ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «ФУНДАМЕНТАЛЬНЫЕ ОСНОВЫ БИОТЕХНОЛОГИИ» РОССИЙСКОЙ АКАДЕМИИ НАУК» ИНСТИТУТ БИОХИМИИ им. А.Н. БАХА

На правах рукописи

Трутнева Ксения Александровна ОСОБЕННОСТИ БЕЛКОВОГО СОСТАВА И ФАКТОРЫ ПОДДЕРЖАНИЯ ЖИЗНЕСПОСОБНОСТИ ПОКОЯЩИХСЯ ФОРМ МИКОБАКТЕРИЙ

03.01.04 Биохимия

Диссертация

на соискание ученой степени кандидата биологических наук

Научный руководитель:

доктор биологических наук, профессор Капрельянц А.С.

МОСКВА 2019

оглавление

СПИСОК СОКРАЩЕНИЙ	5
ВВЕДЕНИЕ	7
1. ОБЗОР ЛИТЕРАТУРЫ	12
1.1. Явление латентности и персистенции	12
1.2. Локализация бактерий в организме вызывающих латентную форму туберкулез	a15
1.3. Модели латентного туберкулеза	18
1.3.1. Модели <i>in vitro</i>	19
1.3.2. Модели In vivo	25
1.3.3. Сравнение моделей	31
1.4. Молекулярные механизмы у микобактерий лежащие в основе явления латентно персистенции	ости и 33
1.4.1. «Строгий ответ» (Stringent response)	34
1.4.2. Сигма факторы	36
1.4.3. Двухкомпонентные регуляторные системы	
1.4.4. Липидный и энергетический метаболизм	41
1.4.5. Глюконеогенез и глиоксилатный шунт	43
1.4.6. Транскрипционные регуляторы	44
1.4.7. Токсин-антитоксиновые системы	46
1.4.8. Шапероны	47
1.5. Протеомные исследования моделей покоя in vitro	48
2. МАТЕРИАЛЫ И МЕТОДЫ	60
2.1. Микробиологические методы и культуры клеток	60
2.1.1. Культуры клеток	60
2.1.2. Реактивация клеток	61
2.1.3. Микроскопия	61
2.1.4. Подсчет НВЧК	62
2.1.5. Подсчет КОЕ	62
2.1.6. Проверка метаболической активности	63
2.2 Проведение двумерного электрофореза	64
2.2.1. Приготовление образцов для проведения двумерного электрофореза	64
2.2.2. Определение количества белка	65
2.2.3. Двумерный форез	65
2.2.4. Анализ MALDI-TOF	67
2.3.Измерение уровня метаболитов	68
2.3.1.Экстракция растворимых веществ	68

2.3.2. Измерение уровня тиолов	68
2.3.3. Измерение внутриклеточных концентраций NADH и NAD+	68
2.3.4. Измерение уровня цАМФ	69
2.3.5. Измерение уровня АТФ	70
2.4 Измерение активности ферментов	70
2.4.1. Подготовка образцов	70
2.4.2. Активность трегалазы	70
2.4.3. Активность алкогольдегидрогеназы	70
2.4.4. Активность глицерол-3-фосфатдегидрогеназы	71
2.4.5. Активность глицеролкиназы	71
2.4.6. Активность глицеральдегид -3-фосфатдегдрогеназы	71
2.4.7. Активность фосфоглицераткиназы	72
2.4.8. Активность пируваткназы	72
2.4.9. Активность лактатдегидрогеназы (ферментирующей)	72
2.4.10. Активность хинон зависимой лактатдегидрогеназы	72
2.4.11. Активность изоцитратлиазы	73
2.4.12. Активность НАДН оксидазы	73
2.5 Другие виды анализа	73
2.5.1. ЯМР анализ	73
2.5.2. Тонкослойная хроматография	73
2.5.3. ВЭЖХ анализ концентрации трегалозы и глюкозы	73
2.5.4. Экстракция РНК	74
2.4.5. Количественный анализ ПЦР в реальном времени	74
3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ	
3.1. Анализ протеомного профиля покоящихся клеток	76
3.1.1. Получение покоящихся форм <i>M. smegmatis</i> и их характеристика	76
3.1.2. Получение покоящихся форм <i>M. tuberculosis</i> и их характеристика	79
3.1.3. Сравнительный анализ протеомных профилей активных и покоящих и <i>Mtb</i>	кся клеток <i>Msm</i> 81
3.1.4. Анализ представленности белков в двух типах клеток <i>Msm</i>	
3.1.5. Анализ представленности белков в трех типах клеток <i>Mtb</i>	
3.1.6. Анализ метаболических процессов на основе данных протеомных пр	рофилей89
3.1.7. Белки сохраняющиеся при хранении <i>Mtb</i>	
3.1.8. Сравнение полученных данных с другими моделями покоя	
3.2. Накопление свободной трегалозы покоящимися клетками Msm	110
3.2.1. Экспрессия генов, участвующих в синтезе трегалозы	114

3.2.2. Зависимость выживаемости клеток от уровня трегалозы	118
3.2.3. Изменение уровня трегалозы и активности трегалазы в процессе реактивации	ı120
3.2.4. Трегалоза как стрессовый метаболит	131
3.3. Накопление пигмента порфириновой структуры покоящимися клетками Msm	132
ЗАКЛЮЧЕНИЕ	
ВЫВОДЫ	
СПИСОК ЛИТЕРАТУРЫ	
БЛАГОДАРНОСТИ	
ПРИЛОЖЕНИЯ	
ПРИЛОЖЕНИЕ 1. Белки обнаруженые в протеомном профиле и покоящихся активни клеток <i>M.smegmatis</i>	ых 167
ПРИЛОЖЕНИЕ 2. Белки обнаруженые в протеомном профиле и покоящихся активне клеток <i>M.tuberculosis</i>	ых 213

СПИСОК СОКРАЩЕНИЙ

ADC (англ. albumine, dextrose, catalase) – среда содержащая альбумин, декстозу и каталазу.

ASB (англ. 14 - Amidosulfobetaine) – 14 -амидосульфобетаин

сАМР-СПР (англ. сАМР receptor protein) – Конъюгат цАМФ с пероксидазой хрена

CHAPS (англ. 3-(3-cholamidopropyl) dimethylammonio-1-propanesulfonate hydrate) 3- (3-холамидопропил) – диметиламмонио-1-пропансульфонат гидрат

CPM (англ. count per minute) – количество импульсов в минуту

DCPIP (англ. dichloro henolindophenol) – 2,6-дихлорфенолиндофенол

DTNB (англ. 5,5-dithio-bis-(2-nitrobenzoicacid) – 5,5-дитио-бис- (2нитробензойная кислота

DTT (англ. dithiothreitol) – 1,4-дитиотретол

EDTA (англ. ethylenediaminetetraacetic acid) – этилендиаминтетрауксусная кислота

ELISA (англ. enzyme-linked immunosorbent assay) – иммуноферментный анализ

HEPES (англ. 4-(2-hydroxyethyl)-1-piperazineethanesulfonicacid) – 4-(2гидроксиэтил)-1-пиперазинэтансульфоновая кислота)

IclR (англ. isocitrate lyase regulator) – регулятор изоцитратлиазы

MOPS (англ. 3-(N-morpholino) propanesulfonic acid) – 3-(N-морфолино) пропансульфоновая кислота

MprA – Mycobacterial persistence regulator

Msm – Mycobacterium smegmatis

Mtb – *Mycobacterium tuberculosis*

МТТ (англ. 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide) – 3- [4,5диметилтиазол-2-ил] - 2,5-дифенилтетразолия бромид

PI (англ. propidium iodide) – иодид пропидия

PMSF (англ. phenylmethanesulfonylfluoride) – Фенилметансульфонилфторид RPMI (англ. Roswell Park Memorial Institute medium) – среда для культур клеток и тканей. Точный состав является коммерческой тайной. SDS (англ. sodium dodecyl sulfate) – додецилсульфт натрия TCEP (англ. Tris(2-carboxyethyl)phosphine hydrochloride) Трис-(2- карбокиметил)-фосфин-гидроксихлорид TNB (англ. 5-thio-2-nitrobenzoic acid) – 5-тио-2-нитробензойная кислота TNF(англ. tumor necrosis factor) – фактор некроза опухоли TST (англ. tuberculin skin test) – туберкулиновая подкожная проба VM-A (англ. validomicin) – валидамицин-А ЛТБ – латентная туберкулезная инфекция МКК – мононуклеарные клетки крови НВЧК – наиболее вероятное число колоний

НК – нуклеиновые кислоты

введение

Актуальность темы исследования и степень ее разработанности

Согласно данным ВОЗ, каждый четвертый человек на планете латентно инфицирован возбудителем туберкулёза. *Mycobacterium tuberculosis* (*Mtb*) является патогенным микроорганизмом, который может персистировать в организме человека в течение десятилетий и способен переходить под воздействием ряда факторов в активное состояние после длительного периода покоя, вызывая острую форму заболевания [1].

Несмотря на многолетние исследования в этой области, мало что известно о биохимических процессах, которые могут происходить в клетках в состоянии покоя для обеспечения длительного выживания. Протеомные исследования потенциально могут принести ценную информацию об этих процессах, но из инфицированных органов людей и животных невозможно извлечь достаточно материала для такого анализа, из-за небольшого количества покоящихся клеток Mtb. С целью решения этой проблемы были разработаны модели in vitro, которые имитируют состояние покоя. Исследования протеома патогена в известных на сегодняшний день моделях покоя проводились как С использованием 2D-электрофореза [2–6], так и с помощью более современных методов протеомного исследования, таких как LC-MS/MS и SWATH [7,8]. Однако все известные протеомные исследования покоящихся клеток *Mtb* были выполнены на «краткосрочных» моделях, таких как гипоксическая модель Вейна [9] и модель голодания Лёбеля [10], в которых время пребывания клеток в стрессовых условиях составляет от 20 часов до 6 недель. Кроме того, покоящиеся клетки, полученные в известных моделях покоя, не имитируют истинное латентное состояние in vivo, в котором клетки характеризуются «некультивируемостью» (временной неспособностью расти на плотных питательных средах) и устойчивостью к антибиотикам. [11-13]. С целью решения этой проблемы ранее в нашей лаборатории была разработана модель перехода клеток Mtb и его непатогенного родственника Mycobacterium

smegmatis (Msm) в состояние покоя, основанная на постепенном закислении культуральной среды. Клетки, полученные в этой модели, характеризуются утолщенной клеточной стенкой, овоидной морфологией, незначительной метаболической активностью и устойчивостью к антибиотикам [14]. Так же ранее в нашей лаборатории была разработана процедура выведения клеток из состояния покоя, или реактивации. Однако, какие метаболические процессы происходят в таких покоящихся клетках при переходе, хранении и реактивации оставалось до конца не неясно.

Целью настоящей работы является изучение особенностей белкового состава покоящихся клеток микобактерии для выявления возможных процессов, участвующих в образовании, длительном поддержании (до 1 года) в состоянии покоя и выходе из этого состояния.

Задачи:

1. Провести сравнительный анализ протеомных профилей активных и покоящихся клеток *M. smegmatis* и *M. tuberculosis* разного времени хранения методом двумерного электрофореза.

2. Охарактеризовать метаболические процессы, которые могут иметь место при переходе микобактерий в состояние покоя, его поддержании или выходе на основе сравнительного протеомного анализа.

3. Основываясь на данных протеомного анализа покоящихся форм обнаружить и охарактеризовать процессы, участвующие в защите и стабилизации покоящихся форм микобактерий при воздействии стрессовых факторов внешней среды.

Научная новизна. В рамках диссертационной работы впервые:

• были исследованы с помощью протеомных методов покоящиеся клетки микобактерий (*Msm u Mtb*), обладающие сниженной метаболической активностью после длительного периода хранения (до 1 года).

• обнаружено, что покоящиеся формы микобактерий после длительного хранения сохраняют значительное разнообразие белков, многие их которых не выявляются в протеоме активных клеток. Экспериментально подтверждено, что белки, обнаруженные в протеоме покоящихся клетках потенциально энзиматически активны. Среди обнаруженных белков в значительной степени представлены белки, участвующие в защите клетки от воздействия стрессовых факторов.

• выявлено накопление известного стрессового метаболита - свободной трегалозы, в значительных количествах в покоящихся клетках *M. smegmatis*, что делает их сходными с дрожжевыми и грибными спорами.

• установлена связь уровня трегалозы и выживаемости покоящихся клеток, а также ее важная роль в реактивации микобактерий.

• определена природа накапливаемого и секретируемого покоящиеся клетками *Msm* в значительных количествах вещества как пигмент класса порфиринов.

Научно-практическое значение. Обнаруженные в ходе работы процессы, происходящие в покоящихся клетках микобактерий важны для понимания явления латентности и реактивации туберкулеза. Белки, обнаруженные в ходе протеомного анализа покоящихся клеток *Mtb*, являются потенциальными мишенями для создания антитуберкулезных препаратов и могут быть использованы для диагностики латентного туберкулеза.

Методы исследования. Для достижения поставленных задач применялись современные методы биохимии и микробиологии. Протеомный анализ клеток микобактерий был выполнен с помощью фракционирование белков посредством двумерного электрофореза и последующим определением с помощью MALDI-TOF.

