На правах рукописи

САМОХВАЛОВ АЛЕКСЕЙ ВЛАДИМИРОВИЧ

ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ АПТАМЕРОВ С ОХРАТОКСИНОМ А: КОЛИЧЕСТВЕННЫЕ ЗАКОНОМЕРНОСТИ И АНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ

Специальность 03.01.04 - биохимия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

МОСКВА 2019

Работа выполнена в лаборатории иммунобиохимии Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук» (ФИЦ Биотехнологии РАН)

Научный руководитель:

Кандидат биологических наук Жердев Анатолий Виталиевич

Официальные оппоненты:

Доктор химических наук, доцент Горячева Ирина Юрьевна

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского», Институт химии, профессор кафедры общей и неорганической химии

Доктор биологических наук, доцент Спиридонова Вера Алексеевна Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова», Научно-исследовательский институт физико-химической биологии имени А.Н. Белозерского, старший научный сотрудник отдела хроматографического анализа

Ведущая организация

Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет»

Защита состоится «__» ____ 2019 г. в ____ часов на заседании Диссертационного совета Д 002.247.01 по защите диссертаций на соискание ученой степени доктора наук, на соискание ученой степени кандидата наук на базе Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук» по адресу: 119071, Москва, Ленинский проспект, д.33, строение 2.

С диссертацией можно ознакомиться в Библиотеке биологической литературы РАН по адресу: 119071, Москва, Ленинский проспект, д.33, строение 1 и на сайте https://www.fbras.ru.

Автореферат разослан «____» _____ 2019 г.

Ученый секретарь Диссертационного совета, кандидат биологических наук

А.Ф. Орловский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В последние годы для биоаналитических целей наряду с антителами начали активно применяться новые классы рецепторов, по ряду параметров превосходящие их. Оценка и характеристика новых рецепторов является важной задачей. Одни из таких перспективных рецепторов – аптамеры, короткие одноцепочечные олигомеры нуклеиновых кислот, способные селективно и специфично связывать разнообразные молекулярные мишени. Они обладают рядом существенных преимуществ по сравнению с конкурентами: возможность синтеза *in vitro*, простота модификации и введения функциональных групп, полная ренатурация после денатурации под воздействием высокой температуры или ионной силы.

Одним из практически востребованных объектов, требующих определения в крайне низких концентрациях, является охратоксин A (OTA) – токсичный вторичный метаболит плесневых грибов и распространенный контаминант растительных продуктов питания (ячмень, пшеница, кукуруза, овес, сухофрукты, пряности и др.). ОТА входит в число пищевых контаминантов, контролируемых законодательно на международном уровне. Для его определения преимущественно используются сложные инструментальные методы, такие как высокоэффективная жидкостная хроматография. Поэтому крайне важна разработка решений для простой и экспрессной детекции ОТА, в том числе основанных на биорецепторных взаимодействиях. Однако применение аптамеров в качестве биоаналитических реагентов, распознающих ОТА, требует проведения всестороннего изучения взаимодействия аптамер – ОТА.

Перспективным средством как для характеристики взаимодействия аптамер – ОТА, так и для регистрации аналитического сигнала при определении ОТА является поляризация/анизотропия флуоресценции (ПФ/АФ). К ее достоинствам относятся возможность проведения взаимодействия в растворе, простота измерений и быстрое получение результатов.

Цель настоящей диссертационной работы – количественная характеристика взаимодействия аптамер – ОТА и разработка на этой основе аналитических систем для определения ОТА.

Достижение поставленной цели включало решение ряда задач:

Используемые сокращения и обозначения: АФ – анизотропия флуоресценции, КД – круговой дихроизм, ММ – молекулярная масса, МЭЭ – матрицы экстинкции-эмиссии, НЧЗ – наночастицы золота, ОТА – охратоксин А, ПВП – поливинилпирролидон, ПрО – предел обнаружения, ПФ – поляризация флуоресценции, РД – равновесный диализ, ТБ – 20 мМ Трис-буфер с 120 мМ NaCl; 5 мМ КСl и 20 мМ CaCl₂, pH = 8,5, ФЛУ – аминометилфлуоресцеин, IC50 – точка 50%-ного связывания, IgG – иммуноглобулин G.

- 1. скрининг перспективных ОТА-специфичных аптамеров и выбор аптамера, обладающего максимальной аффинностью;
- характеристика особенностей структуры ОТА-специфичного аптамера и его комплекса с ОТА;
- разработка алгоритма определения равновесной константы взаимодействия аптамера с ОТА;
- 4. характеристика флуоресцентных свойств комплекса ОТА-аптамер;
- 5. разработка аналитической системы для определения ОТА на основе регистрации ПФ; изучение факторов, влияющих на её предел обнаружения;
- 6. апробация разработанной системы для определения ОТА в сложных матриксах.

Научная новизна. В рамках диссертационной работы предложен алгоритм определения константы диссоциации методом АФ применительно к аптамер-лигандным взаимодействиям. Разработан алгоритм характеристики взаимодействия ОТА – аптамер с помощью флуоресцентной спектроскопии с построением матриц экстинкции-эмиссии (МЭЭ). Охарактеризован ранее неизвестный эффект увеличения флуоресценции ОТА в комплексе с аптамером и показано, что в его основе лежит перенос энергии флуоресценции с аптамера на ОТА.

Впервые предложен подход для повышения чувствительности ПФ аптамерного анализа, основанный на включении аптамера в комплексы с молекулярными якорями – белками и наночастицами золота (НЧЗ). Экспериментально подтверждена эффективность данного подхода на примере определения ОТА.

Научно-практическая ценность. Предложен ПФ аптамерный анализ с усилением для определения ОТА, проведена его апробация при тестировании проб вина. Разработанный анализ позволяет определять ОТА в вине в концентрациях ниже предельно допустимой. Рекомендации по созданию ПФ аптамерного анализа с использованием молекулярных якорей имеют универсальный характер и могут применяться при разработке аналогичных аналитических систем.

