7
Hippophae rhamniodes, облепиха	2,3	1,8	78,6	0,2	7,7	0,3	13,7
Melissa officinalis, мелисса	1,6	0,8	52,2	0,1	3,1	0,7	44,7
Mentha piperita, мята	1,5	0,8	50,0	0,1	4,6	0,6	45,4
Schisandra chinensis, лимонник	1,5	1,0	70,7	0,1	6,8	0,4	22,4
Гербарные образцы, д	ендра	рий і	. Соч	И			
Cryptomeria japonica, криптомерия	2,1	1,3	63,5	0,2	11,4	0,6	25,1
Eucalyptus sideroxylon, эвкалипт	2,1	1,3	63,5	0,2	11,4	0,6	25,1
Feijoa sellowiana, фейхоа	0,9	0,6	61,2	0,1	9,7	0,2	29,1
Ficus carica, инжир	1,8	0,9	53,1	0,2	11,8	0,7	35,1
Ginkgo biloba, гинкго	3,2	1,7	53,6	0,2	7,2	1,3	39,2
Liriodendron tulipifera, тюльпанное дерево	1,9	1,1	58,0	0,1	7,3	0,7	34,7
Punica granatum, гранат	1,1	0,7	58,7	0,1	9,7	0,3	31,6

генного Si — 29,6%. Доля растворимого Si колеблется в пределах от 3,1% (полынь черная) до 12,7% (солянка); полимерные формы Si составляют 8,8% (полынь черная) — 57,7% (солянка) от суммы всех форм этого элемента. В среднем для растений зоны сухих степей характерно высокое содержание полимерных форм кремния (20—57,7% от суммы), что существенно отличает их от растительности подмосковных лугов.

В надземной части растений альпийского луга (Теберда, высота 2800 м) общее содержание кремния лежит в пределах от 0,8% (кошачья лапка, Antennaria dioica) до 2,5% (луговик, Deschampsia flexuosa). Основными накопителями кремния являются луговик, овсяница (Festuca ovina), козелец (Scorzonera cava) и белоус (Nardus stricta). Второе место по накоплению элемента занимают сушеница (Gnaphalium supinum), сиббальдия (Sibbaldia procumbens) и копеечник (Hedysarum caucasicum). Содержание органогенного Si составляет соответственно 0,6% (Antennaria dioica) — 1,9% (Festuca ovina). При этом доля органогенного Si всегда значительно превышает 50% и колеблется в пределах от 71,3% (Hedysarum caucasicum) до 84,3% (Festuca varia). Растворимый Si колеблется от 5,7% (одуванчик, Taraxacum stevehu и козелец) до 12,6% (кошачья лапка). А доля полимерных форм этого элемента

составляет от 6,5% (*Ftstuca varia*) до 25,6% (осока, *Carex umbrosa*), что сближает растения альпийского луга с растительностью пойменных подмосковных лугов.

Растения высокогорных лугов Южного Алтая, где преобладают осоково-злаковые сообщества, накапливают почти столько же Si, как и представители флоры сухой степи. Доминируют несколько видов кобрезии, среди которых *Kobresia myosuriodes* накапливает до 2,6% кремния. *Festuca ovina* (2,5% общего Si) превосходит по этому показателю овсяницу овечью тебердинского альпийского луга (2,2% Si). Содержание полимерных форм Si составляет 21,9—29,2% от его общего количества. В надземной части астрагала (*Astragalus botriaides*) количество Si достигает 1,2%, причем, как и у злаковых, доля полимерных форм кремния составляет 25,0%. Накапливает в надземной части кремний и лапчатка (*Potentilla nivea*) — 1,1%. Прострел (сон-трава, *Pulsatilla multifida*) и горечавка холодная (*Gentiana algida*) известны как растения, используемые тибетской медициной, и содержат в надземной части 0,9% кремния.

Показать распределение форм Si в растительном царстве можно на примере коллекции ботанического сада МГУ (Москва). Выращенные в одинаковых климатических условиях представители флоры Алтая, Юго-восточной Сибири и Средней Азии подчиняются общим закономерностям, отмеченным нами выше. Максимальными накопителями кремния являются растения семейства толстянковых — очиток, Sedum hybridum (3,6% Si) и родиола линейнолистная, Rhodiola linearifolia (2,9% Si). Для них характерно и высокое накопление полимерных форм (30,6—33,7% от общего количества кремния). Второе место занимает бамбук колосковый (Sasa spiculosa), накапливающий в листьях до 3,1% Si. При этом органогенный кремний и кремний полимерных форм присутствуют в листьях этого растения в близких количествах (46,9 и 48,5% соответственно). Накапливает кремний и хвоя тисса остроконечного, Taxus cuspidata (2,4%) с тенденцией к аккумуляции полимерных форм элемента (23,8—25,9% от общего Si).

Среди листопадных деревьев максимальным накопителем Si является китайский орех, Juglans mandshurica (2,2% в листьях). Листья багряника японского (Cercidiphyllum japonicum) и абрикоса сибирского (Armeniaca sibirica) также накапливают кремний (1,9 и 1,7% соответственно). Много Si содержится в листьях лекарственных растений: элеутерококка, Eleutherococcus senticosus (1,3%), буквицы олиственной, Betonica foliosa (1,1%) и горечавки лежачей, Gentiana decumbens (0,8%). Некоторые из этих растений входят в состав тибетских многокомпонентных лекарственных смесей, например, в «Полный сбор граната». Интересно отметить, что в состав этих сборов наряду с

«кремниефильными растениями» входят и кремниесодержащие добавки — «силикат» и «толченый панцирь краба» [5].

Высокое накопление Si отмечено и в субтропической растительности Никитского ботанического сада: 1,9% (листья банана, *Musa basjoo*) — 4,7% (листья веерной пальмы, *Trachycarpus fortunei*). Содержание органогенного Si колеблется в пределах от 1,0% (листья банана) до 2,1% (веерная пальма), при этом наблюдается низкая доля органогенного кремния (не более 53%). Исключение составляет лишь хвоя можжевельника (*Juniperus communis*), где доля органогенного Si составляет 76,2% от общего содержания элемента. Растворимый Si обнаруживается в количестве от 4,6% (листья банана) до 9,4% (листья магнолии, *Magnolia grandiflora*) от общего содержания элемента. Для растений субтропического пояса характерно высокое (до 50% и более) содержание полимерных форм Si. Доля полимерного Si составляет 16,2% (можжевельник) — 51,5% (бамбук, *Phyllostachys viridiglaucescens*).

Указанные закономерности подтверждают гербарные образцы листьев субтропических растений (дендрарий г. Сочи). Максимальное накопление Si отмечено в листьях гинкго, $Ginkgo\ biloba\ (3,2\%)$, причем 39,2% от этого количества приходится на полимерные формы. Второе место занимают эвкалипт ($Eucalyptus\ sideroxylon$) — 2,1% Si в листьях и криптомерия японская ($Cryptomeria\ japonica$) — 2,1% Si в хвое. Накапливается Si и в листьях тюльпанного дерева ($Liriodendron\ tulipifera$), где при общем содержании элемента 1,9% на полимерную форму приходится 34,7% от этого количества.