Основные положения диссертации, выносимые на защиту

1. Покоящиеся клетки микобактерий сохраняют значительное разнообразие белков несмотря на длительное пребывание в состоянии покоя.

2. Среди сохранившихся в покоящихся клетках белков присутствуют ферменты-участвующие в центральных метаболических путях, процессах транскрипции и трансляции. Последние, очевидно, неактивны в состоянии покоя, и необходимы в процессах последующей реактивации.

3. В покоящихся клетках микобактерий снижается представленность белков, участвующих в метаболизме нуклеиновых кислот, а также транспортных и биосинтетических процессах.

4. В покоящихся клетках микобактерий, по сравнению с активными клетками, увеличивается представленность белков, участвующих в защите от окислительного стресса, а также от агрегации и денатурации белков.

5. В покоящихся клетках микобактерий увеличивается представленность белков, участвующих в синтезе порфиринов и трегалозы, которые являются низкомолекулярными факторами, принимающими участие в защите и стабилизации бактериальной клетки в состоянии покоя.

6. Накопление трегалозы в покоящихся микобактериях и ее распад под действием трегалазы в первые часы реактивации впервые позволяет сделать вывод о сходстве между истинными спорами грибов и покоящимися клетками микобактерий.

Личный вклад диссертанта заключался в проведении научных экспериментов, обработке и интерпретации полученных данных, а также в подготовке материалов научных публикаций

Апробация работы. Материалы диссертационной работы были представлены на 7 научных конференциях, в том числе: На 18-ой международной Пущинской школе-конференции молодых ученых (г. Пущино, 2014); VI International Conference on Environmental, Industrial and Applied

Microbiology – BioMicroWorld 2015 (Барселона, Испания, 2015); Международном молодежном научном форуме «Ломоносов-2016», (Москва, 2016); EMBO Conference Tuberculosis 2016 (Париж, Франция, 2016); Keystone Symposia Conference (Vancouver, Canada, 2017); 42nd FEBS Congress (Иерусалим, Израиль, 2017); 43rd FEBS Congress (Прага, Чехия, 2018).

Публикации. По материалам диссертационной работы опубликовано 5 статей в российских и международных научных журналах и тезисы конференций.

Структура диссертации

Диссертационная работа состоит из введения, обзора литературы, описания материалов и методов исследования, результатов и их обсуждения, заключения и списка литературы (305 источников). Работа изложена на 257 страницах машинописного текста, содержит 28 рисунков и 4 таблицы.

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Явление латентности и персистенции

Мусоbacterium tuberculosis (Mtb) - возбудитель туберкулеза у человека. Высокую патогенность этой бактерии связывают с ее способностью к размножению внутри клеток хозяина. Несмотря на множество исследований в области туберкулеза до сих пор не существует действенного способа борьбы с этих инфекцией. Согласно данным Всемирной Организации Здравоохранения каждый четвертый человек на планете латентно инфицирован возбудителем туберкулеза, каждый год более 1,3 миллионов человек умирает от туберкулеза.

После попадания *Mtb* в организм, чаще всего воздушно-капельным путем, заражение развивается в первичный туберкулез либо переходит в латентную форму инфекции. Первичный туберкулез приводит к активной форме заболевания в 5-10% случаев в течение приблизительно двух лет с момента заражения, и развивается, как правило, когда иммунная система хозяина уже не способна контролировать инфекцию [15]. В большинстве случаев после заражения иммунная система хозяина не способна подавить инфекцию, но способна сдерживать ее развитие довольно длительное время. Принято считать, что не проявляя основных симптомов туберкулеза человек не может передать инфекцию, однако все же является ее носителем. В малом проценте случаев латентная инфекция способна спонтанно переходить в активное состояние, и вероятность реактивации сильно увеличивается в случае супрессии иммунной системы, например, в результате заражения ВИЧ, старении, а также после лечения, при котором ингибируется TNF (англ. tumor necrosis factor-фактор некроза опухоли) [16,17].

Несмотря на то, что термины «латентность», «персистенция» и «состояние покоя» часто используются в литературе взаимозаменяемо, они относятся к различным явлениям, которые могут быть фенотипически связаны. <u>Латентная форма</u> туберкулеза определятся клинически с помощью кожного туберкулинового теста (анг. tuberculin skin test, TST), что указывает на реакцию

гиперчувствительности замедленного типа в ответ на подкожное введение туберкулина из *M. tuberculosis*, или же с помощью ответа Т-клеток на специфичные к антигенам *M. tuberculosis* (TB gold test), в отсутствие симптомов туберкулеза и положительных результатов рентгенограмм легких. После постановки диагноза наиболее опитмальной схемой лечения ЛТБ (латентный туберкулез) сегодня считается прием изониазида и занимает 9 месяцев с последующим приемом рифамипицина в течение 4 месяцев или же в течение 2 месяцев пиразинамида [18]. Очевидно, что популяция *Mtb* в этот период латентной формы инфекции гетерогенна, поскольку лечение только одним антибиотиком несостоятельно и не приводит к излечению пациента. Также существуют режимы лечения, при которых могут использоваться комбинации этих антибиотиков, но ПО причине высокого уровня гепатотоксичности они используются редко. Стоит отметить, что лечение острой формы заболевания производится одновременно 4 видами антибиотиков: изониазид, рифампицин, пиразинамид и этамбутол.

Термин персистенция описывает состояние бактерий, в котором клетки *Mtb* могут находиться после заражения, под воздействием стрессовых факторов. Впервые термин «персистеры» был использован для обозначения малого количества бактерий рода *Staphylococcus*, которые выживают даже при длительном лечении пенициллином [19]. Позднее этот термин был применен по отношению к *Mtb*, и персистенция окончательно закрепилась как «способность генетически восприимчивых к лекарственным средствам организмов выжить в живом организме после лечения антибиотиками» [20]. Таким образом, в классическом смысле персистенция *Mtb* связана с воздействием антибиотиков, тогда как латентность является результатом воздействия иммунной системы хозяина. Тем не менее, оба эти явления, повидимому, связаны фенотипически И могут отражать аналогичные физиологические состояния клеток микобактерий. В сравнении с латентными покоящимся формами персистеры более восприимчивы к воздействию

препаратов, оказывающих стерилизующее действие, таких как рифампицин и пиразинамид, чем к изониазиду, оказывающему бактерицидное действие, поскольку введение рифампицина сокращает продолжительность лечения открытой формы туберкулеза с 18 до 9 месяцев, а добавление пиразинамида дополнительно сокращает срок лечения до 6 месяцев. Нечувствительность к антибиотикам, ингибирующим синтезы (например, изониазид, синтез клеточной стенки) является неотъемлемым свойством персистеров И покоящихся клеток. Явление персистенции возникающее на фоне воздействия антибиотиков описано не только для микобактерий, но и для Streptococcus pneumoniae [21], Streptococcus pyogenes [22], Escherichia coli [23], Treponema pallidum [24] и Staphylococcus aureus (персистенция в течение 6 лет!). Так же показано, что скорость уничтожения клеток с помощью антибиотика пропорциональна скорости деления клеток и их метаболической активности [25].

Переход в состояние покоя у бактерий чаще всего связан с образованием специальных структур таких как цисты, споры И т.д. Однако ДЛЯ неспорулирующих бактерий так же описано состояние покоя, обозначающее состояние, в которых бактерии жизнеспособны, но проявляют сниженную метаболическую активность. Термин «состояние покоя» часто используется для описания состояния бактерий в контексте in vitro, и подразумевает, что бактерии в этом состоянии прекращают репликацию, обладают сниженным метаболизмом, становятся фенотипически нечувствительны И К антибиотикам[26].

Исходя из знаний о том, что покоящиеся формы *Mtb*, вызывающие латентную форму инфекции не высеваются на плотных питательных средах, нечувствительны к бактериостатическим антибиотикам, считается, что истинные покоящиеся клетки микобактерий должны быть «некультивируемы» и метаболически неактивны. При латентной форме инфекции переход *Mtb* в состояние покоя был спровоцирован иммунной системой, однако подобное

состояние возможно имитировать, подвергая клетки различному стрессу. Так, например, геномное секвинирование покоящихся форм *Mtb*, выделенных из органов обезьян с латентной формой туберкулезной инфекции, показало связывали множественные мутации В геноме, что исследователи с окислительным стрессом, поскольку с помощью высевов деление клеток зарегистрировать не удалось [27]. Гипотезу о повреждении ДНК у покоящихся форм подтвердили другие исследователи, которые проводили сравнительный геномный анализ имеющихся у них образцов от больных туберкулезом за последние 25-55 лет, и пришли к выводу, что изменения в ДНК в период инфекции значительно выше, чем в активной форме [28,29]. латентной Подобные результаты получены на больных с латентной формой туберкулеза в Новой Зеландии, у которых инфекция реактивировалась спустя 20 лет [30].

Вероятно, при латентной форме инфекции наблюдается гетерогенность популяции, содержащей как персистеры, так и истинные покоящиеся формы. Основное отличие покояшихся форм ОТ персистеров состоит В некультивируемости и возможности реактивации. Таким образом, состояние обратимое покоя микобактерий — ЭТО состояние, характеризующееся сниженной метаболической активностью, невосприимчивостью К антибиотикам, морфологическим изменением формы клеток и неспособностью клеток образовывать колонии на плотных питательных средах.

1.2. Локализация бактерий в организме вызывающих латентную форму туберкулеза

Ранее принято было считать, что после попадания *M. tuberculosis* в организм хозяина воздушно-капельным путем, патоген приживается в нижних отделах дыхательных путей, где фагоцитируется альвеолярными макрофагами, что неизбежно приводит к образованию хронической инфекции. Этот процесс врачи описывают фразой «инфицирован однажды, инфицирован навсегда» [31]. Однако более поздние исследования, проведенные во время случая эпидемии туберкулеза в школе, показывают, что в малом проценте случаев с помощью

лечения антибиотиками возможно полное уничтожение клеток *Mtb* на ранних стадиях [32]. У приблизительно 10% заразившихся быстро развиваются симптомы, но тем не менее у большинства развивается первичная инфекция [33]. Во время первичной инфекции развивается клеточный иммунный ответ, и, постепенно, формируется гранулема сложной структуры, состоящая из зараженных *Mtb* макрофагов и лимфоцитов [1,34]. Через 6-8 недель с развитием реакции гиперчувствительности происходит некроз тканей, при этом погибают как клетки хозяина, так и патогена. Малый процент выживших клеток *Mtb* находится в измененном физиологическом состоянии постулируемом как покоящееся, что приводит к развитию латентной формы инфекции [35]. Видимо, в дальнейшем существует несколько вариантов развития событий, не один из вариантов не подтвержден достоверно, и как следствие точная локализация бактерий, вызывающих латентную форму, остается невыясненной, однако принято считать, что сам процесс перехода в состояние покоя происходит в гранулеме.

Вскоре после открытия Робертом Кохом возбудителя туберкулеза, результаты аутопсии, полученные от больных умерших не от туберкулеза, выявили присутствие в них клеток *Mtb* в различных типах тканей. Так, например, в 1907 году было показано, что содержимое бронхиальных лимфатических узлов больных туберкулезом вызывает туберкулез у кроликов [36], что позднее привело к теории о том, что попадание клеток Mtb в лимфатическую систему является необходимым фактором в адаптации клеток *Mtb* к иммунному ответу хозяина [37]. В 1927 году при исследовании образцов из легких и лимфатических узлов больных с помощью высевов и микроскопии, живые бактерии были обнаружены в четверти случаев в различных типах тканей, в том числе казеозных и некротических [38]. В этих работах было образцов отмечено, ЧТО ДЛЯ четверти фиброзной ткани, в которой гистологический анализ не обнаружил бактерий, показан рост микобактерий на жидкой среде. В 1933 году анализ образцов из 1725 пациентов, умерших не от

туберкулеза, и не имевших зарегистрированных клинических проявлений туберкулеза, показал содержание активных форм Mtb в 4% случаев в среднем (9,3% для пациентов в возрасте 80-90 лет) [31]. При исследовании хирургически удаленных тканей легких из 72 пациентов, прошедших лечение противотуберкулезными препаратами, рост M. tuberculosis был обнаружен в 83% открытых каверн, 24% закрытых каверн и в 7% твердых некротических поражений [39]. Сами авторы связывают столь низкие, по их мнению, показатели, с несовершенством методов культивирования. Совершенствование методов культивирования принесло свои результаты, и в 1954 году удалось вырастить культуру Mtb из 78% образцов, полученных от больных прошедших лечение от туберкулеза [40]. Видимый рост на жидкой среде у трети образцов появлялся только при длительном культивировании, от 12 недель. Из этого авторы делают вывод, что бактерии находятся в подавленном состоянии, вызванном лечением, однако это состояние обратимо.