Методы исследования. Структурную характеристику аптамеров проводили методом кругового дихроизма (КД). Равновесную константу взаимодействия аптамер–ОТА определяли тремя независимыми методами: анизотропии флуоресценции, флуоресцентной спектроскопии и равновесным диализом. НЧЗ синтезировали методом цитратного восстановления в присутствии стабилизирующего компонента – таниновой кислоты. Размеры полученных НЧЗ характеризовали методом просвечивающей электронной микроскопии (ПЭМ). НЧЗ конъюгировали со стрептавидином посредством физической адсорбции. Комплексы аптамера с НЧЗ и с белковыми якорями получали с использованием высокоаффинного взаимодействия биотина со стрептавидином. Белковые комплексы характеризовали методом проточного фракционирования в поперечном поле, комплексы с НЧЗ – методом динамического лазерного светорассеяния. Предложенные и охарактеризованные аналитические системы для определения ОТА основывались на регистрации поляризации флуоресценции.

Положения, выносимые на защиту:

- 1. алгоритм определения констант взаимодействия аптамера с меченым и нативным лигандом;
- 2. применение увеличения флуоресценции ОТА в комплексе с аптамером для характеристики связывания и детекции ОТА;
- 3. определение оптимального размера аптамерного конъюгата для чувствительного поляризационного флуоресцентного анализа;
- 4. новые методы поляризационного флуоресцентного анализа, основанные на молекулярных якорях: комплексах аптамер – белок и аптамер – наночастицы золота.

Личный вклад автора. Диссертант выполнил всю экспериментальную часть работы, в том числе получение, математическую обработку и интерпретацию данных, а также подготовил публикации по результатам диссертационного исследования.

Степень достоверности работы. Достоверность представленных в диссертации результатов определяется использованием современных физико-химических методов исследования и статистической обработкой данных, что гарантирует отсутствие субъективных оценок и заключений.

Апробация работы. Результаты диссертационной работы были представлены на следующих научных мероприятиях: Международная научно-практическая конференция «Биотехнология в комплексном развитии регионов» (15-17 марта 2016 г., Москва, Россия), Международный симпозиум «Aptamers in Bordeaux 2016» (24-25 июня 2016 г., Бордо, Франция), XXIX зимняя молодежная научная школа «Перспективные направления физико-химической биологии и биотехнологии» (7-10 февраля 2017 г., Москва, Россия), XI Международная научно-практическая конференция «Биотехнология в комплексном развитии регионов» (20-22 февраля 2017) Россия), 11-й международный конгресс «Biocatalysis: Г., Москва. Fundamentals and Applications» (25–30 июня 2017 г., Истра, Московская обл., Россия), Международная конференция «Aptamers in Bordeaux 2017» (22-23 сентября 2017 г., Бордо, Франция), Юбилейная конференция по микологии и микробиологии (11–12 апреля 2018 г., Москва, Россия).

Исследования, выполнявшиеся в рамках диссертационной работы, в 2017 г. были поддержаны стипендией Правительства Российской Федерации для аспирантов, обучающихся по специальностям, соответствующим приоритетным направлениям модернизации и технологического развития российской экономики. **Публикации.** По материалам диссертационной работы опубликовано 3 статьи в рецензируемых научных журналах, соответствующих требованиям ВАК, и 7 тезисов конференций.

Объем и структура диссертации. Диссертация состоит из введения, трех глав, заключения и списка литературы (305 источников). Работа изложена на 144 страницах машинописного текста, содержит 49 рисунков и 12 таблиц.

В первой главе («Литературный обзор») представлен анализ литературных данных, описывающих свойства аптамеров, методы их получения, применение в аналитической практике, принципы поляризации и анизотропии флуоресценции, создание аналитических систем с аптамерами на их основе и применение аптамеров для детекции ОТА.

Во второй главе («Материалы и методы») приведены сведения о реагентах и материалах, используемых в работе, и изложены основные методики.

В третьей главе («Результаты и обсуждение») представлены экспериментальные результаты, полученные в рамках диссертационной работы, и дана их интерпретация.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выбор охратоксин А-связывающего аптамера

Для характеристики связывающей способности ОТА-специфичных аптамеров было получено производное ОТА, меченное 4'- аминометилфлуоресцеином по карбоксильной группе (ОТА-ФЛУ). Проведен анализ литературы, на основании которого выбраны и синтезированы в ООО «Синтол» четыре перспективных ДНК аптамера, специфичных к ОТА, – таблица 1.

Номер	Количество	Нуклеотидная последовательность
	нуклеотидов	
1	36	5'-GAT CGG GTG TGG GTG GCG TAA AGG GAG
		CAT CGG ACA -3'
2	60	5' –TTT TTT TTT TTT TTT TTT TGA TCG GGT
		GTG GGT GGC GTA AAG GGA GCA TCG GAC ATT
		T- 3'
3	76	5' –AGC CTC GTC TGT TCT CCC GGC AGT GTG
		GGC GAA TCT ATG CGT ACC GTT CGA TAT CGT
		GGG GAA GAC AAG CAG ACG T-3'
4	76	5'- AGC CTC GTC TGT TCT CCC GGC GCA TGA
		TCA TTC GGT GGG TAA GGT GGT GGT AAC GTT
		GGG GAA GAC AAG CAG AC GT-3'

Таблица 1. Использованные в работе ОТА-специфичные ДНК аптамеры

При сравнении реакционных сред для проведения взаимодействия показано, что оптимальные условия взаимодействия и максимальная интенсивность флуоресценции метки достигаются для буфера следующего состава: 20 мМ Трис-HCI; 120 мМ NaCI; 5 мМ KCI и 20 мМ CaCl₂; pH = 8,5 (TБ), который и использовался в дальнейших экспериментах.

Взаимодействие аптамеров с меченым производным ОТА проводили в гомогенных условиях, что исключает необходимость иммобилизации и отмывки реагентов, упрощает и ускоряет процедуру. Регистрация ПФ позволяет оценить эффективность связывания токсина с различными аптамерами и выбрать наиболее аффинный из них.

Получена зависимость ПФ ОТА-ФЛУ от концентрации аптамера. Время инкубации составило 15 минут, что достаточно для приближения реакции к равновесному состоянию. Зависимости разности ПФ от концентрации аптамеров, приведенных в таблице 1, представлены на рис. 1. Наилучшее связывание показал аптамер №1, имеющий точку 50%-ного связывания (IC50), равную 61,5 нМ. Он был выбран для проведения дальнейших экспериментов.