Относительно высоким содержанием кремния в листьях характеризуются лекарственные растения, выращенные в условиях оранжереи (табл. 1). К этой же группе растений можно отнести и несколько видов амаранта [17, 19]. Общее количество Si лежит в пределах от 1,5 (лимонник китайский, Schisandra chinensis) до 2,3% (облепиха, Hippophae rhamnoides). Органогенный кремний составляет от 0,8% (мята, Mentha piperita) до 1,8% (облепиха), а его доля от общего содержания кремния колеблется в пределах от 50% (мята) до 78,6% (облепиха). Растворимый Si обнаруживается в количестве 3,1% (мелисса, Melissa officinalis) — 7,9% (амарант, Amaranthus tricolor) от общего содержания элемента. Высокой оказалась и доля полимерных форм кремния: 13,7% (облепиха) — 45,4% (мята) от суммарного содержания Si. В листьях валерианы (Valeriana officinalis), выращенной в оранжерее, содержалось 0,6% кремния, а в полевых условиях листья этого растения накапливали 1,0% Si.

Растения семейства толстянковых (*Crassulaceae*) при высокой зольности (11,7%) накапливают много Si в зеленых листьях. В верхних листьях одного из представителей этого семейства общее содержание

Si составило 3,7%, а на долю органогенной формы пришлось 50,4% от общего содержания кремния. Доля растворимого и полимерного кремния составила соответственно 13,7% и 35,9%. Оказалось, что Si концентрируется в нижних (совершенно высохших) листьях растения, которые на 30% состоят из клетчатки, а остальные 70% представлены зольными элементами, причем около 60% приходится на долю кальция и около 30% — на Si. При зольности 69,4% в этих листьях практически отсутствовал органогенный Si, хотя общее количество элемента составляло 21,4%. Этот кремний на 94,7% был представлен нерастворимой формой, вероятно, поликремниевыми кислотами в сочетании с силикатом кальция.

Особый интерес представляет CO_2 - и N_2 -ассимилирующая симбиотическая культура водного папоротника азоллы (Azolla pinnata) и сине-зеленой водоросли Anabaena azollae, выращенная на искусственной питательной среде (использованы 18-ти дневные растения, освещенность составляла 10.000—12.000 лк). Искусственная питательная среда, как правило, не содержит связанного азота и кремния (среды Ольсена или Хогланда), и папоротник усваивает Si, содержащийся в качестве примеси в солях, используемых для приготовления сред (в нашем случае такая минерализация среды составляла 0,5 мг/л SiO_3). Азоллу выращивали в кюветах размером $40 \times 25 \times 4$ см, и за 8-10дней папоротник покрывал всю поверхность кюветы. Среда менялась через каждые 4 дня, поэтому количество Si в ней периодически восполнялось. В питательную среду вносили раствор кремниевых кислот, полученный по методу Роуселла и Леонарда [72]. SiO₂ сплавляли с Na₂CO₂, выщелачивали сплав водой и пропускали водный раствор через катионит Дауэкс-50. В результате имели раствор кремниевых кислот, содержащий 15% моно- и дикремниевой кислот и 75% олигои поликремниевых кислот, который доводили до нужной концентрации.

При выращивании в обычной среде азолла усваивала немного кремния (до 0.3%), но когда вносили дополнительное количество Si, ассимиляция этого элемента возрастала (табл. 2). Минерализацию 5-10~мг/л SiO $_2$ имеют некоторые природные воды (родники, ручьи, болота), и азолла, выращенная при таких концентрациях Si в среде, содержала уже 0.7-1.2% кремния (при зольности 4.8-5.1%). Рассмотренная система позволяет изучать поглощение кремния растением при контролируемом количестве кремния в среде. Содержание фосфора в золе растения при возрастающем количестве кремния практически не менялось. Ранее отмечалось, что микроскопический грибок *Aspergillus niger* хорошо растет в среде, где отсутствует фосфор, усваивая кремниекислоту, и наоборот, в присутствии неорганических фосфатов потребление кремния замедляется [58]. Азолла накапливает

Таблица 2 Содержание различных форм Si в некоторых водных растениях и водорослях, в % на абс. сух. массу

Растения	Si орга-	Si мине- ральный		Si общий	
	ногенный	p*	п**	ООЩИИ	
<i>Azolla pinnata</i> , азолла (0,5 мг/л SiO ₂ в среде) то же (5,0 мг/л SiO ₂ в среде)	0,1 0,4	0,1 0,1	0,1 0,2	0,3 0,7	
то же $(10,0 \text{ мг/л SiO}_2 \text{ в среде})$ Galium polustre, подмареник Laminaria japonica, морская капуста (ламинария	0,9 0,7 1) 0,7	0,1 0,5 0,1	0,3 0,1 0,3	1,3 1,3 1,1	
Lemna trisulca, ряска Lemna minor, ряска Mastigocladus laminosus	0,4 0,3 1,0	$0,1 \\ 0,1 \\ 0,3$	0,2 0,1 1,8	0,7 0,5 3,1	
Nasturtion officinale, водяной кресс Nuphar luteum, кубышка	0,8 0,5	0,1 0,1	$0,2 \\ 0,1$	$ \begin{array}{c} 1,1 \\ 0,7 \end{array} $	
Spirulina platensis, спирулина p^* — растворимый, π^{**} — полимерный.	0,2	0,1	0,1	0,4	

и полимерную форму кремния — до 22,5% от общего содержания Si. В этой связи необходимо отметить следующее интересное наблюдение.

Во фракции хлоропластов, выделенной из клеток азоллы, обнаруживаются микроскопические образования (микротельца), по форме напоминающие «ажурную конструкцию» самого папоротника [20]. Микротельца появляются на дне пробирки при центрифугировании фракции хлоропластов (25.000 об/мин.), а под микроскопом они выглядят в 2-3 раза крупнее клеток водоросли *Anabaena azollae*. Микротельца содержат азот (12,0%), фосфор (2,6%), кальций (0,5%) и магний (3,5–5,0%), а по нашим данным в их состав входят и поликремниевые кислоты, образуя своеобразные фитолиты. Содержание Si в микротельцах составляет 0,9–1,2%.

Ассимилируют кремний и болотные ряски ($Lemna\ minor\ u\ L.\ trisulca$). При содержании SiO_2 в воде природного водоема 3,5 мг/л они накапливают 0,5—0,7% $Si\ ($ табл. 2), причем, за период с июня по сентябрь 1998 г. $Lemna\ trisulca$ увеличила по нашим данным содержание $Si\ практически\ в\ 2$ раза.

Кубышка желтая (*Nuphar luteum*) содержит 0,7% кремния. Водяной кресс (*Nasturtion officinale*) накапливает в листьях 1,1% кремния, а подмареник болотный (*Galium polustre*) — 1,3% Si. Для сравнения, подмареник мягкий (*G. mollugo*), растущий в сосновом лесу, т.е. в сухих условиях, накапливает только 0,5% Si.