Более поздние исследования с использованием молекулярных методов показали присутствие *Mtb* в легких пациентов из Эфиопии, Мексики и Норвегии, умерших не от туберкулеза. Для одной трети образцов, согласно данным ПЦР анализа, показано присутствие ДНК *Mtb* [41]. Та же группа исследователей позднее показала наличие ДНК *Mtb* в селезёнке, почках, печени и легких латентных носителей умерших не от туберкулеза [42]. Данные о возможности нахождения бактерий в тканях этих органов были подтверждены с помощью микроскопии срезов, полученных от мышей на модели хронической инфекции. Авторы обращают внимание на тот факт, что бациллы *Mtb* обнаружены не только в фагоцитирующих клетках, но и, например, эндотелиальных клетках, не образующих при этом особых структур. Ранее было показано, что клетки эндотелия легко заражаются *Mtb* на моделях *in vitro*, при этом происходит снижение активности метаболизма, что показано методами транскриптомного анализа [43]. Помимо того, ДНК *Mtb* была также обнаружена в жировой ткани у одной третьей пациентов умерших не от

туберкулеза, живших в Мексике и Франции [44]. Из этого следует, что адипоциты также могут служить резервуаром для туберкулезной инфекции, помогая тем самым клетками *Mtb* уходить от иммунного ответа хозяина.

Таким образом, все вышеперечисленные данные не совсем соответсвуют распространенному мнению о том, что формирование покоящихся клеток, вызывающих латентную форму инфекции, может происходить исключительно внутри фагоцитирующих клеток и в том числе в пределах сложно структурированной гранулемы. По-видимому, ряд органов и тканей (помимо легких) зараженных людей может содержать покоящиеся формы *Mtb*, которые при этом характеризуются сниженной метаболической активностью и устойчивостью к антибиотикам.

1.3. Модели латентного туберкулеза

На сегодняшний день существует достаточно много моделей латентного туберкулеза, как *in vitro*, так и *in vivo*. Модели *in vitro* более разнообразны и лучше изучены, поскольку воспроизводятся легче, а также дают возможность качественного и количественного анализа. Но они имеют существенный недостаток, а именно, невозможность воспроизведения воздействия на патоген клеток иммунной системы, которая играет значительную роль в процессе перехода клеток *Mtb* в состояние покоя. Модели *in vivo*, в свою очередь, имеют огромное преимущество, поскольку они значительно ближе к тем условиям, которые происходят при настоящем заражении, когда клетки переходят в состояние покоя. Однако такие модели значительно сложнее создавать, изучать и воспроизводить. В силу того, что иммунная система у каждого организма индивидуальные особенности, каждое имеет животное, на котором тестируются модели in vivo, представляет собой частный случай. По этой причине статистический обсчет моделей *in vivo* представляет собой большую проблему. Так же, несмотря на высокий прогресс методов и технологии остается нерешенной проблема сбора, качественной исследования, И

количественной характеристики образцов, полученных моделей *in vivo*. Для осуществления многих видов анализа, например, протеомных исследований, невозможно извлечь достаточное количество материала из органов инфицированных людей и животных. Чтобы рассмотреть достоинства и недостатки моделей стоит остановиться на каждой модели более подробно.

1.3.1. Модели *in vitro*

<u>Модель голодания</u>. Предположительно, *M. tuberculosis*, находясь внутри некротической гранулемы, испытывает недостаток питательных веществ. Для имитации условий *in vitro*, была создана модель покоя, известная как модель Лёбеля, в которой *Mtb* изначально выращивался в богатой питательными веществами среде, а затем культуру клеток отмывали, и переносили в фосфатный буфер, что приводило к остановке бактериального роста и снижению активности метаболизма вследствие голодания [10]. При переходе в состояние покоя клетки значительно снижали генную экспрессию и активность дыхания [3].

Помимо модели Лёбеля есть другие модели, в которых культуру *Mtb* выращивают в среде с недостатком одного или нескольких важных компонентов. Например, модель в которой клетки *Mtb* выращивали в среде не содержащей калия в течение 40 дней [45]. В результате образовывались клетки в некультивируемом состоянии, то есть не способные расти на плотных питательных средах, как и в состоянии хронической инфекции, что показано на моделях *in vivo* [46,47]. Как и в модели Лёбеля, клетки этой в этой модели были не чувствительны к изониазиду однако чувствительны к рифампицину. После отмывки клеток и пересева в среду, содержащую калий, клетки реактивировали и восстанавливали чувствительность к антибиотикам.

Так же существует модель, где микобактерии выращивали в среде не содержащей углеродных компонентов. Hobby and Lenert показали, что при удалении источников углерода из среды в логарифмической фазе роста, путем

переноса *Mtb* в новую среду рост бактерий прекращается, и микроорганизмы становятся невосприимчивыми К воздействию изониазида И [48]. Позднее парааминосалициловой кислотой появились данные 0 воздействии 15 различных антибиотиков в широком спектре концентраций на *Mtb* при голодании [49]. В этом исследовании бактерии помещали в фосфатный буфер на 6 недель. Низкая чувствительность «голодающих» клеток к изониазиду говорит об отсутствии синтезов клеточной стенки в состоянии недостатка питательных веществ. Однако чувствительность к рифампицину говорит о работе процессов транскрипции, даже в отсутствии деления. Согласно данным Хіе бактерицидным действием на клетки в состоянии голодания оказывали лишь два антибиотика из фенотиазинового ряда (хлорпромазин и трифлуропиразин), убивающие в концентрации более 40 мкг/мл 99% бактерий [49].

Данные о генной и белковой экспрессии, полученные на модели голодания на *Mtb*, свидетельствовали о замедлении процессов транскрипции, энергетического метаболизма, биосинтеза липидов [3].

Очевидно, что клетки образующиеся в модели голодания Лёбеля, хотя и характеризуются сниженной активностью метболических процессов, обладают чувствительностью к антибитикам игибирующим синтезы и демонстируют полную культивируемсть, и следовательно не полностью соответсвуют клетками вызывающим латентную форму у человека.

<u>Модель гипоксии.</u> Самой известной и хорошо охарактеризованной моделью латентного состояния *in vitro* является модель разработанная Вейн [9]. В этой модели бактерии подвергаются прогрессирующей гипоксии, которая предназначена для имитации микроаэробного состояния, с которым сталкиваются клетки патогена в некротических гранулемах хозяина. Выжить в таком состоянии клеткам помогает их способность к использованию альтернативных конечных акцепторов электронов, таких как нитрат и фумарат вместо кислорода [50]. В модели Вейна культуры *M. tuberculosis* подвергаются

постепенному снижению концентрации кислорода в среде, поскольку резкое снижение уровня кислорода (или полное прекращение доступа кислорода) приводит к скорой гибели клеток [51]. Переход в состояние персистенции происходит в медленно перемешивающихся, герметично закрытых колбах, заполненных наполовину средой роста. Согласно данным Вейна, когда содержание растворенного кислорода в среде падает ниже 1% бактерии переходят в первую стадию микроаэробной гипоксии, в которой клетки не делятся, и характеризуются утолщенной клеточной стенкой и прекращением транскрипции, о чем свидетельствует прекращение включения радиоактивной метки [3 H]-урацила [9]. По мере того, как концентрация растворенного в среде кислорода падает ниже 0,06%, бактерии переходят во вторую стадию персистенции, и в таком состоянии не проявляют чувствительности к изониазиду, но 12-17% культуры остается чувствительной к рифампину [52]. Несколько пересевов на свежую, обогащенную кислородом среду приводят к выходу *Mtb* из состояния покоя, и тем самым имитируют реактивацию.

Модель Вейна применима не только к клеткам *Mtb*, но также описана и для *M. bovis* и *Msm* [53]. Так же подобное состояние описано и при росте бактерий на плотной питательной среде, так *Msm* после 10 дней роста на чашках с плотной питательной средой Дюбо без доступа кислорода становится устойчивым к метронидазолу [54].

Интересно, что *M. tuberculosis* в модели гипоксии Вейна остается восприимчивым к метронидазолу [55]. Несмотря на то, что метронилазол обладает противотуберкулезной активностью кроликов y И нечеловекообразных приматов [56,57] он практически не эффективен в лечении туберкулеза у людей. Клиническое исследование, выполненное с помощью мокроты, не выявило различий высевов между высевами материала, полученными от пациентов с туберкулезом получающих метронидазол и получающих плацебо, но в силу высокой токсичности антибиотика,

получавшие метронидазол имели 4-кратный риск развития периферической нейропатии [58].

Также как и в случае с другими моделями, модель Вейна имеет несколько модификаций. Например, модель гипоксии в которой клетки *M. bovis* находятся без перемешивания [2]. Полученные в этой модели клетки использовались для проведения сравнительного протеомного анализа. Другой частный случай модели покоя основанный на гипоксии, это модель, в которой клетки оставались без перемешивания более 100 дней [59]. Помимо гипоксии в этом состоянии бактерии испытывают недостаток питательных веществ. Далее клетки переносились в свежую среду, содержащую рифампицин, для того чтобы вывить субпопуляцию бактерий не чувствительную к антибиотикам и соответственно, более сходную с той, что вызывает латентный туберкулез у человека. Ранее было показано, что у 5% прошедших лечение антибиотиками происходит реактивация инфекции, что свидетельствует о наличии у этих пациентов в организме форм микобактерий нечувствительных к антибиотикам [60]. Однако в статье, описывающей переход в состояние покоя в статической модели гипоксии, приводится транскрипционная активность покоящихся клеток, что свидетельствует о том, что клетки метаболически активные. Основным недостатком, который приводят сами создатели модели, является низкий выход целевых покоящихся клеток, в связи с высокой смертностью бактерий и образованием большого количества крупных агрегатов клеток. Однако основным недостатком клеток в модели гипоксии (как Вейн так и модификаций) является несоответсвие основным требованиям ИХ предъявляемым в клеткам вызывающим латентную форму инфекции. Клетки в модели гипоксии полностью культивируемы, чувствительны к антибиотикам, и по видимому, метаболически активны.

Исходя из предположения, что находясь внутри макрофагов клетки при латентной инфекции испытывают значительный недостаток ряда различных веществ, возникла идея создать <u>модель множественного стресса</u>. С этой целью

была разработана новая модель покоя *in vitro* с участием нескольких стрессовых факторов, включая гипоксию (5% содержание О₂), высокий уровень СО₂ (10%), недостаток питательных веществ (10% среда Дюбо) и кислый рН (5.0) [61]. В этих условиях рост *M. tuberculosis* ограничен, в таких клетках увеличен запас липидов, а также клетки теряют способность противостоять воздействию кислот. Через 18 дней воздействия на *Mtb* множественного стресса, клетки становятся фенотипически резистентными к изониазиду (84%) клеток в популяции устойчивых к воздействию 0.8 мкг/мл антибиотика) в большей степени, чем к рифампину (12% устойчивых при 5.0 мкг/мл). При действии более низкой концентрации рифампицина (0.1 мкг/мл), которая использовалась при воздействии на клетки в модели Вейн [52] все 100% оставались резистентны. Анализ экспрессии генов *Mtb* в этих условиях выявил индукцию генов строгого ответа (stringent response), а также подавление биосинтетических путей, транскрипционных И трансляционных механизмов.Вероятно данная модель лучше имитирует состояние покоя, по сравнению с моделью голодания И гипоксии, но клетки остаются культивируемы, и следовательно не соответствуют состоянию вызывающему латентную форму инфекции. Протеомные исследования этой модели не проводились.

Относительно недавно появилась модель покоящихся форм под воздействием витамина С. При этом к клеткам добавляется аскорбиновая кислота в концентрации 10мМ, что близко к концентрации в активированных макрофагах [62]. После добавления аскорбиновой кислоты размножение замедлялось, вплоть до полной остановки деления. Такие клетки становятся устойчивы к изониазиду (4 mg/ml), но не к рифампицину. Согласно данным транскрипционного анализа в покоящихся клетках *Mtb* образовавшихся после воздействия витамина С активируется DosR регулон и его регулятор Rv3134c/DevR. того, Помимо активируется транскрипция ферментов глиоксилатного шунта (isocitrate lyase), ферменты биосинтеза миколовых

кислот (Rv3083–3089) а также ферменты участвующие в защите от реактивных форм кислорода и азота (ahpC katG). Затем результаты, полученные с помощью быстрорастущего родственника *Msm* и методов протеомного анализа LC/MS, подтвердили эти данные [63,64]. Данная модель плохо имитирует состояние покоя, поскольку клетки в этой модели метаболически активны, культивируемы, и не устойчивы к воздействую рифампицина.

In vitro модель гранулемы. Была разработана альтернативная модель in vitro, в которой живые клетки M. bovis покрытые антигеном Mtb (белковый экстракт клеток) образовывали гранулы, которые затем использовались для генерации искусственных гранулем, с использованием мононуклеарных клеток крови (МКК) от здоровых доноров [65]. На восьмой день инкубации образовавшихся гранул с МКК, гранулы покрывались множеством слоев моноцитоподобных- и лимфоцитоподобных клеток, тем самым формируя гранулемоподобное образование. Затем такое образование покрывалось макрофагами многоядерными или, как ИХ чаще называют, клетками Лангерганса. Позднее, эту модель повторили непосредственно на клетках *Mtb* [66] и обнаружили, клетки в этом состоянии становятся менее ЧТО кислотоустойчивыми, накапливают липидные тела, снижают активность транскрипции и становятся толерантны к рифампицину. Затем гранулема была обработана анти-TNF иммуносупрессирующими моноклональными антителами, что приводило к реактивации Mtb. Кароог с соват. отследили транскриптомные после изменения клеток реактивации внутри импровизированной гранулемы обнаружили увеличение И уровня транскрипции генов, вовлеченных в процесс реактивации (rpfA, rpfB and rpfC), генерации энергии (*nuoA*, *nuoB*, *nuoE*, *atpA*, *atpB*) и транскрипции (*rpoA*, *rpoB*). После реактивации клетки становились более чувствительны к рифампицину. Очевидно, клетки в этой модели, хотя и обладают сниженной метаболической активностью и устойчивостью к рифамипицину, полностью культивируемы, и значит не обладают всеми свойствами присущими покоящимся клеткам. Кроме

того, количество клеток образующихся в этой модели, не позволяет провести протеомный анализ.