Рисунок 1. Зависимости разности ПФ (*ΔmP* =*mP*_{bound} – *mP*_{free}) свободного и связанного состояния ОТА-ФЛУ от концентрации аптамеров №1 (черная кривая), №2 (красная), №3 (синяя) и №4 (розовая)

Методом кругового дихроизма (КД) охарактеризована структура 3'биотинилированного производного аптамера №1. КД спектры аптамера в буфере, содержащем и не содержащем 20 мМ MgCl₂, существенно отличались. Спектр, полученный в присутствии MgCl₂ (рис. 2, кривая 1), имел два минимума при 233 и 260 нм и два максимума при 243 и 294 нм. Данные значения экстремумов характерны для КД-спектра одноцепочечной ДНК, образующей антипараллельную G-квадруплексную структуру типа корзина. Спектр в отсутствии MgCl₂ (рис. 2, кривая 2) с максимумом при 277 нм и минимумом при 243 нм характерен для неструктурированной од-

5

ноцепочечной ДНК. В отсутствии ионов двухвалентных металлов выбранный аптамер G-квадруплексную структуру не образует.

Рисунок 2. Спектры 1,5 мкМ 3'биотинилированного аптамера в 10 мМ Три-HCI; pH = 7,4; 120 мМ NaCI; 5 мМ KCI, содержащем 20 мМ MgCl₂ (1) и не содержащем ионов двухвалентных металлов (2)

Как было ранее показано, именно G-квадруплексная структура определяет ОТА-связывающие свойства аптамера №1. Поэтому в дальнейших экспериментах использовали состав буфера, обеспечивающий формирование G-квадруплекса.

Определение константы взаимодействия ОТА–аптамер методом анизотропии флуоресценции

Для определения константы взаимодействия был разработан алгоритм, в основе которого лежит измерение АФ в последовательности из двух блоков экспериментов:

1) определение *K*_{D1} – константы диссоциации комплекса между аптамером и лигандом, меченным производным флуоресцеина (L*). *K*_{D1} определяется на основании изменения АФ при взаимодействии L* с аптамером. Протокол предусматривает получение нескольких зависимостей АФ от концентрации аптамера при разных концентрациях L*.

2) определение K_{D2} – константы диссоциации комплекса аптамера и нативного лиганда (L). Для нахождения K_{D2} регистрируется AФ в системе с конкуренцией между L* (фиксированная концентрация) и L (варьируемая концентрация) за связывание с аптамером. Проводится несколько экспериментов при разных концентрациях аптамера.

В алгоритме учтено влияние изменения флуоресценции на измеряемые значения АФ, оптимизированы концентрации реагентов, введен статистический критерий оценки точности полученных результатов.

Ниже представлены результаты применения алгоритма для характеристики взаимодействия аптамер – ОТА.

Определение константы диссоциации аптамер–ОТА–ФЛУ (К_{D1})

Получено шесть зависимостей АФ и интенсивности флуоресценции ОТА-ФЛУ (взят ряд концентраций ОТА-ФЛУ от 0,4 до 13,6 нМ) от концен-

трации аптамера. Условия эксперимента были выбраны таким образом, чтобы обеспечить избыток аптамера ([*R*]) по отношению к меченому лиганду [*L**]. В этом случае K_{D1} определяется концентрацией рецептора в точке 50%-ного связывания (IC50).

Зависимости интенсивности флуоресценции ОТА-ФЛУ (при различной концентрации в диапазоне от 0,4 до 13,6 нМ) от концентрации аптамера представлены на рис. 3.

Из рис. З видно, что связывание ОТА-ФЛУ с аптамером сопровождается возрастанием флуоресценции метки от 1,5 до 2 раз, в зависимости от концентрации ОТА-ФЛУ. Изменение флуоресценции (квантового выхода) метки приводит к искажению корреляции между АФ и концентрацией комплекса аптамер-ОТА-ФЛУ. Поэтому при определении *K*_{D1} взаимодействия аптамер–ОТА с измерением АФ для корректного определения концентрационной доли связанного меченого лиганда (*F*_{bound}) используется коэффициент Q, который определяется как отношение флуоресценции метки в связанном и свободном состояниях. С учетом Q доля связанного ОТА-ФЛУ определяется уравнением:

$$F_{bound} = \frac{r_i - r_f}{Q(r_b - r_i) + r_i - r_f}$$
, (1)

где *F*_{bound} – доля связанного меченого лиганда; *r*_i – АФ *i*-той точки на зависимости АФ от концентрации рецептора; *r*_f – АФ свободного флуорофора в отсутствии аптамера; *r*_b – предельное значение АФ при концентрации аптамера, которая обеспечивает полный переход меченого лиганда в связанное состояние.

С учетом поправочного коэффициента вычислены значения F_{bound}. Как видим из рис. 4, зависимости F_{bound} от концентрации аптамера, полученные при разных концентрациях ОТА-ФЛУ, соответствуют друг другу в пределах ошибки. Это свидетельствует о том, что все выбранные концентрации ОТА-ФЛУ удовлетворяют установленному требованию проведения взаимодействия в условиях избытка рецептора.

Рисунок 4. Зависимости F_{bound} от концентрации аптамера. Слева (А): концентрации ОТА-ФЛУ – 13,6 нМ (черная кривая); 6,8 нМ (красная); 3,4 нМ (синяя) и 1,7 нМ (розовая). Справа (Б): концентрации ОТА-ФЛУ – 0,9 нМ (зеленая) и 0,4 нМ (фиолетовая). (n = 4)

Чтобы оценить воспроизводимость результатов эксперимента, использовался статистический критерий – Z'-фактор:

$$Z' = 1 - \frac{3SD_f + 3SD_b}{r_b - r_f},$$
 (2)

где SD_b и SD_f – стандартные отклонения АФ для связанного и свободного состояний меченого лиганда, соответственно.