Еще один яркий пример ассимиляции кремния показывает термофильная сине-зеленая водоросль Mastigocladus laminosus, которая в природных условиях обитает в горячих источниках при температурах 60-80 °С (Нижне-Семячинские горячие источники, Камчатка). Клетки водоросли обладают высокой прочностью, и простым «замораживанием-оттаиванием» из них нельзя извлечь фикоцианин (как это легко достигается в случае чистой культуры Spirulina platensis). Клетки разрушаются только ультразвуковой обработкой суспензии (20 кГц, 10 мин.), при этом оптические и флуоресцентные свойства фикоцианинов из обеих водорослей практически совпадают. Особая прочность клеточной стенки связана, вероятно, с высоким содержанием в ней кремния. Предполагается, что ортокремниевая кислота (и олигокремниевые кислоты) в клеточной стенке образуют ортокремниевые эфиры с белками, а также с полисахаридами [9], что и обуславливает термоизоляцию клетки. С белками Si связывается либо через свободные ОН-группы оксиаминокислот (серина, тирозина и треонина), либо посредством N-Si связей с аминогруппами N-концевых аминокислот. В структуре клетчатки кремний, возможно, служит «сшивающим» агентом между сахарными остатками, образуя силоксановые мостики. Клеточную мембрану в этой связи можно рассматривать как своеобразный «биокристалл», включающий органические и минеральные компоненты.

В большинстве растений (табл. 3) преобладает форма кремния, связанная с высокомолекулярными органическими соединениями

Таблица 3 Содержание различных форм органогенного Si в надземных органах некоторых растений, в % на абс. сух. массу

Растения	Si липидов	Si ГОС	Si BOC
Amaranthus cruentus	0,2	0,2	0,9
A. tricolor	0,2	0,2	0,9
Artemisia austriaca	0,1	0,1	0,7
Echinochloa crus-galli	0,2	0,4	1,5
Equisetum arvense	0,2	0,9	1,1
Hippophae rhamnoides	0,2	0,3	1,4
Melissa officinalis	0,1	0,1	0,6
Mentha piperita	0,1	0,1	0,6
Poa bulbosa	0,2	0,2	1,1
Polygonum aviculare	0,2	0,2	0,9
P. patulum	0,2	0,2	0,9
Primula veris	0,1	0,1	0,5
Salvia nemorosa	0,1	0,2	0,9
Schisandra chinensis	0,2	0,1	0,7
Thymus marschallianus	0,2	0,2	1,3

(ВОС), доля которой составляет от 50,9% (хвощ полевой) до 75,3% (листья мяты перечной) от общего количества органогенного Si. Доля кремния, связанного с липидами, составляет от 8,0% (ежовник, *Echinochloa crus-galli*) до 15,7% (амарант, *Amaranthus cruentus*). Кремний гидрофильных органических соединений (ГОС) обнаруживается в количестве 9,7% (полынь австрийская) — 39,5% (хвощ полевой) от суммы всех трех форм органогенного кремния, а среднее содержание этой фракции Si в растениях составляет 10-17%.

Для лекарственных растений характерно накопление кремния в листьях, а у злаков этот элемент в основном концентрируется в стебле, причем органогенного Si в листьях лекарственных растений содержится более 50% от общего количества (52,2-77,9%), а в стеблях его содержание составляет меньше 50% (45,7-48,4%). Доля растворимого Si в листьях составляет 3,1-6,4% от общего Si, а в стебле она в 2 раза больше: 6,5-11,2%. Доля полимерного Si в листьях колеблется в пределах 15,7-44,7% от общего содержания элемента, а в стебле она составляет 42,7-45,2%. В стебле у амарантов почти в три раза больше полимерного кремния, чем в листьях.

Исключение представляют мята перечная и мелисса лекарственная, где в листьях и в стебле содержится почти одинаковое количество полимерного кремния (в % от общего содержания). В листьях злаковых органогенный Si составляет 67,5-69,2% от суммы всех форм, а в стебле — от 48,0 до 52,5%. Доля растворимого Si в стеблях и листьях составляет соответственно 9,1-14,3% и 11,5-14,7%. В листьях у злаковых фракция полимерного Si обнаруживается в количестве 17,6-20,2% от общего содержания элемента, а в стеблях доля этой фракции составляет уже 36,4-38,5%.

В процессе вегетации содержание Si в растениях возрастает [9]. Это хорошо заметно на примере хвоща (*Equisetum sylvaticum*), в надземнй части которого общее содержание Si за три месяца увеличилось с 3,1% до 4,2%. При этом содержание органогенного Si снизилось незначительно (на 0,5%). Количество растворимого кремния с июня по август уменьшилось в два раза (а его доля изменилась от 30,2 до 11,3%). Содержание полимерного кремния возросло за это время почти в 4 раза и его доля увеличилась с 11,8 до 33,3%.

Общее содержание кремния в корнях растений выше чем в надземной части. При этом доля органогенного Si в корнях всегда меньше 50% и составляет 34,0—36,6% от общего содержания (амарант, овсяница овечья). Количество растворимого Si в корнях у амаранта почти в 6 раз больше, чем в листьях, а содержание полимерного — соответственно больше в 2 раза. Таким образом в корнях наблюдается относительное накопление минеральных форм кремния.

V. РАСПРЕДЕЛЕНИЕ ФОРМ КРЕМНИЯ ПО ОСНОВНЫМ КОМПОНЕНТАМ РАСТИТЕЛЬНОЙ ТКАНИ

Специально выделенные препараты (липидов, общего белка, клетчатки, лигнина и пектинов) обрабатывали конц. HNO, или 2M CF₂COOH (как описано выше) и переводили извлеченный Si в раствор 2 н. H₂SO₄, в котором количество Si определяли стандартным методом КМС. Точность определения Si как и при анализе растительной пыльцы составила $\pm 0.005\%$ [18]. Основная часть органогенного кремния (до 66,0% в листьях дуба опушенного) оказалась связанной с белком. С липидами было связано от 11,0% (злаковые) до 15,7% (амарант) органогенного кремния. Доля кремния, находящегося в клетчатке, составила 8.5% (Salvia nemorosa) — 15.4% (хвощ полевой). Клетчатку выделяли по методу Кюршнера и Ганека гидролизом растительной ткани смесью азотной и уксусной кислот [4]. С общим лигнином оказалось связано от 3,0% (Festuca ovina) до 9,5% (хвощ полевой) органогенного кремния. В препаратах суммарного пектина обнаружилось от 3,4% (Azolla pinnata) до 7,1% (амарант) кремния от содержащегося в этих растениях органогенного кремния.