1.3.2. Модели Іп vivo

1.3.2.1. Модели на мышах

Наиболее широко используемые модели *in vivo* для изучения патогенеза *M. tuberculosis* — модели на мышах. Классическая модель хронической инфекции на мышах сильно отличается от латентной формы инфекции у человека. В этой модели, в отсутствие специального контроля с помощью антибиотиков или гормонов, мыши погибают слишком быстро из-за быстрого развития инфекции, и лишь период, когда, согласно высевам, количество бактерий выходит на плато, имеет сходство с латентной формой инфекции [67]. Ранее считалось что клетки патогена в этот период плато не делятся, и находятся в покоящемся состоянии [68]. Однако более поздние исследования с использованием плазмиды, разрушение которой зависит от деления клеток, показали, что клетки патогена продолжают делиться в легких мышей при хронической инфекции [69], и более того, остаются метаболически активными [70]. Вероятно, что наиболее успешная, но мало распространенная, модель хронического туберкулеза у мышей, без использования антибиотиков, была разработана Phyu [71]. В этой модели в течение 107 недель, с момента интранатального заражения низкодозовым засевом микобактерий, мыши не проявляли симптомов заражения.

Значительно лучше имитирует хронический туберкулез так называемая <u>модель «Корнела»</u> разработанная сотрудниками университета Корнела [72]. Мыши в этой модели инфицируется внутривенно, высокой дозой вирулентных *Mtb* и пролечиваются курсом антибиотиков до тех пор, пока по высевам не станут стерильными. Но несмотря на то, что нет видимого роста на плотной питательной среде на чашках, в любой момент после прекращения лечения антибиотиками может произойти реактивация бактерий, и такое состояние

называют псевдостерильностью [73]. В последующие три месяца после заражения при прекращении курса антибиотиков в 30% случаев происходит спонтанная самореактивация [74]. Также реактивация *Mtb* в зараженных мышах может произойти после курса иммуносупрессивной терапии, например, кортикостероидов. Микобактерии после реактивации в мышах по модели Корнела остаются чувствительны к антибиотикам. Модель Корнела достаточно сложна для воспроизведения, поскольку результат сильно варьирует от возраста и генотипа мышей, вирулентности патогенного штамма и многих других факторов. По причине отсутствия стандартного протокола в настоящее время существует множество вариаций этой модели [75], в том числе на мышах предварительно привитых с помощью *M. bovis* BCG [76,77]. Отсутствие видимого роста на плотной питательной среде на чашках у зараженных мышей делает эту модель очень похожей на латентную форму инфекции у человека, однако для этого требуется контроль с помощью антибиотиков, что совершенно не сходится с условиями образования латентной формы инфекции у человека. Тем не менее эта модель хорошо распространена и сегодня существует уже модель некротической гранулемы на основе модели Корнела [78], в которой изначально привитых мышей заражали интраназально и пролечивали TNF (tumor necrosis factor) нейтрализующими антителами. В этой модели хронической инфекции экспрессия цитокинового профиля в легких крайне сходна с той, что обнаруживается у пациентов после лечения острой формы инфекции. Авторы сообщают, что внутри гранулемы развивается гипоксическое состояние клеток *Mtb* поскольку гранулема не окрашивается специальным красителем, пимонидазолом. Чувствительность к антибиотикам у бактерий в этой модели пока не тестировалась.

Относительно недавно была предложена новая модель <u>искусственной</u> <u>гипоксической гранулемы</u>, в которой высушенные *Mtb* внутри полимерных волокнистых капсул имплантировали под кожу мышей [79]. Хотя местоположение патогенных микроорганизмов нетипичное для истинной

инфекции, данная модель, несомненно, имитирует иммуно-контролируемую инфекцию, в которой клетки патогена не делятся и метаболически неактивны. Такие клетки обладают пониженной чувствительностью к изониазиду, тогда как инфицированные животные внешне остаются здоровыми. Интересно, что на *Mtb* в этой модели метронидазол не действует [80], этот факт указывает на то, что клетки в этой модели находятся в состоянии менее глубокого покоя, чем в стадии 2 нерепликативного состояния в модели прогрессирующей гипоксии Вейна *in vitro* [55].

Гранулемы, образующиеся у мышей во время инфекции, значительно отличаются от тех, что образуются у человека. Так, например, гранулемы мышей имеют более рыхлую структуру [81], они аэробны [82] и их развитие сильно отличается от гранулем человека. На сегодняшний день непоказано образование фиброзно-кавернозной формы туберкулеза у мышей [83]. Все это указывает на то, что условия внутри гранулем у мышей не подходят для моделирования условий образования покоящихся форм туберкулёза.

1.3.2.2. Модели *in vivo* на кроликах и морских свинках

В отличие от моделей с использованием мышей, на моделях туберкулеза на кроликах, морских свинках и нечеловекообразных приматах показано образование гипоксических участков внутри структурированных гранулём, что является одним из неотъемлемых факторов образования некротических гранулем в дельнейшем [56]. Более того, у <u>морских свинок</u> можно различить первичную (образовавшуюся из бактерий попавших в легкие извне) и вторичную гранулему (образовавшуюся при гематогенном рассеивании) с помощью анализа цитокинового профиля [84]. На морских свинках показана модель персистирующей инфекции [85], в которой животные заражались 20-30 бактериями интраназально и были пролечены антибиотиками в течение 3 месяцев. Они использовались для тестирования антибиотиков, и активность

бедаквилина в лечении туберкулезной инфекции показана именно на морских свинках [86].

Однако, как и мыши, морские свинки крайне чувствительны к туберкулезной инфекции и требуется постоянный контроль с помощью иммуномодулирующих препаратов или антибиотиков для предотвращения гибели животных [86].

<u>Кролики</u>, напротив, крайне устойчивы к заражению *M tuberculosis*, в тоже время они очень тяжело переносят инфекцию вызванную *M. bovis*, которая приводит к казеозным, некротическим гранулемам и в конечном итоге к разжижению легких и смерти [87]. Более того, процесс развития инфекции различается критическим образом при заражении разными штаммами *Mtb*, а также сильно варьируется в зависимости от дозы заражения, что является отличительной особенностью туберкулезной инфекции на кроликах [88,89]. Так, например, заражение штаммами Erdman и H37Rv высокими дозами патогена в конечном итоге приводило к меньшему проценту смертельных исходов, чем при низкодозовой инфекции, что авторы связывают со стимуляцией иммунной системы на начальных этапах заражения.

Считается, что кролики лучшая модель для изучения туберкулеза, поскольку люди тоже относительно устойчивы к туберкулезной инфекции. Лишь 10% зараженных людей заболевает активной формой туберклеза (данные ВОЗ). На модели хронического туберкулеза у неиммунизированных кроликов после заражения высокой дозой *Mtb* H37Rv (10⁶) наблюдается фаза псевдостерильности, и лишь у одной трети кроликов, с образовавшейся гранулемой, после 20 недель обнаруживаются бактерии при высеве на плотных питательных средах [90]. После ослабления иммунной системы с помощью кортикостероидов В большинстве случаев происходила реактивация туберкулёза. С использованием этой модели латентного туберкулеза у кроликов был сделан транскриптомный анализ бактерий, выделенных из легких зараженных животных на разных стадиях заражения [91]. На первых стадиях

обнаружено большое сходство с данными полученными на *in vitro* моделях, таких как модель гипоксии Вейна и модель голодания Лёбеля, но на более поздних стадиях это сходство нивелировалось, из чего можно сделать вывод о том, что данные модели *in vitro* характеризуют лишь первые стадии латентной инфекции.

Недавно была опубликована более удачная модель латентной формы туберкулеза на кроликах с точки зрения меньшей гетерогенности среди В популяции зараженных животных. модели латентной инфекции предложенной Subbian животные заражались интраназально низкой дозой (10^3) бактериями штамма *Mtb* CDC1551 и с 12 по 24 неделю после заражения органы животных оставались псевдостерильными [92]. В то время в легких животных образовывались маленькие, сложно устроенные гранулемы, сходные по строению с человеческими [93]. Бактерии в этой модели характеризуются неспособностью к росту на плотной питательной среде, а также не обнаруживаются при микроскопическом исследовании после стандартного окрашивания по Цилю-Нильсону, из чего можно сделать вывод об изменении клеточной стенки бактерий в стадии покоя. С целью визуализации таких покоящихся бактерий авторы предлагали способ окрашивания, при котором зафиксированные препараты срезов легких обрабатываются ИЗ антитуберкулезным антигеном, с которым после нескольких промежуточных флуоресцентный стадий связывается краситель (FITC), ЧТО позволяет обнаружить покоящиеся формы с использованием конфокального микроскопа [92]. После 12 недель животные подвергались иммуносупрессорной терапии кортикостероидами, что проводило к реактивации туберкулезной инфекции и возобновлению видимого роста на плотных питательных средах при высевах из легких зараженных животных.

1.3.2.3. Модели in vivo на других животных

Модель демонстрирующая самое высокое сходство с истинной инфекцией человека - это модель на не человекообразных обезьянах [75,94]. В этой модели *Macaca fascicularis*) заражались с помощью яванские макаки (лат. бронхиоскопа очень низкой дозой *Mtb* штамма Erdman (25 бактерий на одно животное) и имея положительный результат кожной туберкулиновой пробы (TST) не проявляли симптомов инфекции в течение 6 месяцев. При заражении более высокой дозой *Mtb* в ряде случаев (45%) у обезьян быстро развивалась активная форма инфекции [95]. Известно, что в отличие от мышей, гранулема, образующаяся в этой модели, гипоксична [56], и по строению крайне сходна с человеческой [96,97]. С использованием модели ко-инфекции, в которой обезьян сначала заражали низкой дозой Mtb, а затем ВИЧ, показано, что в независимости от дозы вируса, через некоторое время происходит спонтанная реактивация туберкулеза [98]. При этом клетки Mtb в модели ко-инфекции остаются культивируемыми и активными, что говорит о том, что обезьяны весь период заражения находились в стадии хронической инфекции [99]. Кроме того, у обезьян в этой модели обнаруживаются фиброзные гранулемы, которые не характерны для латентного туберкулеза [100].

Стоит сказать, что существуют модели латентного туберкулеза и гранулем с использованием других животных. Например, недавно была предложена модель гранулемы с использованием эмбриона и взрослой особи <u>рыбы</u> семейства карповых (лат. *Danio rerio*, Zebrafish) зараженной подкожно с помощью патогена рыб *M. marinum* [101]. Благодаря прозрачности эмбрионов предоставляется уникальная возможность наблюдать развитие гранулемы через микроскоп без вскрытия животного [102]. Так же существуют модели на свиньях [102] и коровах [102], однако в силу сложного воспроизведения и высокой стоимости исследований, широкого распространения они не получили.

1.3.3. Сравнение моделей

На клетки Mtb в анаэробных условиях (in vitro модель Вейна), из всех антибиотиков какой-либо протестированных оказывали значительный бактерицидный эффект только капреомицин, ингибирующий синтез белков на уровне рибосом, а также метронидазол, ингибирущий синтез нуклеиновых кислот [103]. Но эти антибиотики (капреомицин и метронидазол) не оказывают действия на клетки в модели голодания Лёбеля, даже в гораздо более высоких концентрациях. [49]. Из этого можно заключить, что состояние, вызванное голоданием и анаэробиозом, различаются фундаментальными образом, а именно, в результате голодания образуются клетки в более глубоком состоянии покоя. Два основных антибиотика, оказывающих действие на покоящиеся клетки обзаующиеся в модели гипоксии- это рифампицин и пиразинамид [104]. Однако известно, что на клетки Mtb в истинном состоянии покоя, которые являются «некультивируемыми», не действуют антибиотики в силу почти полного отсутствия метаболических процессов и слабого сообщения с окружающей средой [105]. Так же наиболее известные модели in vitro относятся к «краткосрочным» моделям, в которых время пребывания патогена в состоянии покоя не превышает 6 недель, в то время как в организме человека патоген сохраняется десятилетиями. Таким образом, ни одна из известных моделей in vitro не способна имитировать истинное состояние покоя, при клетки характеризуются низкой метаболической активностью, котором нечувствительностью к антибиотикам и «некультивируемостью».