Z'-фактор показывает, насколько рабочий диапазон изменения сигнала ($r_b - r_f$) изменяется в зависимости от величины погрешности ($3SD_f + 3SD_b$). Условия эксперимента оптимальны, когда Z'-фактор близок к единице. Но с учетом свойств реальных систем в качестве допустимого порога принимается $Z' \ge 0,5$.

Точка 50%-ного связывания аптамера с ОТА была определена аппроксимацией полученных зависимостей (таблица 2). Для всех зависимостей установлены коэффициент Q и Z'-фактор; полученные результаты суммированы в таблице 2.

Концентрация ОТА-ФЛУ (нМ)	Q	Z'-фактор	Концентрация аптамера в IC50 (нМ)
13,6	2,08	0,87	187±11
6,8	1,78	0,84	217±14

Таблица 2. Параметры взаимодействия аптамер-ОТА-ФЛУ

3,4	1,73	0,76	248±16
1,7	1,68	0,60	268±30
0,9	1,73	0,38	259±44
0,4	1,43	0,22	222±26

Кривые взаимодействия, не удовлетворяющие условию Z' < 0,5 (при концентрациях ОТА-ФЛУ 0,4 и 0,9 нМ), представлены на рис. 4 (Б). Значения IC50, вычисленные для этих кривых, были исключены из дальнейших расчетов. Зависимость, полученная при 13,6 нМ ОТА-ФЛУ, была также исключена, т.к. для нее Q и IC50 статистически достоверно отличались от вариантов с меньшими концентрациями ОТА-ФЛУ.

Для определения *К*_{D1} были усреднены оставшиеся три значения IC50 при концентрациях ОТА-ФЛУ 1,7; 3,4 и 6,8 нМ. Полученная *К*_{D1} равна 245±33 нМ.

Определение константы диссоциации аптамер-ОТА (К_{D2})

Далее проводили измерение константы взаимодействия аптамер – немеченый лиганд (*K*_{D2}) с использованием системы, состоящей из аптамера, меченого лиганда и немеченого лиганда. Для каждой конкурентной зависимости концентрации аптамера и ОТА-ФЛУ были постоянными, а концентрация ОТА варьировалась.

Для определения *K*_{D2} необходимо рассмотреть два состояния системы – при 50%-ной конкуренции и в отсутствии конкуренции. Итоговое уравнение будет иметь вид:

$$K_{D2} = \frac{K_{D1}[L]_{50}}{[L^*]_{50} + [R]_0 + K_{D1}}, \qquad (3)$$

где [L]₅₀ – равновесная концентрация немеченого лиганда, которая ведет к 50%-ному снижению концентрации комплекса аптамер-меченый лиганд в ходе конкуренции; [R]₀ – равновесная концентрация аптамера в отсутствии конкурента; [L*]₅₀ – равновесная концентрация меченого лиганда при условии 50%-ной конкуренции.

Для определения K_{D2} были получены семь зависимостей АФ от концентрации ОТА при разных концентрациях аптамера – от 1200 до 50 нМ (рис. 5). Как и в предыдущем эксперименте, был введен поправочный коэффициент, отражающий изменение флуоресценции метки. В данной серии экспериментов для всех выбранных концентраций аптамера значение Q находилось в диапазоне от 1,2 до 1,3, за исключением наименьших концентраций 75 и 50 нМ, для которых Q \approx 1.

В соответствии с уравнением (3) значения АФ для каждой кривой были пересчитаны в *F*_{bound} и построены зависимости *F*_{bound} от концентрации аптамера (рис. 5).

Рисунок 5. Зависимости *F*_{bound} от концентрации ОТА при концентрациях аптамера, равных 1200 нМ (А, черная кривая); 600 нМ (А, красная); 300 нМ (синяя); 200 нМ (А, розовая), 150 нМ (А, зеленая), 75 нМ (Б, темно-синяя) и 50 нМ (Б, фиолетовая). (n = 4)

Для каждой конкурентной кривой были определены Z'-фактор и точка 50%-ного ингибирования связывания меченого лиганда (50%-ой конкуренции). По уравнению (3) для каждой зависимости определена предполагаемая константа связывания. Все результаты представлены в таблице 3.

На основании полученных значений Z'-фактора при определении итоговой *К*_{D2} исключены зависимости при концентрациях аптамера 75 и 50 нМ. Итоговая константа, полученная усреднением констант связывания для оставшихся пяти концентраций аптамера (1200, 600, 300, 200 и 150 нМ), составила 63±18 нМ.

amamepoint			
Аптамер	Концентрация ОТА в точке	Предполагаемая Кр	Z'-
(нМ)	50%-ой конкуренции (нМ)	аптамер-ОТА (нМ)	фактор
1200	1383±42	61±4	0,8
600	741±32	80±16	0,83
300	312±18	47±11	0,76
200	244±12	63±10	0,70
150	172±20	67±15	0,62
75	131±33	49±28	0,47
50	311±115	234±110	0,38

Таблица 3. Параметры конкурентного взаимодействия ОТА-ФЛУ и ОТА с аптамером

Подтверждение константы взаимодействия методом равновесного диализа

Для подтверждения константы *К*_{D2}, полученной методом АФ, в качестве референсного метода был использован равновесный диализ (РД) как стандартный метод характеристики лиганд-рецепторных взаимодействий. Долю связанного ОТА определяли по его собственной флуоресценции (возбуждение – 375 нм, эмиссия – 430 нм). При определении константы диссоциации комплекса аптамер–ОТА методом РД учитывали изменение флуоресценции ОТА, обусловленное его переходом из свободного в связанное состояние.

Константа диссоциации (K_D) определялась так же, как в случае взаимодействия аптамер–ОТА–ФЛУ – по IC50. На основании скорректированной зависимости F_{bound} от концентрации аптамера (рис. 6) вычислили величину K_D , равную 80±9 нМ.

Рисунок 6. Скорректированная зависимость доли связанного ОТА от концентрации аптамера. (n = 4)

Разница между константами, полученными методом регистрации АФ (63 ± 18 нМ) и равновесным диализом (80 ± 9 нМ), находится в пределах ошибки. Таким образом, методом равновесного диализа подтверждено значение константы диссоциации, установленное методом регистрации анизотропии флуоресценции.