Кремний в изученных препаратах был неоднороден по прочности связи с органическим веществом. Практически во всех препаратах присутствовал свободный (легко связанный) «молибдат-активный» кремний, извлекаемый 2 н. Н, SO₄, а применением различных условий гидролиза (варьирование температуры, крепости кислоты и времени ее воздействия) можно было извлечь разные количества связанного кремния. Поэтому для сравнительных анализов мы предлагаем рассматривать 3 формы кремния: свободную (обработка 2 н. H₂SO₄), легко гидролизуемую (сумма фракций, извлекаемых 1М СР, СООН за 10 мин. при 100 °C, за вычетом свободного кремния) и прочно связанную (остаточный кремний, извлекаемый только 2М СР,СООН за 10 мин. при 120 °C). В дальнейшем при оценке количества прочно связанного кремния мы используем разность между его общим содержанием в препарате и суммой свободного и легко гидролизуемого кремния. Полученные данные свидетельствуют о том, что на фракцию легко гидролизуемого кремния приходится почти 50% от суммы трех указанных форм. Ниже будет показано, что это утверждение справедливо для всех типов изученных препаратов (белков, пектинов, растворимого лигнина, липидов и фосфолипидов).

Остановимся отдельно на содержании Si в препаратах растительного белка. Хорошим примером в этом отношении являются листья амарантов. У четырех видов изученных растений 0.5-0.7% содержащегося в них кремния обнаруживалось в препаратах белка. Доля этого кремния составляла 51.5% (Amaranthus hypochondriacus) — 56.5% (A.

tricolor) от общего количества органогенного Si листьев. При содержании белка в листьях от 15,4 до 19,9% в самом белке может присутствовать до 3,4% Si, причем доля прочно связанного Si составляет 9—17% от указанной величины. Например, в препарате белка из листьев Атаranthus hypochondriacus при общем содержании кремния 2,7% наблюдалось следующее распределение этого элемента по фракциям: 0,77% — свободный, 1,53% — легко гидролизуемый и 0,41% — прочно связанный. Этот Si, по видимому, представлен ортокремниевыми эфирами оксиаминокислот, однако, нельзя исключать и образование Si-N связей со свободными аминогруппами. У бобовых, например, у Trifolium pratense, с общим белком связано в 4 раза меньше кремния (0,14% на сухую массу листа), хотя содержание белка лежит в тех же пределах, что и в листьях амарантов. Отсюда следует, что листья амарантов одновременно богаты и белком, и кремнием, причем именно той формой Si, которую можно назвать «биофильной» (связанной с компонентами растительной ткани, которые легко усваиваются организмом). Препараты белка извлекали разрушением растительной ткани в гомогенизаторе с последующей экстракцией боратным буфером и осаждением сульфатом аммония [15].

Липидная фракция листьев по нашим данным связывает от 11,0% (у злаков) до 15,8% (*Polygonum patulum*) Si от общего количества органогенного кремния (или 0,1-0,3% от абс. сух. массы листа). Анализ липидов и фосфолипидов проводили по методу Фолча [46] в модификации для растительных тканей [14]. Обезвоженный ацетоном (на холоду) свежий растительный материал экстрагировали смесью $CHCl_3:CH_3OH$ (2:1) в аппарате Сокслета, упаривали растворитель и остаток растворяли в 10 мл $CHCl_3$. Раствор промывали водой, 0,1 н. HCl (удаление неорганического фосфора) и встряхивали с 3%-ным $NaHCO_3$ для отделения свободных жирных кислот. Далее раствор концентрировали до объема 3,0 мл и фосфолипиды осаждали прибавлением 30,0 мл ацетона. Препарат фосфолипидов разделяли на фракции методом тонкослойной хроматографии в системе $CHCl_3:CH_3OH:H_2O$ (65:25:4), проявляя пятна по окрашиванию в парах иода, а также по молибдатной реакции на фосфор.

Учитывая содержание в листьях липидов (2,6-2,9%), можно рассчитать количество сязанного в липидах кремния по отношению к навеске липидной фракции. Оказалось, что прочно связанный с липидами кремний составляет 0,18% (Mentha piperita) — 0,57% (Amaranthus cruentus) от веса препарата (табл. 4). Высокое содержание общего Si в препаратах липидов ранее связывали с возможностью образования мицеллярных комплексов олигокремниевых кислот с лецитином, холином и холестерином [57]. Такие комплексы образуются посред-

Таблица 4 Содержание Si в липидах и фосфолипидах, выделенных из свежих листьев некоторых растений

	Si ли	ипидов	Si фосфолипидов			
Растения	общий, % от абс. сух. мас- сы листа	прочно- связанный, % от массы липидов	прочно- связанный, % от мас- сы фосфо- липидов	% от суммы Р и общего Ѕі фосфо- липидов		
Amaranthus cruentus	0,19	0,57	0,21	34,2		
Artemisia austriaca	0,13	0,35	0,11	40,0		
Chrysanthemum coronarium	0,14	0,33	0,14	37,9		
Melissa officinalis	0,12	0,31	0,19	28,7		
Mentha piperita	0,11	0,18	0,19	29,6		
Polygonum patulum	0,18	0,43	0,07	44,2		
Primula veris	0,10	0,24	0,15	32,5		
Salvia nemorosa	0,15	0,44	0,12	38,0		

ством водородных связей или за счет простых ионных связей между ортокремниевой кислотой и N⁺-атомами липида и обладают растворимостью в полярных органических растворителях. В таком виде минеральный Si может извлекаться из растительной ткани, хотя не исключается и вторичное образование мицеллярных структур в процессе самой экстракции, особенно при использовании гидрофильных органических растворителей или азеотропных смесей, учитывающих содержание воды в сырой растительной ткани. Поэтому анализ органических экстрактов рекомендуется проводить в пластиковой посуде, избегая контаминаций с лабораторной пылью. Предложенный нами ступенчатый гидролиз препарата позволяет вычленить из общего количества кремния фракцию, прочно связанную с органическим веществом, которая, по нашему мнению, является важной биохимической (и фармакологической) характеристикой липидов и фосфолипидов [19].

Общее содержание фосфора в листьях изученных растений лежит в пределах 0,3-0,5% на абс. сух. массу, а на липидную фракцию приходится от 21,8% до 34,5% от этого количества (или 0,09-0,16% от абсолютно сухой массы листа). Фосфолипиды составляют от 17,9 до 22,4% от количества липидной фракции листьев (или 0,5-0,7% от абс. сух. массы листа). При этом от 71,2% до 83,4% связанного с липидами фосфора приходится на фосфолипиды. А от содержащегося в липидах кремния на фракцию фосфолипидов приходится 31,1-41,7%. Количество прочно связанного кремния в препаратах фосфолипидов лежит в пределах от 0,07% (*Polygonum patulum*) до 0,21% (*Amaranthus*

cruentus). Интересно отметить, что Si фосфолипидов составляет от 28,7 до 44,2% от суммарного содержания в них фосфора и кремния (табл. 4). Приведенные материалы свидетельствуют о заметной роли кремния в составе растительных фосфолипидов, где он, вероятно, частично замещает фосфор [19]. Этот факт необходимо учитывать при количественном определении фосфолипидов, когда оно проводится по содержанию в них фосфора.