Каждая из описанных выше моделей *in vivo* воспроизводит отдельные аспекты латентной формы инфекции, но не одна не имитирует в достаточной мере истинную инфекцию у человека и не подходит для тестирования антитуберкулезных препаратов. Модели на мышах отличаются коренным образом от латентной формы инфекции у человека, в силу глобальных отличий в иммунном ответе. Так, например, известно, что гранулема у мышей не гипоксична, не структурирована и образование ее возможно только под

строгим контролем антибиотиков. У кроликов, в силу их природной устойчивости к туберкулезу, проявляется реактивация инфекции только при иммуносупрессорной терапии. Возможно, самой близкой к человеку моделью латентной формы является модель на макаках, однако в силу высокой стоимости подобного рода исследований о состоянии клеток патогена в данной модели мало известно. На моделях *in vivo* хорошо эффективен рифампицин, ингибитор РНК полимераз [18], а, следовательно, клетки патогена все же в состоянии менее глубокого покоя, чем в моделях *in vitro*, а так же при истинной латентной туберкулёзной инфекции. Также остается проблема сравнения результатов, поскольку каждый эксперимент на моделях in vivo представляет собой частный случай инфекции. Сами исследователи моделей in vivo сообщают, что развитие инфекции может просходить по разным сценариям, контролировать которые крайне сложно, и следовательно воспроизводимость таких экспериментов остается на низком уровне. Кроме того, используя модели получить достаточно материала in vivo невозможно ДЛЯ проведения протеомного исследования.

Таким образом, покоящиеся клетки, полученные в известных моделях покоя, не имитируют истинное латентное состояние, и для решения этой проблемы ранее в нашей лаборатории была разработана модель перехода клеток *Mtb* [14] и его непатогенного быстрорастущего родственника *Mycobacterium smegmatis* [106] в состояние покоя, основанная на постепенном закислении культуральной среды.

Клетки, полученные в этой модели, характеризуются утолщенной клеточной стенкой, измененной морфологией, незначительной метаболической активностью, устойчивостью к антибиотикам [14,106], и некультивируемостью в случае *Mtb*. Однако какие метаболические процессы происходят в таких покоящихся клетках при переходе, хранении и реактивации оставалось до конца не неясно. Данная модель *in vito* была использованна для проведения протеомного анализа в настоящей работе.

1.4. Молекулярные механизмы у микобактерий лежащие в основе явления латентности и персистенции

Когда *Mtb* попадает в неблагоприятные условия, вне зависимости от источника стресса, микобактерии замедляют скорость роста, снижают скорость синтеза белка, рРНК, мРНК, снижают активность транспортных систем и метаболизма в целом. Это явление получило название «строгий ответ» (stringent response), который регулируется за счет гуанозин полифосфата [107]. Далее, в зависимости от длительности пребывания в стрессовых условиях и от стресса, клетки *Mtb* начинают запускать соответствующие специфики механизмы для компенсации неблагоприятных условий. Так, например, при недостатке кислорода возникает необходимость в перестроении дыхательной цепи, в результате чего инициируется транскрипция кластера генов известного как DosR peryлон [108,109]. Так же для получения энергии и дополнительных источников углерода необходимы перестройки метаболизма направленные на более эффективное поглощение жиров и жирных кислот [110]. В качестве защитной меры макрофаги после фагоцитоза Mtb вырабатывают активные формы кислорода, В ответ в клетке микобактерии, ДЛЯ защиты OT окислительного стресса, вырабатываются каталазы и пероксидазы.

Очевидно, что результатом такой вынужденной глобальной перестройки метаболизма будет накопление продуктов обмена и вторичных метаболитов, для утилизации которых также требуются дополнительные ресурсы. Со всеми вышеперечисленными стрессовыми факторами, а также многими другими, приходится столкнуться клеткам *Mtb* при попадании в макрофаг хозяина, и для адаптации клеткам *Mtb* приходится запускать целые каскады сигнальных систем и регуляторов, таких как сигма факторы [111]. При более длительном воздействии стрессовых факторов, клетка вынуждена сократить свой метаболизм до минимума, прекратить сообщение с внешней средой и практически перейти в состояние покоя, при этом сделав запас питательных

веществ для дальнейшей реактивации при наступления благоприятных условий.

1.4.1. «Строгий ответ» (Stringent response).

«Строгий ответ» - это каскад реакций, который использует гуанозин пента и тетрафосфат (далее (p)ppGpp) в качестве сигнальной молекулы для активации транскрипции генов, вовлеченных в стрессовый ответ, результатом чего служит замедление метаболизма и размножения. У грамотрицательных бактерий накопление (p)ppGpp зависит от активности белков RelA и SpoT. У *Mtb* в геноме аннотирован только RelA (Rv2583c), и этот белок является единственной функциональной синтетазой (p)ppGpp, поскольку в штамме с делецией RelA гена наблюдается полная невозможность синтеза пента и тетраполифосфатов гуанозина [107]. Штамм с делецией RelA способен инфицировать человеческие макрофаги *in vitro* [107], однако не способен к формированию хронической инфекции ни в мышах [112], ни в морских свинках [113], что говорит о необходимости строгого ответа при формировании длительного выживания в условиях сильного иммунного ответа хозяина, когда возникает необходимость подавления размножения.

В отличие от грамотрицательных бактерий, RelA у *Mtb* обладает бифункциональной активностью [114]. В случае, когда в клетке недостаточно аминокислот RelA стимулирует синтез (р)ррGpp, при помощи аллостерической регуляции комплекса макромолекул, состоящего из рибосомы, тPHK и мPHK, называемой RelA-активирующим комплексом (Rel Ativating Complex/RAC). В противоположном случае, когда уровень аминокислот достаточный, RelA самостоятельно гидролизует (р)ррGpp.

В свою очередь, (p)ppGpp опосредованно регулирует синтез и распад неорганического полифосфата [115]. Неорганический полифосфат в клетках представляет собой цепь из десятков, а иногда и сотен фосфатов, связанных фосфоангидридными связями. В нормальных условиях синтез полифосфата

осуществляется ферментом полифосфаткиназой (Ppk1/Rv2984 и Ppk2/Rv3232c) нуклеотидтрифосфатов, а гидролиз осуществляет экзополифосфатаза ИЗ (Ppx/Rv0496), за счет чего в клетке устанавливается динамическое равновесие [116]. В большинстве бактерий оба гена, кодирующие ферменты Ppk и Ppx, В одном опероне И контролируются фосфат-зависимым находятся транскрипционным регулятором PhoB [116]. В условиях стресса происходит тысячекратное возрастание количества полифосфатов, в результате увеличения транскрипции фермента, синтезирующего полифосфат И подавления транскрипции фермента гидролиза полифосфата [116]. Штамм Msm с делеций гена *ppk* оказался не способен к синтезу полифосфата и крайне неустойчивым к окислительному стрессу и гипоксии [117]. У *Mtb* мутация гена *ppk* приводит к нарушению синтеза relA и (р)ррGpp [117], что говорит о необходимости полифосфаткиназы в формировании первых стадий строгого ответа. Стоит отметить, что согласно данным транскриптомного анализа у штамма, дефектного по гену полифосфаткиназы, происходит подавление транскрипции генов mprB, sigE. Позднее был обнаружен дополнительный ген, кодирующий полифосфаткиназу Ppk2/Rv3232c, который оказался не менее важен, поскольку делеция этого гена приводит к снижению устойчивости к антибиотикам и плохой выживаемости в макрофагах [118]. Штаммы с гиперэкспрессией как *ppk*, так и *ppx* в *E. coli* приводила к снижению жизнеспособности клеток [119]. Недавно было показано, *Rv0496* является что продуктом гена экзополифосфотаза Ррх высокоспецифичная к полифосфату [120]. У штамма дефектного по этому гену происходит накопление внутриклеточного полифосфата, а также замедление роста в логарифмической фазе [121]. Интересно, что у этого штамма также повышена экспрессия генов mprB, sigE, relA. Эти данные служат подтверждением того, что полифосфат необходим для биосинтеза (p)ppGpp через систему mprAB-sigE-relA, что показано на ближайшем непатогенном родственнике возбудителя туберкулеза Msm [122]. Таким образом, в условиях, ограничивающих рост, полифосфат служит

источником фосфата для двухкомпонентной сенсорной гистидин-киназной системы MrpB, которая фосфорилирует регулятор ответа MrpA, индуцирующий транскрипцию sigE, что приводит к возрастанию уровня транскрипции *relA*, и, как следствие, возрастанию уровня (p)ppGpp. Такой механизм, в котором каскад реакций начинается с полифосфата, характерен именно для микобактерий, поскольку у других бактерий первая стадия строго ответа связана с синтезом relA [123].

Полифосфат индуцирует экспрессию гена *rpoS*, кодирующего РНК полимеразу сигма фактор S (sigS/ σ^{S}). В результате происходит индукция транскрипции более 70 генов, подавляющих рост, активность метаболизма и помогают клетке пережить стресс и подготавливают к переходу в состояние персистенции [119,124,125].

«Строгий ответ» можно по праву назвать «первой скрипкой» в ответе на стресс, с которым сталкивается патоген при попадании в организм хозяина. Именно с индукции строгого ответа начинается длительный и многоэтапный переход клеток в состояние покоя, при котором уменьшается активность метаболизма и прекращается деление клеток.

1.4.2. Сигма факторы

Сигма факторы — ЭТО транскрипционных класс регуляторов контролирующих генную экспрессию. Как и растения, бактерии имеют факторы специфического различные сигма для ответа на внешние раздражители. Большинство сигма факторов не имеет собственных сигнальных доменов и активируется другими белками или молекулами, посредством РНК фосфорилирования или посттрансляционных модификаций. полимеразный комплекс нуждается в специфическом сигма факторе для фактор Каждый инициации транскрипции. сигма распознает свою специфическую область генома и после связывания инициирует РНК полимеразное считывание с этой области. Все 4 тысячи генов *Mtb*
контролируются 13 системами сигма факторов, из которых 11 принадлежат семейству ECF (extracytoplasmic function family) [111]. Все сигма факторы Mtb делятся на группы: первичный сигма фактор (SigA), первичный сигмафактор (SigB), сигма факторы стрессового подобный ответа (SigS), специфические сигма факторы (Sig C, D, E, G, H, I, J, K, L, M). Среди специфических сигма факторов есть те, что активируются при конкретных видах стресса. Так, например, SigH участвует в адаптации *Mtb* к слабому тепловому шоку, окислительному и нитрозивному стрессу [126]. Показана роль SigH в поддержании гомеостаза после окислительного стресса за счет регуляции компонентов тиоредоксиновой системы, различных оксидоредуктаз, белков теплового шока и шаперонов. Всего обнаружено 69 сайтов связывания SigH, которые расположены как в межгенных областях, так И В последовательностях аннотированных кодирующих генома [127]. SigH является фактором вирулентности и штамм с делецией гена кодирующего SigH не способен образовывать острую воспалительную реакцию при заражении туберкулёзом на нечеловекообразных приматах, демонстрирует низкую летальность у зараженных животных, однако, в то же время показано высокое содержание бактерий в легких и мокроте [128]. Эти данные косвенно указывают на необходимость SigH при формировании адекватного ответа на стресс, в данном случае вызванного попаданием патогена в организм хозяина.

У *E.coli* экспрессия гена *rpoS*, кодирующего sigS, наблюдается при переходе в стационарную фазу, различных стрессах и экспрессия гена обратно коррелирует с активностью размножения. Активно-растущие клетки почти не экспрессируют SigS, и его функции выполняет близкий по структуре σ^{70} [129]. В связи с множеством выполняемых этим регулятором функций он был обнаружен независимо при различных стрессах, и получил соответствующие названия: регулятор чувствительности к ближнему ультрафиолетовому спектру (nuv) [130]; регулятор экспрессии каталазы (katF) [131], экзонуклеазы (xthA)[132], фосфатазы (appR), регулятор перехода в стационарную фазу (csi-2)

[133]. Только после выяснения геномной последовательности регулятора стало понятно, что это один и тот же регулятор SigS [134]. Позднее была показана роль SigS в выживании клеток и при других стрессах, таких как высокая температура, воздействие перекиси водорода [124]. Стоит отметить, что у *E.coli* экспрессия SigS так же происходит и при осмотическом стрессе, индуцируя синтез генов участвующих в синтезе трегалозы [135]. Негативным регулятором гена *rpoS* является сАМР-Сгр [136], который согласно последним данным регулятором является главным при переходе Ε. coli В состояние «некультивируемости» и персистенции [137,138].

При попадании в макрофаг, а также при воздействии *in vito* на клетки *Mtb* перекиси водорода или SDS индуцируется транскрипция SigE/ σ^{E} , под контролем которого находится 23 гена, в том числе sigB, mprA и mprB [139]. делецией гена кодирующего Штамм Mtb с SigE проявлял плохую выживаемость В макрофагах И легких мышей [140]. С помощью было обнаружено 38 транскрипционного анализа генов которые контролируются SigE, среди которых участвующие в трансляции белков, синтезе миколовых кислот, переносчики электронов в электрон-транспортной цепи [139,141].

Таким образом, очевидно, что сигма факторы играют важную роль в ответе на стресс, в первую очередь это сигма факторы H, S и E, осуществляющие разнообразные функции и повышающие устойчивость клеток патогена к неблагоприятным условиям в организме хозяина, и борьбы со стрессовыми факторами.

1.4.3. Двухкомпонентные регуляторные системы

Двухкомпонентные системы часто используются бактериями для эффективного ответа на факторы внешней среды с помощью изменения генной экспрессии. Эти системы обычно состоят из двух частей: сенсорной киназы и транскрипционного регулятора, активируемого посредством

фосфорилирования. У *Mtb* обнаружено 12 двухкомпонентных систем, участвующих в различных процессах клетки, таких, например, как синтез клеточной стенки и адаптация к внутриклеточной инфекции (PrrAB), аэробное дыхание (SenX3-RegX3), репликация ДНК (MtrAB) и т.д. [142]. Как было установлено, в ответ на стресс у микобактерий активируются такие двухкомпонентные системы как PhoPR, MprAB и DosRS, которые связаны между собой, и на которых стоит остановиться более подробно.