Анализ матриц экстинкции-эмиссии ОТА в свободном состоянии и в комплексе с аптамером

Флуоресценцию ОТА в свободном состоянии и в комплексе с аптамером сравнивали на основании матриц экстинкции–эмиссии. Полученные МЭЭ флуоресценции аптамера, ОТА без аптамера и комплекса ОТА– аптамер представлены на рис. 7, 8. На МЭЭ ОТА (рис. 7 (А)) наблюдаются два пика флуоресценции. Первый пик характеризуется максимумом при $\lambda_{ex}/\lambda_{em} = 376/432$ нм (пик №1). Флуоресценция ОТА при $\lambda_{ex} = 376$ нм характерна для депротонированной формы ОТА (дианиона), преобладающей в выбранных условиях – при рН = 8,5. Второй пик, представленный на МЭЭ,

характеризуется максимумом флуоресценции при λ_{ex}/λ_{em} = 262/432 нм (пик №2).

Рисунок 7. Матрицы экстинкции-эмиссии 240 нМ ОТА (А) и 240 нМ ОТА в присутствии 1000 нМ аптамера (Б)

Из сравнения рис. 7 (А) и (Б) видно, что добавление аптамера вызвало значительное увеличение пика №2 (в 5,3 раза). Наличие максима флуоресценции ОТА при λ_{ех}/λ_{em} = 262/432 нм и эффект его увеличения в комплексе с аптамером ранее описаны не были.

При более детальном рассмотрении МЭЭ (рис. 8) обнаружено, что аптамер обладает собственной флуоресценцией (в 24 раза слабее, чем флуоресценция 240 нМ ОТА при $\lambda_{ex}/\lambda_{em} = 376/432$ нм) с максимумом экстинкции в районе 270 нм и широким спектром эмиссии в диапазоне от 320 до 425 нм. Данная флуоресценция является характерной особенностью антипараллельных G-квадруплексов.

Рисунок 8. Матрица экстинкцииэмиссии 1 мкМ G-квадруплексного аптамера №1

Проанализировав МЭЭ ОТА и аптамера, мы сделали вывод, что при возбуждении светом с λ_{ex} =265 нм спектр эмиссии (320 – 425 нм) аптамера

перекрывает максимум экстинкции для пика №1 (376 нм) ОТА. Показано, что благодаря перекрыванию происходит резонансный перенос энергии от аптамера к ОТА при образовании комплекса. Это объясняет наблюдаемое пятикратное увеличение флуоресценции ОТА при λ_{ех}/λ_{еm} = 265/425 нм, ко-торое не может обеспечиваться увеличением квантового выхода (в водных растворах он составляет 0,39 для моноаниона и 0,49 для дианиона).

Для определения влияния концентрации аптамера на МЭЭ построена зависимость модулированной флуоресценции (увеличение флуоресценции связанного по сравнению со свободным ОТА при λ_{ex}/λ_{em} = 265/425 нм) пика №2 от концентрации аптамера для 30 нМ ОТА, рис. 9 (кривая 1).

Рисунок 9. Зависимость интенсивности модулируемой флуоресценции 30 нМ ОТА при $\lambda_{ex}/\lambda_{em} = 265/425$ нм (где $\Delta I = I_{комплекса} - I_{OTA}$) от концентрации аптамера (1) и поглощения аптамера при 265 нм от его концентрации (2). (n=3)

Флуоресценция при λ_{ех}/λ_{ет} = 265/425 нм возрастает с увеличением концентрации аптамера, достигая максимума при концентрации, равной 400–500 нМ. Дальнейшее повышение концентрации аптамера приводит к снижению флуоресценции. Причиной отсутствия верхнего плато при концентрации аптамера более 500 нМ, как видно из рис. 9 (кривая 2), является поглощение аптамера при 265 нм, снижающее интенсивность возбуждающего света по мере его прохождения через раствор.

Характеристика образования комплекса ОТА-аптамер по флуоресценции при λ_{ex}/λ_{em} = 265/425 нм

Построены зависимости модулируемой флуоресценции λ_{ех}/λ_{ет} = 265/425 нм (пик №2) от концентрации ОТА (от 5000 до 0,1 нМ) для трех концентраций аптамера (400, 100 и 50 нМ) – рис. 10.

Рисунок 10.Зависимости модули-
руемой флуоресценции при λ_{ex}/λ_{em} =
265/425 нм при связывании ОТА с
400 (черная кривая), 100 (красная) и
50 нМ (синяя) аптамера от концен-
трации ОТА. (n=4)

Для 100 и 50 нМ аптамера концентрационные зависимости модулируемой флуоресценции, построенные в полулогарифмических координатах, имеют форму сигмоиды. Для концентрации аптамера 400 нМ наблюдается снижение флуоресценции при высоких концентрациях ОТА, обусловленное поглощением аптамера, тогда как при концентрациях 100 и 50 нМ аптамер практически не поглощает свет (см. рис. 9 (кривая 2)). Таким образом, для характеристики взаимодействия высокие концентрации аптамера использовать не рекомендуется.

Концентрационные зависимости модулируемой флуоресценции были сопоставлены с теоретическим расчетом, использовавшим установленную ранее К_D взаимодействия аптамер–ОТА, равную 63 нМ. Экспериментальная зависимость для аптамера с концентрацией 100 нМ, перестроенная как зависимость доли связанного аптамера от концентрации ОТА, и теоретическая кривая представлены на рис. 11.

Рисунок 11. Сравнение теоретической (черная кривая) и экспериментальной (красная) зависимости доли связанного аптамера от концентрации ОТА при 100 нМ аптамера

Из рис. 11 видно, что отличия между теоретической и экспериментальной кривыми находятся в пределах погрешности измерений. Это доказывает, что модулируемая флуоресценция корректно отражает образование комплекса аптамер–ОТА. Кроме того, показано, что использование флуоресценции ($\lambda_{ex}/\lambda_{em}$ = 265/425 нм) ОТА в комплексе с аптамером позволяет детектировать ОТА в низких концентрациях. На рис. 12 представлены линеаризации зависимостей в диапазоне концентраций ОТА от 0 до 10 нМ для флуоресценции свободного ОТА при $\lambda_{ex}/\lambda_{em}$ = 380/430 нм и ОТА в комплексе с аптамером при $\lambda_{ex}/\lambda_{em}$ = 265/425 нм.