В растениях присутствуют ортокремниевые эфиры углеводов, оксикарбоновых и оксибензойных кислот, а также полифенолов [9], способные растворяться в органических растворителях. Вероятно, эти соединения попадают в состав липидной фракции, извлекаемой из растений спирто-бензольной или хлороформенно-спиртовой смесью, и на их долю может приходиться до 60% кремния, содержащегося в липидах.

Хроматография препаратов фосфолипидов в тонком слое (с проявлением пятен окрашиванием в парах иода, а также по молибдатной реакции на фосфор) показала, что материал некоторых пятен дает положительную молибдатную реакцию в условиях, когда фосфорномолибденовая кислота разрушается. Значит, эта реакция обусловлена присутствием кремния, связанного с органическим веществом. В ИК-спектрах липидов и фосфолипидов заметны полосы, которые можно отнести к колебаниям связей кремния в его соединениях с органическим веществом (Si-C, Si-OH, -SiO₂, Si-O-Si). Это полосы при 764, 843, 932, 1014, 1032 и 1105 см-1 [52]. Собщалось, что кремний может замещать фосфор в таких биологически значимых фосфатах и нуклеотидах, как фосфоглицериновый альдегид [53–55], NADP, FAD и ATP [63] и в рибонуклеиновых кислотах [73]. Внутрибрюшинное введение крысам ³¹Si-меченого силиката натрия приводит к увеличению содержания кремния в почечной ткани, откуда он частично экстрагируется этанолом и диоксаном [57] в связанной с органическим вешеством форме.

Ранее было показано, что инкубация клеток *Proteus mirabilis* в среде, содержащей глюкозу и силикат натрия ($Na_2Si0_3 \cdot 9H_20$), приводит к образованию соединений, включающих связи типа Si—OH, Si—C, Si—H и Si—O—C [51—55]. Содержащие кремний органические соединения обнаруживались в частности в эфирных и метанольных экстрактах из свободной от клеток среды, в которой протекала инкубация. В кислотных гидролизатах этих экстрактов появлялся «молибдат-активный» кремний, что свидетельствует о включении аниона силиката ($-SiO_3$) в структуру органических соединений, в том числе и в структуру глюкозы.

Ортокремниевые эфиры углеводов, в частности галактозы, были обнаружены в спиртовых экстрактах из соломы озимой ржи (Secale

сегеаle), где до 49,2% от веса золы приходится на SiO_2 [44]. В надземной части хвощей, которые накапливают особенно много Si [82], по нашим данным до 12% от органогенного Si приходится на липиды. В процессе вегетации (с июня по август) количество связанного в липидах кремния почти не меняется, а общее содержание органогенного кремния постепенно растет. У лесного хвоща (*Equisetum sylvaticum*) этот рост обеспечивается увеличением доли кремния, связанного с гидрофильными и высокомолекулярными органическими соединениями.

Сравнение различных препаратов лигнина из стебля Festuca ovina показало, что они содержат практически одинаковое количество органогенного кремния. В солянокислом лигнине по Браунсу [35] содержалось 0,67% кремния, а в препарате «нативного» лигнина по Стевенсу и Норду [81] оказалось 0,73% этого элемента. Отмечалось, что «нативный» лигнин по ряду свойств (содержание C, H и CH $_3$ O-групп) близок к препаратам, полученным стандартными методами с применением 72%-ной H_2SO_4 или 10%-ной NaOH [81]. Если кислотная обработка не слишком сказывается на содержании кремния в полученных препаратах, значит этот элемент входит во «внутреннюю» структуру макромолекул лигнина.

Препараты суммарного лигнина получали конденсацией лигниновых компонентов с формалином после гидролиза материала 72%-ной $\mathrm{H_2SO_4}$ [4]. Из растительного материала предварительно удаляли липиды, а также дубильные вещества и растворимые углеводы, экстракцией водой и 1%-ной HCl. Солянокислый лигнин по Браунсу [27, 35] извлекали 12 н HCl при 0 °С. Нативный лигнин по Стевенсу и Норду [81] экстрагировали этанолом с последующим переосаждением из диоксана. Растворимый лигнин экстрагировали 10%-ным водным ацетоном (на холоду) с последующим переводом материала в сухой (обезвоженный) ацетон и осаждали избытком теплого бензола [4].

Растворимый лигнин связывает менее 1% кремния от общего количества органогенного Si. В листьях изученных растений растворимый в водном ацетоне лигнин присутствовал в количестве от 0,4% (Melissa officinalis) до 0,7% (Polygonum patulum), составляя от суммарного содержания лигнина 2,7-3,3%. В препаратах растворимого лигнина общее количество кремния колебалось от 0,11% (Melissa) до 0,24% (Polygonum aviculare). Листья Amaranthus cruentus занимали среднее положение (0,17% Si). Ступенчатым гидролизом (с применением CF_3COOH) было показано, что в растворимом лигнине из горца птичьего кремний распределяется по фракциям следующим образом: 0,04% (свободный), 0,13% (легко гидролизуемый) и 0,07% (прочно связанный).

Суммарная пектиновая фракция листьев изученных нами растений связывает от 3,5 до 7,1% кремния от общего количества органо-

Таблица 5 Содержание Si во фракциях пектина, выделенных из свежих листьев некоторых растений

	Растворим	ый пектин	Прото	пектин
Растения	% Si от абс. сух. массы листа	% Si от массы пектина	% Si от абс. сух. массы листа	% Si от массы прото- пектина
Aegopodium podagraria	0,01	0,23	0,01	0,34
Amaranthus cruentus	0,05	0,75	0,09	2,32
A. hypochondriacus	0,04	0,77	0,07	1,68
A. tricolor	0,03	0,72	0,05	1,37
Chrysanthemum coronarium	0,05	0,90	0,07	1,96
Hypericum maculatum	0,05	1,35	0,07	2,08
Melissa officinalis	0,01	0,24	0,02	0,95
Mentha piperita	0,02	0,54	0,03	1,06
Polygonum patulum	0,05	1,81	0,03	0,63
Salvia nemorosa	0,04	0,91	0,05	0,85
Vaccinium vitis-idaea	0,01	0,25	0,04	1,50

генного Si (или 0,03—0,09% от абсолютно сухой массы листа). Исключение составляют зеленые формы амарантов (*A. cruentus* и *A. hypochond-riacus*), в листьях которых пектин связывает соответственно 9,9 и 10,7% от органогенного Si (или 0,1% от абс. сух. массы листа). Однако, кремний неравномерно распределен по фракциям пектина, и в протопектине его содержится больше, чем в водорастворимой фракции (табл. 5). Только у горца отклоненного в протопектине содержится почти в 2 раза меньше кремния, чем в водорастворимом пектине, а у шалфея и сныти обе фракции пектина содержат близкие количества элемента.

Для получения суммарного препарата пектина навеску измельченного материала (после экстракции липидов и дополнительного извлечения сахаров 80%-ным этанолом) обрабатывали 0,3 н. HCl (30 мин. при 100 °C с обратным холодильником). Экстракт сгущали под вакуумом (при 35 °C), диализовали в целлофановом мешочке и осаждали пектин 96%-ным этанолом (в соотношении 1 : 2). Водорастворимый пектин извлекали водой (1 ч при 45 °C), а протопектин — последовательной обработкой 0,05 н. HCl (30 мин. при 80 °C) и 1%-ным цитратом натрия (1 ч при 100 °C) с последующим объединением препаратов [4].