MprAB представляет собой двухкомпонентную систему, контролирующую несколько регулонов ответственных за вирулентность и персистенцию Mtb. MprAB индуцирует экспрессию сигма факторов sigE and sigB, под воздействием SDS [143] и при голодании [117]. МргАВ совместно с другой двухкомпонентной системой PhoPR, регулирует кластер генов espA необходимый для вирулентности [144,145]. У МргАВ есть общий участок регуляции с DosRS, функция этого участка пока неизвестна [146], однако по структуре этот участок имеет сходство с последовательностью НАДН дегидрогеназы. При воздействии температуры MprAB регулирует экспрессию гомолога альфа-кристалина (Hsp Rv2031) [147], который так же регулируется двухкомпонентной системой DosRS. Несмотря на способность заражать макрофаги, штамм с делецией *mprA* был не способен поддерживать инфекцию у мышей, персистирующую поскольку был не способен адаптироваться к новой среде [148]. Экспрессия этого гена увеличивается, согласно данным транскриптома, при хронической инфекции у мышей [70].

При попадании клетки в среду с низким pH активируется система PhoPR, которая регулирует кластер генов содержащий транспортёр сульфолипидов (Mmpl8), алкил-гидропероксидазу (AhpC), десатуразу жирных кислот и другие гены, помогающие клетке справиться с окислительным стрессом [149]. Недавно было показано, что PhoPR является негативным регулятором системы DosRS (DevRs) [150] и позитивным регулятором WhiB 3 [151].

С появлением модели гипоксии Вейна главную роль в переходе в состояние покоя присвоили двухкомпонентной системе DosR-DosS (так же известной как DevR-DevS). Гистидин-киназы DosS (DevS) и DosT активируют регулятор ответа DosR с помощью реакции фосфорилирования у M. tuberculosis [108,152,153]. Первоначально активация DosR была обнаружена при прогрессирующей гипоксии (модель покоя основанная на гипоксии, модель Вейна), поэтому получила название: «регулятор выживаемости в состоянии покоя» (Dormancy Survival Regulator DosR)[154,155]. Однако стоит заметить, что активация генов DosR регулона проиходит не только при гипоксическом стрессе, но и других стрессах, вызванных, например, оксидом азота [155], окисью азота [156] аскорбиновой кислотой [62], попаданием микобактерий в макрофаги [157], а также при острой [79] и хронической [158] инфекции в мышах. Тапеја с соавт. объясняет экспрессию DosR регулона при воздействии на клетки аскорбиновой кислоты созданием гипоксической среды, и, как следствие, необходимостью дополнительной абсорбции кислорода [62]. В исследовании Honaker с соавт. активация DosR регулона была связана с прекращением передачи электронов по электрон транспортной дыхательной цепи после добавления специфических ингибиторов, а не на прямую с недостатком кислорода. [159].

DosR регулон включает в себя 48 генов, которые так или иначе участвуют в адаптации к гипоксическому стрессу, и включает в себя 9 блоков: блок 1/ Rv0079–Rv0081, блок 2/ Rv0569–Rv0574c, блок 3/ Rv1733c–Rv1738, блок 4/ Rv1812c–Rv1813c, блок 5/ Rv1996– Rv1998c, блок 6/ Rv2003c–Rv2007c, блок 7/ Rv2028c–Rv2032, блок 8/ Rv2623–Rv2631, и блок 9/ Rv3126c–Rv3134c. Помимо деления по расположению в геноме, существует разделение на группы согласно функциям белков, независимо от расположения в геноме: первичный ответ на стресс, протеазы и транспорт, взаимодействие между бактерией и хозяином, сенсорные киназы и транскрипционные регуляторы, синтез клеточной стенки, нуклеотидный метаболизм, азотный метаболизм, и поддержание окислительно-

баланса [160]. Среди восстановительного этих генов некоторые нитратредуктазы, а также ферменты участвующие в использовании энергии из альтернативных источников углерода, таких как метаболизм жирных кислот. Например, регулон DosR включает ген белка hspX (белок теплового шока), narX (нитратредуктаза), narK2 (нитрит/нитрат транспортер) fdxA И (альтернативный переносчик электронов), nrdZ (рибониулкозид-дифосфат редуктаза), tgs1 (триглицерид синтетаза) и шесть белков принадлежащих к семейству универсальных стрессовых белков (обеспечивающих устойчивость к ДНК-повреждениям). Некоторые гены входящие в DosR регулон необходимы для выживания микобактерии внутри организма хозяина, что показано транскриптомными исследованиями на моделях *in vivo* на мышах, содержащих тканевую гипоксию [80]. Кроме того, показано, что при длительной гипоксии активируется другая транскрипционная программа, названная устойчивым гипоксическим ответом [13,152,153], и включает в себя более 230 генов, в том числе альтернативные сигма-факторы sigE и sigH, которые являются DosR независимыми. По-видимому, DosR регулон необходим для выживания Mtb во время прогрессирующей гипоксии путем перестроения метаболизма от аэробного дыхания к анаэробному. Известно, что рибосомальный фактор RafH способен входящий DosR регулон связываться с рибосомой В И стабилизировать ее, и штамм с делецией этого гена оказывается не жизнеспособным в условиях гипоксии [161].

Таким образом, DosR регулон необходим для выживания на первоначальных стадиях перехода в состояние покоя, вызванных различным стрессом, однако чем глубже состояние покоя, тем меньше влияния оказывает DosR регулон на физиологию клетки *Mtb*.

1.4.4. Липидный и энергетический метаболизм.

Давно известно, что липиды играют важную роль в патогенезе *Mtb*. При длительной персистенции в мышах основным источником энергии являются

жирные кислоты [110]. Подтверждением служит тот факт, что геном *Mtb* содержит большое количество повторяющихся генов, которые кодируют ферменты участвующие в β-окислении жирных кислот [50]. Транскрипция этих генов увеличена при заражении в макрофагах [162] и в легких мышей [163]. Повышение эффективности β-окисления жирных кислот приводит к повышению вирулентности микобактерий. Так, например, сверхэкспрессия гена fadE28 кодирующего ацетил-коА-дегидрогеназу, которая участвует в первой стадии β-окисления, приводит к повышению вирулентности [164].

В качестве дополнительного источника энергии И углерода при длительной персистенции может быть холестерин хозяина-носителя, поскольку, согласно данным транскриптома *Mtb* выделенного из зараженных мышей, транскрипция специфического повышается кластера генов ответственных за импорт холестерина (mce4) [165]. И это неудивительно, поскольку крайне высокие количества холестерина содержатся в пенистых макрофагах (ксантомные клетки) окружающих микобактерии в альвеолах при заражении как у человека, так и у мышей [166]. Человеческий холестерин не отличается от микобактериального по строению, и поэтому транспортируется и катаболизируется сходным образом, при этом из одной молекулы холестерина получается одна молекула пирувата [167,168].

Накопление триацилглицеридов играет важную роль в персистенции и устойчивости к антибиотикам [61]. Транскрипция триацилглицерол-синтетазы повышена в гранулеме при кавернозном поражении легких человека [169]. Триацилглицериды могут использоваться *Mtb* как форма хранения жирных кислот [170], и при длительном голодании они могут расщепляться специфическими липазами до жирных кислот [171]. Для хронической инфекции у мышей необходима циклопропан-синтетаза, и штамм с делецей этого фермента не способен к заражению [172]. Циклопропановые жирные кислоты входят в состав корд-фактора, который является известным фактором вирулентности [173]. В состав клеточной стенки *Mtb* входят сульфолипиды, на

которые так же возлагалась роль фактора вирулентности [174], однако мутантный штамм (штамм с делецией pks2), не способный формировать сульфолипиды, не проявлял отличий в росте и заражении макрофагов, мышей и морских свинок [175].

1.4.5. Глюконеогенез и глиоксилатный шунт

Ацетил-коэнзим А и пропионил-коэнзим А, получаемые в результате катаболизма жирных кислот и холестерина, могут далее включаться в процессы глюконеогенеза или в ЦТК. Существуют основания полагать, что покоящиеся использование клетки переходят на глиоксилатного шунта, вместо классического цитратного Экспрессия цикла. гена, кодирующего изоцитратлиазу (фермент глиоксилатного шунта)((Rv0467)) значительно увеличена при хронической инфекции у мышей [176]. Также гиперпродукция этого фермента обнаруживается на модели гипоксии Вейна in vitro [7]. Штамм с делецией гена изоцитратлиазы при заражении мышей проявлял сниженную вирулентность и редукцию роста, но не проявлял никаких эффектов при заражении мутантных мышей с делецией интерферона гамма [177]. Повидимому, потребность в использовании глиоксилатного шунта сильно зависит от иммунного статуса хозяина.

Исследования *in vivo*, с использованием вирулентного [178] и вакцинного [179] штаммов *Муcobacterium bovis* указывают на существенную роль глюконеогенеза в метаболизме микобактерий. Эти исследования показывают, что делеция гена *pckA*, кодирующего фосфоенолпируваткарбоксикиназу, приводит к значительному уменьшению вирулентности на моделях инфекции *in vivo*. При проведении транскриптомного анализа микобактрий, полученных из мышей с хронической инфекцией и пациентов с туберкулезом, было обнаружено, что происходит сверхэкспрессия генов *pckA* и *glpX*, которые кодируют фосфоенолпируват-карбоксикиназу и фосфоглицераткиназу [180].

В связи с ролью глиоксилатного пути и глюконеогенеза возникло предположение, что при длительной или хронической инфекции клеткам *Mtb* перестраивают метаболизм для использования жирных кислот, а не углеводов в качестве источника углерода и энергии [181]. Однако существуют исследования, которые говорят о том, что данная перестройка метаболизма связана с адаптивным ответом на иммунный ответ хозяина, а не с изменением доступности питательных веществ [182].

1.4.6. Транскрипционные регуляторы

В геноме Mtb согласно аннотации содержится более 160 транскрипционных регуляторов, более 150 описаны или упоминаются в литературе [183]. В отличие от двухкомпонентных систем, транскрипционные регуляторы представляют собой мономеры и димеры, которые связываются со специфической последовательностью ДНК, что позволяет модулировать экспрессию определенных генов, в ответ на изменения окружающей среды.

Важную роль в адаптации микобактерий к стрессовой среде играет транскрипционная система WhiB. Семейство WhiB представляет собой важную группу белков Mtb, из которых самым изученным является WhiB3, чья экспрессия контролируется двухкомпонентной системой PhoRS [151]. WhiB3 представляет собой внутриклеточный сенсорный белок, содержащий железосерный кластер, который специфически взаимодействует с O₂ ,NO, и другими экзогенными и эндогенными сигнальными молекулами, что необходимо для поддержания окислительно-восстановительного баланса [184]. Известно, что его экспрессия увеличивается через 2 недели постинфекции у мышей дикого типа, и иммунодефицитных мышей, а также обратно коррелирует с плотностью бактериальной культуры [185]. WhiB3 может функционировать как регулятор транскрипции поликетидсинтетаз, регулируя превращение пропионата в сложные поликетиды в определенных условиях окисления и восстановления тем самым выступая в качестве регулятора анаболизма липидов [143].

WhiB3 Взаимодействуя с сигма-фактором SigA способен повысить выживаемость клеток патогена внутри организма хозяина [186]. Так же показана связь WhiB3 с DosR регулоном при переходе в состояние покоя. Поскольку при гипоксии под действием DosR регуляции прекращается перенос электрон-транспортной электронов ПО дыхательной цепи, возникает переизбыток В восстановительных эквивалентов. условиях таких триацилглицерол, полиацетилтрегалоза и сульфолипиды могут выступать в качестве акцептора электронов, а WhiB3 в свою очередь индуцирует анаболизм триацилглицерола, с целью уничтожения избыточных восстановительных эквивалентов [187].

Другой белок этого семейства, WhiB5, также важен для адаптации бактерий к стрессовым факторам, например, голоданию, и необходим для поддержания хронической инфекции у мышей [188].

Центральным транскрипционным регулятором ответа на окислительный стресс у бактерий является OxyR. Под контролем OxyR находится около 10 генов, участвующих в антиоксидантной защите. Его строение является достаточно консервативным, и он аннотирован в геноме *Mtb*. Однако исследования последовательностей генома ИЗ клинических изолятов, полученных от больных туберкулезом из различных географических регионов, выявили различные мутации этого участка, образовавшиеся в ходе эволюции Mtb [189]. В связи с этим существовало мнение, что этот регион является функционирующим, и этим объяснялась высокая чувствительность *Mtb* к изониазиду. Более поздние исследования показали, что регион все же функционирует, и OxyR контролирует, как минимум, алкилгидроксипероксид редуктазу (ahpC) в ответ на действие перекиси [190]. Штамм с делецией гена ОхуR проявляет повышенную чувствительность к воздействию перекиси и изониазиду, но в то же время не теряет вирулентность. Из этого следует вывод, что OxyR играет важную роль в защите от окислительного стресса, но не главную, и, вероятно, является не единственным регулятором в своем роде.