Рисунок 12. Линеаризации зависимостей флуоресценции ОТА при $\lambda_{ex}/\lambda_{em} = 265/425$ нм от его концентрации в комплексе с 400 нМ (черная кривая); 100 нМ (красная) и 50 нМ (синяя) аптамера и флуоресценции свободного ОТА при $\lambda_{ex}/\lambda_{em}$ = 380/430 нм (фиолетовая)

На основании экстраполяции концентрационных зависимостей с учетом трех стандартных отклонений (Зо) флуоресценции раствора в отсутствие ОТА были установлены следующие значения предела обнаружения (ПрО) ОТА – 6,5 нМ (фиолетовая кривая – пик №1; без аптамера), 2,0 нМ (синяя – пик №2; 50 нМ аптамера), 1,5 нМ (красная – пик №2; 100 нМ аптамера) и 1,2 нМ (черная – пик №2; 400 нМ аптамера). Регистрация флуоресценции пика №2 ОТА в комплексе с аптамером позволяет детектировать ОТА в 6,5/1,2 = 5,4 раза чувствительнее, чем регистрация флуоресценции пика №1 ОТА.

Разработка белковых якорных систем для аптамерного поляризационного флуоресцентного анализа

Поляризация и анизотропия флуоресценции зависят от подвижности флуорофора или его комплекса в растворе в соответствии с уравнением Перрена:

$$\left(\frac{1}{P} - \frac{1}{3}\right) = \left(\frac{1}{P_0} - \frac{1}{3}\right) \left(1 + \frac{\tau}{\theta}\right), \qquad (4)$$

где P₀ – величина ПФ флуорофора в в отсутствии вращательной диффузии; τ – среднее время полужизни возбужденного состояния флуорофора; θ – время вращательной корреляции (среднее время, необходимое для поворота оси флуорофора на один радиан).

Молекулярная масса (ММ) аптамеров существенно меньше, чем ММ антител – стандартного биоаналитического рецептора, что обуславливает

необходимость дополнительной их характеристики применительно к анализу с регистрацией АФ/ПФ.

Чтобы оценить влияние массы рецептора на ПФ комплекса рецепторлиганд, были приняты допущения: 1) флуорофор образует недиссоциирующий комплекс с рецептором, 2) данный комплекс представляет собой жесткую сферу. Соответственно, подвижность такого комплекса связана с массой следующим уравнением:

$$\theta = \eta M W (V + h) / RT, \quad (5)$$

где η – вязкость среды, MW – молекулярная масса, V – парциальный удельный объем, h – добавочный удельный объем, обусловленный степенью гидратации молекулы, R – универсальная газовая постоянная и T – абсолютная температура в градусах Кельвина.

На основании уравнений (4) и (5) построена теоретическая зависимость ПФ комплекса флуоресцеиновой метки с G-квадруплексными аптамерами и белками от их молекулярных масс – рис. 13.

Рисунок 13. Зависимость ПФ комплекса флуоресцеиновой метки с G-квадруплексными аптамерами (1) и белками (2) от их молекулярных масс

На основании зависимости, представленной на рис. 13, сделан вывод, что аптамер обладает большой подвижностью в растворе и не обеспечивает максимальной ПФ комплекса. Предложен новый способ усиления ПФ – принцип молекулярных якорей, основанный на включении аптамеров в комплексы с высокомолекулярными соединениями. Таким образом, в комплексе обеспечивается значительное снижение подвижности метки и увеличение её ПФ. Для достижения одного и того же изменения ПФ при переходе метки из свободного состояния в связанное нужна меньшая концентрация утяжеленного аптамера по сравнению с нативным. Это позволяет использовать меньшую концентрацию аптамера в анализе и тем самым снизить предел обнаружения. Принципиальная схема подхода, основанного на использовании молекулярных якорей, представлена на рис. 14.

Рисунок 14. Схема снижения предела обнаружения ПФ аптамерного анализа с применением молекулярных якорей. ПФ₀ – поляризация меченого лиганда; ПФ₁ – ПФ комплекса с аптамером; ПФ₂ – ПФ аптамерного комплекса с молекулярным якорем (молекулой белка, наночастицей и др.)

На основании представленной теоретической зависимости можно сделать предположение, что оптимальным белковым якорем, позволяющим достичь максимально возможную ПФ, будет носитель, имеющий ММ, близкую к иммуноглобулину G (IgG) или превышающую её. Дальнейшее увеличение массы комплекса не вызовет значительного прироста ПФ.

Предложенный принцип повышения предела обнаружения реализован с использованием белков – стрептавидина (53 кДа) и комплекса стрептавидин-IgG (203 кДа). Для связывания с белками и их комплексами в работе использовали З'-биотинилированное производное аптамера (11,7 кДа). Для проведения экспериментов была выбрана концентрация ОТА-ФЛУ, равная 4 нМ, что обеспечивает выполнение условий: Z' > 0,5 и флуоресценция больше фоновой в 10-20 раз.

Поляризационный флуоресцентный анализ с использованием белковых якорей

Синтезированы белковые комплексы биотинилированный аптамерстрептавидин в соотношении 1:2 и аптамер-стрептавидин–IgG в соотношении 1:2:1, обеспечивающие максимальные изменения ПФ ОТА-ФЛУ. Зависимости ПФ ОТА-ФЛУ от концентрации аптамера и его белковых комплексов представлены на рис. 15.

Рисунок 15. Зависимости разности ПФ ОТА-ФЛУ от концентрации аптамера (1), комплексов аптамер–стрептавидин (2) и аптамер–стрептавидин–IgG (3). (n=4)

ПФ возрастает в ряду: аптамер → комплекс аптамер–стрептавидин → тройной комплекс. Оптимальная концентрация для проведения конкурентного анализа, обеспечивающая ΔмР = 50, составила 1000 нМ для свободного аптамера, 500 нМ для комплекса аптамер–стрептавидин и 200 нМ для тройного комплекса.