Растворимый пектин связывает от 1,2 до 4,7% кремния от общего количества оргеногенного (или 0,01-0,05% от сухой массы листа). С учетом содержания этой фракции пектина в листьях (2,8-6,7%), в

навесках растворимого пектина находится от 0,23% (сныть) до 1,81% (горец отклоненный) кремния. Протопектин связывает 1,9–6,8% кремния от общего количества органогенного (или 0,01–0,09% от сухой массы листа). Содержание протопектина в листьях изученных растений составляет 2,1% (Melissa officinalis) — 5,9% (Salvia nemorosa). Учитывая эти данные, количество кремния в препаратах протопектина лежит в пределах от 0,34% (Aegopodium podagraria) до 2,32% (Amaranthus cruentus, зеленая форма). Ступенчатый гидролиз и в этом случае позволил оценить содержание в препаратах трех фракций кремния. Например, в протопектине из Amaranthus cruentus (зеленая форма) эти формы распределяются следующим образом: 0,61% — свободный кремний, 1,14% — легко гидролизуемый и 0,57% — прочно связанный. А в протопектине из Hypericum maculatum (при общем количестве кремния 2,1%) содержание его форм составляет соответственно 0,54% (свободный); 1,11% (легко гидролизуемый) и 0,43% (прочно связанный).

Связанный кремний обнаружен в кислых мукополисахаридах [75] и в составе высокомолекулярной гиалуроновой кислоты из стекловидного тела глаза быка, где он содержится в количестве 109,2 ppm [88]. По данным К.Шварца [75] связанный кремний обнаруживается в кератине из хрящевой ткани (57—191 ppm), в альгиновой кислоте (451 ppm), в пектине из плодов цитрусовых (2580 ppm), а в очищенных препаратах гиалуроновой кислоты 1 атом кремния приходится на 130—280 повторяющихся звеньев в цепи (что соответствует 330—554 ppm Si). Предполагается, что кремний связывает ОН-группы уроновых кислот, а также нейтральных моносахридов (арабинозы, фукозы, 7-дезоксигептозы), находящихся во внутреннем пространстве между полимерными цепями гликанов. Для протеогликанов допускается включение ортокремниевой кислоты в «мостик» между ксилозой полисахарида и серином белка [75].

VI. КРЕМНИЙ В ПЫЛЬЦЕ РАСТЕНИЙ

Кремний по литературным данным рассматривается как важный минеральный компонент экзины (внешней оболочки пыльцевых зерен), на поверхности которой методами дифракции X-лучей и электронной сканирующей микроскопии обнаружен аморфный SiO_2 [41]. Количество кремния в пыльце превышает содержание кальция и составляет 0,73-0,79% на сухой вес в пыльце *Lychnis alba* и 1,30-1,37% в пыльце *Impatiens sultanii*. В сухих образцах пыльцы гели SiO_2 переходят в кристаллические формы [89], что обеспечивает устойчивость пыльцы в геохимической обстановке и предохраняет ее от микробного разрушения.

Кремний в пыльце растений определяли тем же методом, что и в препаратах белка, липидов и пектина, используя ступенчатую экстракцию с помощью $\mathrm{CF_3COOH}$ [18]. Пыльцу собирали с цветущих соцветий в пластиковую посуду (колонковой кисточкой) со всеми предосторожностями, исключающими попадание в образец пыли из воздуха, и до анализа хранили при 0 °C.

В исследованных образцах пыльцы суммарное содержание трех форм Si лежало в пределах от 0,47 до 0,87% (на абс. сух. массу). Количество легко гидролизуемого Si составило 52,5—61,9% от общего содержания элемента в пыльце. Прочно связанный Si составил 9,6—12,6% от суммы трех форм кремния, а свободный Si обнаружен в количестве 27,6—37,2% [18]. Образцы пыльцы тысячелистника и пижмы обыкновенной отличались самым высоким содержанием кремния (0,87 и 0,84%, соответственно). Свободный, легко гидролизуемый и прочно связанный Si в образце пыльцы Achillea millefolium распределились следующим образом: 0,25; 0,51 и 0,11%. В пыльце Tanacetum vulgare эти же формы Si составили 0,22; 0,52 и 0,10%.

Особый интерес представляет пчелиная перга, являющаяся смесью пыльцы, собранной пчелами от нескольких видов растений. В образце перги из улья в Тульской области (с. Иваньково) общее содержание Si составило 1,12%. В перге из горного Алтая (с. Михайловское) обнаружено 1,27% Si, а свободный, легко гидролизуемый и прочно связанный Si распредилились в указанном образце следующим образом: 0,24; 0,72 и 0,31%.

Интересно отметить, что образцы пыльцы и перги характеризуются высоким содержанием полифенолов и в том числе флавоноидов [18, 45]. Флавоноиды локализуются на поверхности экзины [45], которая имеет большую прочность. Вероятно, прочность экзины обусловлена кремнием, входящим в состав полисахаридных комплексов [60]. Извлекаемый кислотным гидролизом Si химически связан не только с клетчаткой, но и с пектинами пыльцы и перги. Тот факт, что вместе с флавоноидами в пыльце растений и в пчелиной перге содержится кремний, повышает фармакологическую ценность этих природных продуктов.

VII. ЗАКЛЮЧЕНИЕ

Приведенные материалы подтверждают актуальность проблемы растительного (органогенного) кремния. Являясь нормальной составной частью растений, кремний присутствует и во всех пищевых продуктах растительного происхождения, а также в лекарственных препаратах, извлекаемых из растений, используемых в народной и

традиционной медицине. В среднем в живом веществе растений содержится 0,02-0,15% кремния, а наиболее богатые кремнием растения накапливают его до 5%, концентрируя элемент в листьях и хвое [9]. К концентраторам кремния относятся и важнейшие сельскохозяйственные культуры (зерновые). Биологическая роль кремния сравнима с ролью микроэлементов, что обуславливает его использование в сельском хозяйстве. Анализ показывает, что многие лекарственные растения (обогащенные флавоноидами) одновремнно являются и кремниефильными растениями [17]. Гликозиды флавоноидов проявляют коронарорасширяющие и желчегонные свойства и обладают способностью уменьшать проницаемость и ломкость капилляров (Р-витаминная активность). Для них отмечено спазмолитическое, противовоспалительное и анаболическое действие (участие в нормализации белкового обмена). Возможно, фармакологическая значимость таких растений обусловлена удачным сочетанием флавоноидого комплекса с органогенным кремнием, который также способствует укреплению капилляров.