1.4.7. Токсин-антитоксиновые системы

Токсин-антитоксиновый (ТА) модуль, который содержится в плазмидах с малым числом копий, регулируя синтез различных макромолекул и, как полагают, вносит свой вклад в поддержание состояния покоя. ТА модуль кодирует стабильный белок токсин с определенной функцией и его «короткоживущий» антитоксин. Механизм, согласно которому антитоксин выполняет свою функцию в нормальных условиях, различен и зависит от класса. Так, например, антитоксин может комплементарно связываться с мРНК токсина (тип 1 и 3) [191], или обладать рибонуклеазной активностью и разрезать мРНК токсина (тип 5) [192] тем самым прекращая транскрипцию токсина. Либо антитоксин может напрямую связываться с молекулой токсина и инактивировать его [192]. В условиях стресса выработка антитоксина ингибируется и происходит накопление токсина. Токсин VapBC действуют путем ингибирования трансляции через расщепление мРНК [193], что позволяет быстро перестраиваться под меняющиеся условия среды, либо ингибировать синтез белка в целом.

Существует 8 основных семейств ТА систем: СсdBA, HigBA, HipBA, MazEF, ParDE, RelBE, VapBC и Doc / PhD [194]. В геноме *Mtb* описано 38 токсин-антитоксиновых систем [195], но значительно больше белков являются возможными кандидатами на участие в ТА системах (более 80) [196]. Это значительно больше, чем у любого другого внутриклеточного патогена, что потенциально позволяет *Mtb* лучше адаптироваться к различным стрессам и воздействию антибиотиков пока условия не будут более благоприятными. Согласно данным трнскрипционного и протеомного анализа, экспрессия VapBC генов происходит при различных стрессах, таких как гипоксия [3], голодание [8] и инфекция в макрофагах [197]. Функции ТА систем в нормальных условиях крайне разнообразны. Токсины самого большого ТА систем семейства - VapBC необходимы для вирулентности [198] и для развития резистентности к антибиотикам *in vitro* [199]. При транскриптомном анализе

персисторов *in vitro* показана гиперэкспрессия для 10 ТА систем [200]. Для клетки в состоянии покоя токсины играют роль фактора сдерживающего деление клеток, путем ингибирования синтеза белка.

1.4.8. Шапероны

Белки теплового шока (Heat shock proteins (Hsps)) – это семейство осуществляющих высококонсервативных белков В норме фолдинг (сворачивание) и транспорт белков внутри клетки. Существует три основных подсемейства шаперонов: Hsp60 (GroEl), Hsp 70 (DnaK) и Clp (Hsp 100). После синтеза на рибосоме белки, содержащие гидрофобные длинные участки, связываются с DnaK, который, совместно с кошаперонином DnaJ, осуществляет эффективное сворачивание. GroEl в тандеме с GroES осуществляет фолдинг белков склонных к агрегации, а также осуществляет рефолдинг белков с использованием энергии АТФ. Около 20% вновь синтезированных белков подвергаются деградации, чаще всего по причине ошибок в процессе транкрипции и трансляции. Такие белки являются мишенью Clp, которые обладают протеолитической активностью и осуществляют гидролиз белков содержащих ошибки. В условиях стресса происходит значительное увеличение экспрессии шаперонов, с 5 % до 15% от общей массы белка в клетке, что связано с увеличением необходимости рефолдинга белков поврежденных в результате воздействия стрессовых факторов. Так же увеличение количества шаперонов при стрессе связано с изменением функций шаперонов. Например, DnaK и GroEl, оставаясь связанным с белками, предотвращают их деградацию под воздействием негативных факторов [201,202]. Протеаза Clp играет двойную роль: она устраняет поврежденные стрессом белки, а также обеспечивает своевременную деградацию основных регуляторов стресса [203,204]. Таким образом, дополнительной функцией шаперонов в стрессовых условиях является холдинг белков (предотвращение повреждения за счет непосредственного связывания), а также уничтожение уже поврежденных

белков. Изначально было обнаружено значительное повышение экспрессии этих белков при тепловом шоке, однако позднее выяснилось, что гиперэкспрессия шаперонов происходит и при других видах стресса, таких как гипоксия, голодание, фагоцитоз и др. [205]. Шапероны патогенных бактерий образуют основную группу антигенов, индуцирующих сильные гуморальные и клеточные иммунные ответы у инфицированного хозяина [206].

Помимо высококонсервативных шаперонов в клетках микобактерий при стрессе возрастает экспрессия гомолога альфа-кристалина (Rv2031). Этот белок обладает шапероновой активностью и экспрессируется в любом неспецифическом стрессе, таком как голодание [63], недостаток железа в среде роста [207], тепловой или холодовой шок [208]. Значительное увеличение экспрессии этого белка обнаруживается на всех моделях покоя *in vitro*

1.5. Протеомные исследования моделей покоя in vitro

В настоящее время с развитием биохимических методов появляется все больше данных о *Mtb* описывающих метаболизм и взаимодействие с хозяином. Полная геномная последовательность была опубликована более 20 лет назад [50]. Согласно последней аннотации генома *Mtb* из 4173 генов 4018 белок кодирующих последовательностей. (91.2% всего генома). С применением протеомных исследований для 3818 из 4018 показана возможность образования белкового продукта [7]. Однако функция для 1042 беков остается неизвестной. Методы протеомного анализа используются для сравнения различных штаммов *Mtb* и поиска белков обеспечивающих фенотипическое разнообразие штаммов [209] или для сравнения разных видов патогенных микобактерий [210]. Значительно меньше данных получено для *Mtb* на различных стадиях роста, таких как, например, поздняя стационарная фаза. Еще меньше данных о воздействии различных стрессовых факторов или при переходе в состояние покоя.

При помощи двумерного электрофореза Ang с соавт. [211] показано, что <u>в</u> поздней стационарной фазе происходит повышение уровня экспрессии всего

двух белков Rv0577 и Rv2161. Белок Rv0577, который, возможно, является фактором вирулентности [212], может принимать участие в детоксификации метилглиоксаля и антибиотиков [213]. Rv2161 принимает участие в синтезе ланкомицина, антимикробного агента предотвращающего метилирование pPHK [214]. Для шести белков показано снижение уровня экспрессии в поздней стационарной фазе, два из которых, так называемые «белки домашнего хозяйства»: сукцинил-КоА-синтетаза (Rv0952) и антранилат-фосфорибозил трансфераза (Rv2192c), три белка принимающих участие в синтезе клеточной стенки (Rv 1139, Rv0244, Rv3280) и один интегральный белок с неизвестной функцией (Rv 3224).

На модели <u>голодания Лёбеля</u> при помощи метода 2D электрофореза [3] а позже и LS-MS/MS анализа [8] показано изменение уровня экспрессии 7 и 67 белков соответственно. Обе группы отметили снижение экспрессии белка богатого пролином Ара (Rv1860), изменение экспрессии, которого обнаружено только на модели Лебеля, однако функция этого белка до сих пор неизвестна. Также обе группы исследователей обнаружили значительное снижение рибосомальных белков в культуре клеток при голодании как протеомными, так и транскриптомными методами. Albrethsen с соавт. на «голодающих» клетках обнаружили уменьшение экспрессии сукцинил-синтетазы (Rv0952) - белка цикла трикарбоновых кислот, что, возможно, говорит о снижение активности этого пути. Также уменьшение экспрессии этого фермента было обнаружено с помощью протеомного анализа клеток поздней стационарной фазы [211] и транскриптомного анализа покоящихся клеток в модели Вейна [215].

Обращает на себя внимание тот факт, что в голодающих клетках снижается количество белков, участвующих в различных биосинтетических процессах, таких как синтез ферредоксина (FdxA /Rv2007), HAД (кинуренин синтетаза/ Rv1594) и аминокислот (Rv3858c; Rv2988c; Rv0189c). По сравнению с клетками в логарифмической фазе роста у покоящихся клеток в модели Лёбеля обнаружено увеличение экспрессии ряда трансмембранных белков,

АТФ-синтаза (Rv1308-1312), железо, как молибден И фосфат таких транспортных систем (Rv3044; Rv0265; Rv1857), что свидетельствует об активности транспорта на модели покоя при голодании. Изменения в уровне экспресии транскрипционных регуляторов редко обнаруживаются при анализе в протеомном силу их низких количеств в клетке, однако исследователям удалось показать увеличение одного транскрипционного регулятора RelA, который является первичным мессенджером в запуске «строгого ответа». При голодании происходит ожидаемое увеличение ферментов обладающих еноил-коэнзимА-гидратазной активностью, поскольку они участвуют в бэта-оксилении жирных кислот и продукции коэнзима А, и, как следствие, получении энергии столь необходимой в условиях отсутствия субстратов извне. Было показано увеличение транскрипции ферментов участвующих в синтезе и транспорте порфирина (CysG, HemC, HemZ, Rv1314c) на модели голодания Лёбеля. Ранее увеличение накопления пигмента порфириновой структуры было обнаружено у микобактериальных культур растущих без доступа кислорода [216], а затем на модели Вейна [217]. Для значительного количества липопротеинов обнаруживается увеличение уровня транскрипции при голодании, и функции их крайне разнообразны. Некоторые принадлежат семейству АВС транспортеров, осуществляющих транспорт пептидов (FecB, FecB2, ModA, PstS1, and PstS2). Другие являются ферментами деградации, такими как гликозилгидралазы и аминопептидазы (LpqI, LpqL, LpqM), или сигнальными молекулами (LprA and LppH). Лишь для одного липопротеида Albrethsen с соавт. показали уменьшение уровня экспресии (Rv2934), который, согласно анотации, является поликетидсинтетазой.

В покоящихся клетках в модели Лёбеля увеличивается уровень белков участвующих в токсин-антитоксиновых системах (TA), а именно 9 токсинов и 2 антитоксина принадлежащих семействам VapBC, RelBE и MazEF. Результатом действия этих токсинов является снижение уровня трансляции и, как следствие, замедление размножения бактерий. Стоит заметить, что один из токсинов

семейства VapBC (Rv2829c) является «консенсусным» белком, экспрессия которого увеличивается и на модели Вейна, тем самым обнаруживая сходство в процессе перехода в состояние покоя.

Самой изученной моделью покоящегося состояния *Mtb* является модель <u>гипоксии Вейна</u>. Первые работы по сравнительному протеомному анализу между покоящимися и активно растущими клетками в этой модели были сделаны на близкородственном возбудителе туберкулеза у крупного рогатого скота *M.bovis*. На этой модели покоя для *M.bovis* в 2001 году с помощью двумерного электрофореза было показано увеличение экспрессии гомолога альфа-кристаллина (Rv2031), транскрипционного регулятора (Rv3133), который, как позже стало известно, является регулятором DosR регулона. Помимо этого, обнаружено увеличение белка из семейства универсальных стрессовых белков (Rv2623) а также белка теперь известного как «белок гипоксии» (HRP/Rv2626) [218].

Можно считать частным случаем гипоксии состояние, при котором клетки выращивались в статических условиях до достижения середины фазы логарифма. При сравнении протеомных профилей клеток *M. Bovis* выращенных таким образом, с клетками выращенными с перемешиванием Florczyk с соавт. получили результаты очень близкие к полученным на модели гипоксии Вейна [2]. Как и в классической модели Вейна, в клетках выращенных без экспрессия перемешивания увеличивается гомолога альфа-кристаллина (Rv2031), универсальных стрессовых белков (Usp/2623). Отличительными белками модели гипоксии без перемешивания являются тиосульфат сульфотрансферазы (Rv0815/Rv3117), белок из семейства ключевого фермента гликолиза глицеральдегид-2-фосфат дегидрогеназы (GAPDH/Rv1436), малат синтетаза (GlcB/Rv1837) и каталаза-пероксидаза (KatG/Rv1908). Авторы объясняют увеличение GAPDH тем, что при образовании спирта из пирувата в анаэробной фазе гликолиза образуется НАД, что является способом получения энергии в отсутствие кислорода. Об изменении интенсивности глиоксилатного

шунта свидетельствует увеличение экспрессии малат синтетазы (GlcB/Rv1837) - второго фермента глиоксилатного шунта, который необходим для выживания в анаэробных условиях *in vitro* [51] и *in vivo* в макрофагах [219]. Также увеличивается экспрессия каталазы-пероксидазы (KatG/Rv1908), защищающей клетки от реактивных форм кислорода продуцируемых макрофагами, в том числе KatG играет важную роль при выживании *Mtb* в легких мышей и морских свинок [220].

Затем протеомные исследования проведенные *M.tuberculosis* на подтвердили данные полученные на *M. bovis* о накоплении некоторых белков в состоянии гипоксии. В 2002 году протеомные исследования Mtb с помощью в двумерного электрофореза Rosenkrands с соавт. было показано увеличение экспрессии 7 белков в состоянии гипоксии в клетках выращенных как при 1% кислорода, так и при 5%. [4]. Среди этих белков HspX (Rv2031), белок семейства малых шаперонов индуцируемых при тепловом шоке, для которого к тому времени уже было показано повышение экспрессии в состоянии гипоксии на *M.bovis* [2,218,221] и *M.tuberculosis* [154,222] и при инфекции в макрофагах [208,223]. Вместе с тем, доказано увеличение экспрессии типичных для состояния гипоксии белков: универсального стрессового белка (UspA/ Rv2623), «белка гипоксии» (Rv2626) и аланиндегидрогеназы (Rv2780), белков входящих в DosR регулон и его регулятора (Rv3133c). Показано увеличение уровня экспрессии бактреиоферритина (Rv3841), который участвует в метаболизме внутриклеточного железа, осуществляющего функцию детоксификации от свободных форм железа и для которого уже было показано увеличение транкрипции при гипоксии [154]. Тот факт, что при гипоксии у Mtb накапливается белок с неизвестной функцией Rv0569, который не был обнаружен при гипоксии у M. Bovis, авторы связывают не с различиями в строении бактерий, а в недостатках методов, которые применялись при исследовании *M. bovis*. Но стоит отметить, что его гиперэкспрессия при гипоксии у *M. bovis* не была обнаружена и более поздними исследованиями.