Полученные конкурентные зависимости ОТА для аптамера и его комплексов с якорями представлены на рис. 16.

Рисунок 16. Конкурентные зависимости ПФ ОТА-ФЛУ от концентрации ОТА для: (1) свободного аптамера, (2) комплекса аптамер-стрептавидин, (3) комплекса аптамер-стрептавидинlgG. (n = 4)

Для свободного аптамера, комплекса аптамер–стрептавидин и комплекса аптамер–стрептавидин–IgG ПрО и IC50 составили 130 и 1340 нМ; 43 и 533 нМ; 3,6 и 98 нМ, соответственно. Таким образом, включение аптамера в комплекс со стрептавидином снижает предел обнаружения в 3 раза, а включение в тройной комплекс – в 40 раз по сравнению со свободным аптамером. Достигнутый эффект снижения ПрО охратоксина A с белковым якорным усилением свидетельствует о перспективности применения предложенного принципа для определения ОТА в сложных матриксах.

Разработка системы с использованием наночастиц золота в качестве якоря

В отличие от белков, наночастицы золота (НЧЗ) имеют жесткую структуру и высокую плотность, вследствие чего масса одной частицы даже небольшого размера (≈ 5 нм) значительно превосходит ММ иммуноглобулина G. Применение НЧЗ в качестве якоря обеспечивает достижение максимального замедления метки и максимальное значение ПФ связанного состояния, не требуя синтеза белковых конъюгатов, стехиометрия которых неоднозначна. Принципиальная схема усиления ПФ анализа с использованием аптамерных комплексов с НЧЗ, модифицированными стрептавидином, представлена на рис. 17.

Для синтеза монодисперсных НЧЗ с диаметром до 10 нм использовано цитратное восстановление в присутствии стабилизирующего компонента — таниновой кислоты. Методом просвечивающей электронной микроскопии подтверждена монодисперсность препарата НЧЗ и определен диаметр частиц, равный 8,7 ± 1,4 нм.

Определены следующие условия синтеза стабильного конъюгата НЧЗ–стрептавидин: pH = 9,0, концентрация стрептавидина – 40 мкг/мл. Для синтеза аптамерного конъюгата использовали мольное соотношение концентраций аптамера и НЧЗ, равное 48:1.

Количество аптамера, иммобилизованное на поверхности НЧЗ, было экспериментально установлено методом ПФ посредством определения количества аптамера, не связавшегося с НЧЗ. Показано, что на одну НЧЗ приходится 14-15 молекул аптамера, что свидетельствует о том, что для связывания аптамера остались свободными только два центра связывания стрептавидина.

Зная количество аптамеров, иммобилизованных на НЧЗ, построили зависимость ПФ от концентрации аптамера в препарате конъюгата НЧЗстрептавидин (рис. 18).

Рисунок 18. (А) Зависимость изменения ПФ ОТА-ФЛУ от концентрации аптамера, иммобилизованного на конъюгате стрептавидин-НЧЗ. (n=3)

Для конкурентного эксперимента с ОТА выбрана оптическая плотность (ОП₅₂₀) конъюгата аптамер–стрептавидин–НЧЗ, равная 0,2 единицы, при которой концентрация аптамера равна 40 нМ.

Далее построили конкурентные зависимости для определения ОТА с использованием конъюгата аптамер–НЧЗ и свободного аптамера (концентрация 800 нМ), рис. 19.

Рисунок 19. Конкурентные зависимости ПФ ОТА-ФЛУ от концентрации ОТА с использованием аптамера, иммобилизованного на НЧЗ (1), и свободного аптамера (2). (n=2)

ПрО равен 2,9 нМ (1,2 мкг/л) для конъюгата аптамер–НЧЗ (рис. 19, кривая 1) и 79,6 нМ (32,1 мкг/л) для свободного аптамера (рис. 19, кривая 2). Использование усиления на основе НЧЗ для аптамерного поляризационного флуоресцентного анализа позволило снизить предел обнаружения в 50 раз, что свидетельствует о перспективности его апробации в сложных матриксах.

Сравнение предложенных подходов для определения ОТА в сложных матриксах

В качестве характеризуемого матрикса было выбрано белое вино как один из часто контаминируемых ОТА продуктов. Перед определением ОТА проводили пробоподготовку вина, которая заключалась в двухстадийном обесцвечивании с использованием поливинилпирролидона (ПВП-30), повышении рН от 3,0 до 8,5 и добавлении 20 мМ хлорида кальция.

Были построены конкурентные зависимости определения ОТА с: (1) аптамером в концентрации 1000 нМ, (2) комплексом аптамер–стрептавидин–IgG в концентрации 200 нМ и (3) комплексом аптамер–стрептавидин–HЧЗ (ОП₅₂₀ = 0,2) с концентрацией аптамера 40 нМ (рис. 20).

Рисунок 20. Конкурентные зависимости ПФ ОТА-ФЛУ от концентрации ОТА в вине со свободным аптамером (1); комплексом аптамер–стрептавидин–IgG (2) и комплексом аптамер–стрептавидин– НЧЗ (3)

При использовании свободного аптамера в качестве рецептора был получен наихудший ПрО – 151,4 нМ (61 мкг/л). При использовании комплекса аптамер–стрептавидин–НЧЗ ПрО составил 5,6 нМ (2,3 мкг/л), что в 27 раз ниже, чем для свободного аптамера. Лучший ПрО достигнут для комплекса аптамер–стрептавидин–IgG – 2,8 нМ (1,1 мкг/л), что в 54 раза ниже, чем со свободным аптамером. Значения ПрО, полученные для определения ОТА в вине, близки к величинам для буферного раствора.

Предельно допустимая концентрация ОТА в вине составляет 2 мкг/мл. Таким образом, применение принципа молекулярных якорей позволяет выявлять пробы, в которых нормативно установленный предел контаминации превышен.