Следует отметить, что использование кремния в качестве индикатора переваримости кормов [87] вовсе не входит в противоречие с перечисленными выше данными. Специальные исследования потребления и переваримости растительного корма у свободно пасущихся сайгаков (с использованием нашего метода) показали, что с непереваренными остатками возвращается 97,4-99,5% органогенного кремния [1, 2]. Однако, оставшиеся 0,5-2,6% кремния, по видимому, обеспечивают физиологическую потребность организма в этом элементе. Для этой фракции органогнного кремния мы и предложили название «биофильный» [19]. Биофильный кремний — это та часть растительного (органогенного) кремния, которая химически (в форме ортокремниевых эфиров) связана с фосфолипидами, белком и пектинами, то есть с теми компонентами растительной ткани, которые в первую очередь усваиваются организмом. Именно этот кремний (на правах микроэлемента) и вовлекается в метаболизм липидов, фосфора и кальция. В этой связи наличие биофильного кремния должно входить в число показателей, определяющих кормовую, пищевую и фармакологическую ценность растительного сырья.

Схема анализа, основанная на извлечении HNO₃-гидролизуемого кремния [16, 18], позволяет определять органогенный кремний в присутствии ортофосфата (или одновременно определять оба эти элемента), а в сочетании с традиционными методами анализа общего кремния (спекание с содой, рентгенфлуоресцентный анализ) по разности рассчитывать содержание аморфного (полимерного) кремния и примесей кристаллического кремнезема (в случае его попадания в

растительный материал). Все сказанное позволяет рекомендовать указанный метод для сравнительного анализа различных форм кремния в растениях, лесных подстилках, торфах, в растительном корме и других биологических материалах. Метод применим в геоботанике и геохимии (при изучении биологического круговорота кремния), а также в экологии, в частности в зоологии при изучении питания животных, когда кремний используется в качестве индикатора перевариваемости кормов [1, 2]. Метод может использоваться в пищевой промышленности и фармакологии для количественной оценки биофильного кремния в растительном сырье.

Автор выражает глубокую признательность Б.Д.Абатурову за образцы растений сухой степи Северного Прикаспия и Южного Алтая, а также В.Г.Онипченко за растения альпийского луга Кавказа.

ЛИТЕРАТУРА

- Абатуров Б.Д., Колесников М.П., Лихнова О.П., Петрищев Б.И., Никонова О.А. // Зоологический Ж. 1997. Т. 76, N 1. C. 104—113.
- Абатуров Б.Д., Петрищев Б.И., Колесников М.П., Субботин А.В. // Успехи Совр. Биологии. 1998. Т. 118, вып. 5. С. 564—584.
- 3. *Айлер Р. //* Химия кремнезема. М.: Мир, 1982. 1127 С.
- Арасимович В.В., Ермаков А.И. // Методы биохимического исследования растений. Л.: Колос. 1972. С. 152—167.
- 5. Асеева Т.А., Батуев Б.Б., Хапкин И.С., Федотовских Н.Н., Датиев Д.Б. // Растительные ресурсы. 1985. Т. 21, вып. 1. С. 15—25.
- 6. *Афанасьева Л.В.* // Биохимия. 1953. Т. 18, вып. 3. С. 319—323.
- Бобров А.А., Хилимонюк И.З., Чемеровская Е.К. // Почвоведение. 1991. N 8. C. 137—141.
- 8. Войнар А.О. // Биологическая роль микроэлементов в организме животных и человека. М.: Наука. 1960.
- Воронков М.Г., Зелчан Г.И., Лукевиц Э.Я. // Кремний и жизнь. Рига: Зинатне. 1978. 587 с.

- Воронков М.Г., Кузнецов И.Г. // Кремний в живой природе. Новосибирск: Наука. 1984. 157 с.
- Воронков М.Г., Кузнецов И.Г. // Удивительный элемент жизни. Иркутск. 1983. 107 с.
- 12. Дорфман С.И. // Вопросы клинической невропатологии. Иркутск. 1957. С. 182—185.
- 13. Дорфман С.И., Шипицын С.А. // Биохимия. 1955. Т. 20. С. 136—140.
- 14. *Ермаков А.И.* // Методы биохимического исследования растений. Л.: Колос. 1972. С. 216—262.
- Иконникова М.И., Ермаков А.И. // Методы биохимического исследования растений. Л.: Колос. 1972. С. 263—318.
- 16. Колесников М.П., Абатуров Б.Д. // Успехи Совр. Биологии. 1997. Т. 117, вып. 5. С. 534—548.
- 17. Колесников М.П., Гинс В.К. // Интродукция нетрадиционных и редких сельскохозяйственных растений Пенза. 1998. Т. 1. С. 29—31.
- Колесников М.П., Гинс В.К. // Химия природных соединений. 1999. N 5. C. 592—597.

- 19. *Колесников М.П., Гинс В.К.* // Новые и нетрадиционные растения и перспективы их использования». Пущино. 1999. Т. 1. С. 67—70.
- 20. Колесников П.А., Донг С.Н., Зорэ С.В. // ДАН. 1982. Т. 266 С. 1501—1504.
- 21. *Коломийцева М.Г., Габович Р.Д. //* Микроэлементы в медицине. М.: Наука. 1970.
- 22. Луковникова Г.А., Ярош Н.П. // Методы биохимического исследования растений. Л.: Колос. 1972. С. 87—128.
- 23. *Марченко 3.* // Фотометрическое определение элементов. М.: Мир, 1971. 502 с.
- 24. *Мышляева Л.В., Краснощёков В.В.* // Аналитическая химия кремния. М.: Наука, 1972. 207 с.
- 25. Таджиев К.Т., Тухтаев Т.М., Бекиев Р.Б., Паук С.И. // Мумиё и стимуляция регенеративных процессов. Изд-во «Ирфон». Душанбе. 1971. 155 с.
- 26. *Федоров А.А.* // Ж. Аналит. Химии. 1999. Т. 54. N 3. C. 241—244.
- 27. *Фрейденберг К.* // Биохимические методы анализа растений. М.: Иностр. Лит. 1960. С. 520—538.
- 28. Шлопак Т.В. // Офтальмологический журнал. 1962. Т. 17. N 5. C. 273—275.
- 29. *Antoine G.* // Contribution a l'étude de certaines formes de silice dans les tissus animaux. These. Paris. 1940.
- 30. *Aron M., Grasse P.* // Precis de biologie animale. Paris. 1966.
- Arslan S., Charnot Y., Peres G. // J. Physiol. (Paris). 1968. Vol. 60. Suppl. N 2. P. 367—369.
- 32. Austin J.H., Rinehart R., Williamson T., Burcar P., Russ K., Nikaido T., Lafrance M. // Progr. Brain Res. 1973. Vol. 40. P. 485—487.
- 33. *Belt T.H., Irwin D., King E.J.* // Canadian Med. Ass. J. 1936. Vol. 34. P. 125—128
- 34. *Bertrand D.* // Bull. Am. Mus. Nat. Hist. 1950. Vol. 94. P. 403—405.

- 35. *Brauns F.E.* // The chemistry of lignin. Acad. Press. N.-Y. 1952.
- 36. *Carlisle E.M.* // Federation Proc. 1974. Vol. 33. P. 1758—1766.
- 37. *Carlisle E.M.* // Nutrient Review. 1975. Vol. 33. P. 257—259.
- 38. *Cerny C.* // Z. Physiol. Chem. 1909. Vol. 62. P. 296—299.
- 39. *Charnot Y., Peres G.* // Ann. Endocrinol. 1971. Vol. 32. P. 397—399.
- 40. Chvapil M., Holeukova E., Cmuchalova B., Kobrle V., Hurich J. // Exp. Cell Res. 1962. Vol. 26. P. 1—7.
- 41. *Crang R.E.*, *May G.* // Canadian J. Botany. 1974. Vol. 52. N 10. P. 2173—2174.
- 42. *De Sesa M.A., Rogers L.B.*//Anal. Chem. 1954. Vol. 26. N 8. P. 1278—1284.
- 43. *De Sesa M.A.*, *Rogers L.B.*//Anal. Chem. 1954. Vol. 26. N 8. P. 1381—1383.
- 44. *Engel W.* // Planta. 1953. Bd. 41. S. 358—390.
- Ferreres F., Tomas-Barberan F.A., Tomas-Lorente F., Nieto J.L., Rumbero A., Olias J.M. // Phytochemistry. 1989. Vol. 28. N 7. P. 1901—1903.
- 46. *Folch J., Lees M., Sloane-Stanley G.H.*// J. Biol. Chem. 1957. Vol. 226. N 1.
 P. 497—509.
- 47. *Harichaux P., Freville M., Lunard H.*// Compt. Rend. Soc. Biol. 1970. Vol.
 164. P. 1038—1041.
- 48. *Harington J.S.*, *Ritchie M.*, *King P.C.*, *Miller K.* // J. Phatology. 1973. Vol. 109. P. 21—24.
- 49. *Hartley R.D., Jones L.H.P.* // J. Experimantal Botany. 1972. Vol. 23. P. 637—640.
- 50. *Heffernan P. //* Brit. Med. J. 1929. Vol. 2. P. 489—491.
- 51. *Heinen W. //* Arch. Mikrobiol. 1963. Bd. 45. S. 162—171.
- 52. *Heinen W.* // Arch. Mikrobiol. 1965. Bd. 52. S. 69—79.
- 53. *Heinen W.* // Arch. Biochem. Biophys. 1967. Vol. 120. P. 86—92.
- 54. *Heinen W.* // Arch. Biochem. Biophys. 1967. Vol. 120. P. 93—100.

55. *Heinen W. //* Acta Bot. Neerl. 1968. Vol. 17. N 2. P. 105—113.

- Hioki A., Lam J.W.H., McLaren J.W. // Analyt. Chem. 1997. Vol. 69. P. 21–25.
- 57. *Holt P.F.*, *Yates D.M.* // Biochem. J. 1953. Vol. 54. P. 300—305.
- 58. *Holzapfel L.*, *Engel W.* // Z. Naturforsch. 1954. B. 9b. S. 602—606.
- 59. *Horwitz G., Codell M.* // Anal. Chem. 1954. Vol. 26, N 7. P. 1230—1234.
- Iwanimi U., Sasakuma T., Yamada Y.
 // Pollen: illustrations and scanning electronmicrographs. Tokyo, Berlin. 1987. 198 P.
- 61. *Isaacs L.* // Bull. Soc. Chim. Biol. 1924. V. 6. P. 157—159.
- 62. *Kaufman P.B., Bigelow W.C., Schmid R., Ghosheh N.S.* // American J. Botany. 1971. Vol. 58. P. 309—316.
- 63. *Kersten W., Staudinger Hj.* // Naturwiss. 1956. B. 43. S. 68—71.
- 64. *King E.J., Stacy B.D., Holt P.F.*//The Analyst. 1955. Vol. 80, N 951. P. 441–453.
- 65. *Kochmann M., Maier L.* // Biochem. Z. 1930. Vol. 223. P. 243—245.
- Lewin J.C., Reimann B.E.F. // Annual Review Plant Physiol. 1969. Vol. 20. P. 289—304.
- 67. *Mehard C.W.*, *Volcani B.E.* // Cell Tissue Res. 1976. Vol. 166. P. 255—257.
- 68. *Monceaux R.H.* // Prod. Pharm. 1960. Vol. 15. P. 99—104.
- Nielsen F.H., Sandstead H.H.// Am. J. Clin. Nutrient. 1974. Vol. 27. P. 515—517.
- 70. *Polet C.* // Silice et calcification arterielle. Paris: These. 1957.
- Policard A., Collet A., Daniel-Moussard H., Pregermain S.// Bull. Microscopic Appl. 1960. Vol. 10. P. 72—75.

- 72. Rowsell E.V., Leonard R.A. // Biochem. J. 1958. Vol. 70. N 1. P. 57—61.
- 73. *Schwarz R., Baronetzky E. //* Naturwiss. 1956. Bd. 43. S. 68—70.
- 74. *Schwarz K., Milne D.B.* // Nature. 1972. Vol. 239. P. 333—334.
- 75. *Schwarz K.* // Proc. Natl. Acad. Sci. USA. 1973. Vol. 70, N 5. P. 1608—1610.
- 76. *Schwarz K.* // Federation Proc. 1974. Vol. 33. P. 1748—1757.
- 77. *Shen C Y.*, *Dyroff D.R.* // Anal. Chem. 1962. Vol. 34, N 11. P. 1367—1370.
- Smith G.S., Neuman A.L., Nelson A.B., Ray E.E. // J. Animal Sci. 1972. Vol. 34. P. 839—841.
- 79. *Smith G.S.*, *Robertson K.H.*//J. Animal Sci. 1970. Vol. 31. P. 218—221.
- 80. *Snyder G.H.* // Silicon in Agriculture Conference. 1999. Florida. P. 7—8.
- 81. *Stevens G, Nord F.F.* // J. Am. Chem. Soc. 1952. Vol. 74. N 13. P. 3447—3448.
- 82. *Strauss M.R.* // Compt. Rend. 1970. D. 270. P. 1579—1582.
- 83. *Strickland J.D.H.* // J. Am. Chem. Soc. 1952. Vol. 74. N 4. P. 862—867.
- 84. *Takaya K.* // J. Histochem. Cytochem. 1975. Vol. 23. P. 687—670.
- 85. *Truchet M., Martoja R.* // Compt. Rend. 1973. D. 276. P. 995—997.
- 86. *Tuma J.* // Mikrochim. Acta. 1962. N 3. P. 513—523.
- 87. *Van Soest P.J., Jones L.P.H.* // J. Dairy Sci. 1968. Vol. 51. N 10. P. 1644—1648.
- 88. *Varma R., Varma R.S., Allen W.S., Wardi A.H.* // Biochim. Biophys. Acta. 1974. Vol. 263. P. 584—588.
- 89. *Vasil I.K.* // Naturwissenschaften. 1973. Bd. 60. S. 247—253.
- 90. *Volk R.J., Weintraub R.L.*// Anal. Chem. 1958. Vol. 30, N 5. P. 1011—1014.