Проведена апробация ПФ аптамерного анализа ОТА с комплексом аптамер–стрептавидин–IgG при тестировании проб вина. ОТАположительные пробы были приготовлены введением в вино известных количеств ОТА; содержание ОТА в этих пробах определяли по градуировочной кривой. Полученные результаты представлены в таблице 4. Доля выявленного ОТА составляет от 83% до 113%. Соответственно, предлагаемый конкурентный ПФ аптамерный анализ с якорным усилением характеризуется высокой степенью достоверности и может применяться для определения концентрации ОТА в вине в количествах ниже ПДК.

Таблица 4. Определение содержания ОТА в ОТА-положительных пробах вина методом ПФ аптамерного анализа с использованием комплекса аптамер-стрептавидин-IgG. (n = 4)

Добавлено (нМ)	Выявлено (нМ)	Доля выявленного ОТА, %
375	328,6	87,6
200	213	106,5
187	160,2	85,7
175	194,9	111,4
100	109,3	109,3
93	77,6	83,4
50	54,3	108,6
44	48,4	110,0
25	28,2	112,7

выводы

1. Показано, что образование G-квадруплексной структуры аптамера к охратоксину Астабилизируется ионами двухвалентных металлов кальция и магния. Наличие у аптамера G-квадруплексной структуры в присутствии ионов двухвалентных металлов коррелирует с охратоксин A-связывающей активностью.

2. Разработан алгоритм определения равновесной константы реакции аптамер-лиганд, основанный на регистрации анизотропии флуоресценции. Для комплекса аптамера с охратоксином А определена константа диссоциации, равная 63±11 нМ. Данная величина в пределах ошибки измерений соответствует константе, полученной референсным методом – равновесным диализом.

3. Впервые показано, что связывание охратоксина A с аптамером сопровождается резонансным переносом энергии, приводящим к увеличению собственной флуоресценции охратоксина A в комплексе с аптамером при длинах волн экстинкции/эмиссии 265/425 нм. Предложен способ характеристики взаимодействия аптамер-охратоксин A, основанный на детекции изменений собственной флуоресценции охратоксина A. 4. Предложен новый подход для снижения предела обнаружения поляризационного флуоресцентного аптамерного анализа, основанный на применении молекулярных якорей – включении аптамера в комплексы с белками и наночастицами.

5. Проведена апробация разработанной поляризационной флуоресцентной аптамерной системы для детекции охратоксина А в пробах вина. Показано, что якорное усиление снижает предел обнаружения в 54 раза и позволяет определять охратоксин А в концентрациях до 1,1 мкг/кг, что ниже его предельно допустимой концентрации в вине.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи

1. **Samokhvalov A.V.**, Safenkova I.V., Eremin S.A., Zherdev A.V., Dzantiev B.B. Use of anchor protein modules in fluorescence polarisation aptamer assay for ochratoxin A determination. Analytica Chimica Acta, 2017, v. 962, p. 80-87.

2. **Samokhvalov A.V.**, Safenkova I.V., Eremin S.A., Zherdev A.V., Dzantiev B.B. Measurement of (aptamer – small target) KD using the competition between fluorescently labeled and unlabeled target and the detection of fluorescence anisotropy. Analytical Chemistry, 2018, v. 90, N. 15, p. 9189-9198.

3. **Samokhvalov A.V.**, Safenkova I.V., Zherdev A.V., Dzantiev B.B. The registration of aptamer–ligand (ochratoxin A) interactions based on ligand fluorescence changes. Biochemical Biophysical Research Communication, 2018, v. 505, N 2, p. 536-541.

Материалы научных конференций

1. Самохвалов А.В., Сафенкова И.В., Берлина А.Н., Жердев А.В., Гаур М.С., Дзантиев Б.Б. Применение аптамеров для детекции низкомолекулярных токсичных контаминант окружающей среды и пищевой продукции. Тезисы докладов Международной научно-практической конференции «Биотехнология в комплексном развитии регионов». 15-17 марта 2016 г., Москва, сс. 95-96.

2. Safenkova I.V., **Samokhvalov A.V**., Eremin S.A., Zherdev A.V., Dzantiev B.B. Strategy of enhanced fluorescence polarization based on aptamer – protein anchor complexes for sensitive and rapid detection of ochratoxin A. Book of Abstracts of the 8th Bordeaux RNA Club Meeting Symposium, June 24-25, 2016., Bordeaux, France. Th. P67.

3. Самохвалов А.В., Сафенкова И.В., Еремин С.А., Жердев А.В., Дзантиев Б.Б. Разработка аптамерного поляризационного флуоресцентного анализа

для определения охратоксина А. Сборник материалов XXIX зимней молодежной научной школы «Перспективные направления физико-химической биологии и биотехнологии». Москва, 7-10 февраля 2017 г. М.: Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, с. 145.

4. Самохвалов А.В. Аптамерный поляризационный флуоресцентный анализ с усилением сигнала для определения охратоксина А. Материалы IX Международного конгресса «Биотехнология: состояние и перспективы развития». 20-22 февраля 2017 г., Москва, т. 2, сс. 528-529.

5. **Samokhvalov A.V.**, Safenkova I.V., Eremin S.A., Zherdev A.V., Dzantiev B.B. Using anchor constructions to increase sensitivity of fluorescent polarisation aptamer assay: A case study for ochratoxin A. Biocatalysis–2017: Abstracts of 11th International Conference "Biocatalysis: Fundamentals and Applications". June 25-30, 2017, Moscow region, Russian Federation. P. 194-195.

6. **Samokhvalov A.V.**, Safenkova I.V., Eremin S.A., Zherdev A.V., Dzantiev B.B. Using aptamer-gold nanoparticles conjugates for rapid ochratoxin A detection by fluorescent polarization. Book of Abstracts of the Aptamers in Bordeaux 2017 Conference, September 22-23, 2017, Bordeaux, France. P. 50.

7. Самохвалов А.В., Сафенкова И.В., Еремин С.А., Жердев А.В., Дзантиев Б.Б. Экспрессная детекция охратоксина А, основанная на использовании аптамеров в качестве рецепторных молекул и регистрации поляризации флуоресценции. Тезисы Юбилейной конференции по микологии и микробиологии. Москва, 11-12 апреля 2018 г. Успехи медицинской микологии, 2018, т. 19, с. 326-328.