Интересно, что Rosenkrands с соват. показали увеличение уровня экпрессии белка участвующего в гликолизе, а именно фруктозо-бифосфат-альдолазы (Fba/Rv0363) при гипоксии, что, возможно, говорит об увеличении активности гликолиза при переходе в состояние покоя.

Была предпринята еще одна попытка обнаружить белки участвующие в переходе И поддержании состояния покоя с использованием модифицированной модели гипоксии Вейна и штамма *Mycobacterium* tuberculosis Harlingen. В 2004 Starck с соват. используя метод двумерного электрофореза обнаружили увеличение экспресии 16 белков в покоящихся клетках на модели Вейна. Помимо белков, участие которых уже было показано при гипоксии (HspX /Rv2031, UspA/ Rv2623, «белка гипоксии» Rv2626 и аланиндегидрогеназы Rv2780), белков с неизвестной функцией, и шаперонов, и было обнаружено увеличение экспресии белков связанных с метаболизмом мембран и клеточной стенки (Rv0503c/синтетаза циклопропановых жирных кислот, Rv2246/β-кетоацил-АСР-синтетаза). β-кетоацил-АСР-синтетаза/ Rv2246 участвует в синтезе миколовых кислот, осуществляющих защитную функцию, а циклопропанизация жирных кислот осуществляемая Rv0503c защищает клетки от окислительного стресса уменьшением текучести и проницаемости мембран.

С целью обнаружить универсальные для разных штаммов *Mtb* белки, был участвующие В покоящемся состоянии, проведен сравнительный протеомный анализ трех штаммов, подвергнутых предварительно условиям гипоксии. Помимо гипервирулентного штамма H37Rv Devasundaram с соавт. использовали два штамма широко распространенных в южных районах Индии (S7 и S10), и методом двумерного электрофореза выявили в цитозольной фракции клеток 7 белков, у которых увеличивается экспрессия во всех штаммах при гипоксии [6]. Среди них, помимо уже известных «белков Rv1240/малатдегидрогеназа Rv0462 гипоксии», присутствуют И дигидролипоамид дегидрогеназа, увеличение эскпрессии которых в состоянии

покоя авторы связывают с переходом на использование жирных кислот в качестве источника углерода.

Наиболее полный протеомный анализ покоящихся клеток, образующихся при гипоксии согласно модели Вейна, был сделан в 2015 году с использованием высокотехнологичного метода SWATH MS [7]. Исследователи показали изменение экспрессии около 200 белков в состоянии гипоксии Вейна по сравнению с активнорастущими клетками Mtb. Однако сами авторы отмечают, что несмотря на высокую чувствительность метода и значительные изменения в физиологии клеток (вплоть до остановки размножения) различия в белковом составе оказались крайне незначительными. Значительно изменилась экспрессия лишь 50 белков, относящихся к DosR регулону и ответу на гипоксию. Затем, проведя сходный протеомный анализ с использованием клеток вакцинного штамма *M. bovis*, исследователи удостоверились, что основные изменения в белковом составе клеток, подвергшихся гипоксии играет DosR регулон. Также обнаружено незначительное снижение экспрессии рибосомальных белков. Показано увеличение экспрессии аланиндегидрогеназы (Rv2780), которая является специфическим для модели гипоксии [4-6], и изменение которой не показано в других моделях покоя, и других видах стресса.

Протеомные исследования недавно появившейся модели покоя под действием витамина С пока сделаны только с использованием близкородственного быстрорастущего родственника Msm. Однако изменения, обнаруженные в результате в протеомном профиле покоящихся клеток, дают основание полагать, что процессы в обоих бактериях (*Mtb* и *Msm*) происходят сходным образом. Стоит отметить, что концентрация аскорбиновой кислоты выбранная для воздействия на клетки Msm (2 мМ), ниже чем для Mtb (10 мМ) и размножения является минимальной для подавления бактерий. С использованием LC/MS метода было показано, что в клетках, подвергшихся воздействию витамина С в течение нескольких дней, происходят изменения в

экспрессии 185 белков. Среди них ферменты гликолиза, цикла трикарбоновых кислот и пентозомонофосфатного пути, снижение экспрессии которых показано при воздействии витамина С. Также в таких клетках происходит снижение экспрессии ферментов синтеза жирных и миколовых кислот. Однако обнаруживается увеличение В то же время экспрессии ферментов, миколовых осуществляющих циклопропанизацию которая кислот, не характерна для сапрофитных организмов, как *Msm*, но играет важную роль у патогенных микобактерий. Обнаружено характерное для покоящихся клеток снижение экспрессии компонентов АТФ-синтазы, а так же увеличение экспрессии таких транскрипционных регуляторов, как PhoP и DosR, каждый из которых приводит к экспрессии более 50 генов. Впервые для покоящихся клеток показано увеличение гистон-подобного белка Lsr2, осуществляющего защиту от активных форм кислорода [224]. В отличие от остальных моделей которых показано увеличение покоя, для уровня экспрессии бактреиоферритина, в клетках подвергшихся воздействию С витамина происходит снижение его экспрессии. Исследователи связывают это с увеличением использования железа в качестве кофактора железосодержащих ферментов, осуществляющих защиту от окисления (каталаза-пероксидаза) либо перенос электронов (железосерные ферменты).

В результате сравнительного анализа между различными моделями покоя обнаруживаются белки, экспрессия которых меняется при переходе в состояние покоя в разных моделях *in vitro*, не зависимо от индуцирующего фактора.

Таблица 1. Консенсусные белки, количество которых меняется при переходе в состояние покоя как минимум в двух моделях покоя.

Продукт	Номер гена	Регуляция	Условия получения покоящих микобактерий /модель	Ссылка
Possible cellulase CelA1	Rv0062	down- regulated	Голодание/Лёбель	Albrethsen, 2013
(endo-1,4-beta- glucanase)			Гипоксия/Вейн	Schubert, 2015

Conserved hypothetical	Rv0080	up- regulated	Витамин С	Mishra and Sarkar 2015
protein		regulated	Гипоксия/Вейн	Schubert, 2015
Putative phosphoribosyl	Rv0571c	up- regulated	Голодание/Лёбель	Albrethsen, 2013
transferase			Гипоксия/Вейн	Schubert, 2015
Probable succinyl-CoA	Rv0952	down- regulated	Голодание/Лёбель	Albrethsen, 2013
synthetase (alpha chain) SucD			поздняя стационарная фаза	Ang et al., 2014
Acyl-CoA dehydrogenase FadE12	Rv0972c	down- regulated	Голодание/Лёбель	Albrethsen, 2013
		up- regulated	Гипоксия/Вейн	Schubert, 2015
Possible acyl-[acyl-		un-	Голодание/Лёбель	Albrethsen, 2013
carrier protein] desaturase DesA2	Rv1094	regulated	Гипоксия/Вейн	Schubert, 2015
Putative ESAT-6 like		down-	Голодание/Лёбель	Albrethsen, 2013
protein EsxL (ESAT-6 like protein 4)	Rv1198	regulated	Гипоксия/Вейн	Schubert, 2015
Probable transcriptional	Dv1210c	up- regulated	Голодание/Лёбель	Albrethsen, 2013
regulatory protein	RVIZI9C		Гипоксия/Вейн	Schubert, 2015
Beta-carbonic anhydrase	Rv1284	up- regulated	Гипоксия/Вейн	Devasundaram, 2016
			Голодание/Лёбель	Albrethsen, 2013
			Гипоксия/Вейн	Schubert, 2015
Probable thioredoxin	Rv1471	down- regulated	Голодание/Лёбель	Albrethsen, 2013
TrxB1			Гипоксия/Вейн	Schubert, 2015
Immunogenic protein	Rv1980c	down- regulated	Голодание/Лёбель	Betts et al. 2002
Mpt64			Гипоксия/Вейн	Schubert, 2015
Probable cutinase	Rv1984c	down- regulated	Голодание/Лёбель	Albrethsen, 2013
precursor CFP21			Гипоксия/Вейн	Schubert, 2015
Uncharacterized		up- regulated	Голодание/Лебель	Albrethsen, 2013
methyltransferase superfamily protein	Rv2003c		Гипоксия/Вейн	Schubert, 2015
Universal stress protein	Rv2005c	up- regulated	Гипоксия/Вейн	Schubert, 2015
family protein			модиф. модель гипоксии	Starck et al. 2004
Ferredoxin FdxA	Rv2007c	down- regulated	Голодание/Лёбель	Albrethsen, 2013
		up- regulated	Гипоксия/Вейн	Schubert, 2015
Heat shock protein HspX (alpha-crystallin homolog) (14 kDa antigen) (HSP16.3)	Rv2031	up- regulated	гипоксия при отсутствии перемешивания (на <i>М. bovis</i>)	Florczyk 2001
			модиф. модель гипоксии/Вейн	Starck et al. 2004
			Голодание/Лёбель	Betts et al. 2002

			Витамин С (на <i>Msm</i>)	Mishra and Sarkar 2015
			Гипоксия/Вейн	Schubert, 2015
			модиф. модель гипоксии	Devasundaram, 2016
			Гипоксия/Вейн	Ida Rosenkrands 2002
			модиф. модель гипоксии	Starck et al. 2004
			Гипоксия/Вейн (<i>М. bovis</i>)	Boon, Li, and Qi 2001
Diviva family protein Wag31	Rv2145c	up- regulated	Голодание/Лёбель	Albrethsen, 2013
		down- regulated	Витамин С (на <i>Msm</i>)	Mishra and Sarkar 2015
		up- regulated	модиф. модель гипоксии	Devasundaram, 2016
Probable fatty acid	$D_{\rm V}$ 2524c	down-	Голодание/Лёбель	Albrethsen, 2013
synthase Fas		regulated	Гипоксия/Вейн	Schubert, 2015
Uncharacterized protein		up- regulated	Голодание/Лёбель	Betts et al. 2002
(carbon starvation- inducible gene)	Rv2557		Гипоксия/Вейн	Schubert, 2015
Uncharacterized protein	Rv2558	up- regulated	Голодание/Лёбель	Albrethsen, 2013
(carbon starvation- inducible gene)			Голодание/Лёбель	Betts et al. 2002
			Гипоксия/Вейн	Schubert, 2015
Possible toxin VapC41.	Rv2602	up- regulated	Голодание/Лёбель	Albrethsen, 2013
Contains PIN domain			Гипоксия/Вейн	Schubert, 2015
	Rv2829c	up- regulated	Голодание/Лёбель	Albrethsen, 2013
Possible toxin VapC22			Гипоксия/Вейн	Schubert, 2015
Possible glutaredoxin protein	Rv3198A	down- regulated	Гипоксия/Вейн	Schubert, 2015
			Голодание/Лёбель	Albrethsen, 2013
Probable L-lysine-		up- regulated	Гипоксия/Вейн	Schubert, 2015
epsilon aminotransferase	Rv3290c		Голодание/Лёбель	Albrethsen, 2013
Nucleoid-associated protein	Rv3716c	up- regulated	модиф. модель гипоксии	Devasundaram, 2016
			Витамин С (на <i>Msm</i>)	Mishra and Sarkar 2015
Fatty-acid-AMP ligase FadD32	Rv3801c	down- regulated	Голодание/Лёбель	Albrethsen, 2013
			Витамин С (на <i>Msm</i>)	Mishra and Sarkar 2015

Для всех моделей покоя, кроме поздней стационарной фазы, показано увеличение экспрессии гомолога альфа-кристалина (Heat shock protein HspX),

входящего в DosR регулон. Все исследователи моделей покоя отмечают снижение процессов синтеза АТФ и активности дыхания. С появлением высокочувствительных методов исследования протеома показано увеличение экспрессии токсинов семейства VapC и белка с неизвестной функцией ESAT-6. Все исследователи, осуществляющие сравнительный протеомный анализ, проблемой сталкиваются с интерпретации результатов, связаных С увеличением или снижением белков с неизвестной функцией. От четверти до половины белков, для которых показано изменение экспрессии в состоянии покоя, являются белками с неизвестной функцией. Стоит отметить, что несмотря на совершенствование методов между моделями существует значительное расхождение, и до сих пор нет единого понимания процессов происходящих в покоящихся клетках.

Суммируя вышеприведенные литературные данные, становится очевидно, что несмотря на множество проведенных экспериментов, нет точного представления о том, какие молекулярные механизмы происходят в клетках патогена, вызывающих латентную форму инфекции. Мы полагаем, что это связано, в том числе, с несовершенством использованных моделей для проведения анализа покоящихся клеток. *In vitro* модели покоящегося состояния, на которых ранее проводились, в том числе, протеомные анализы покоящихся клеток, не до конца имитируют истинное состояние покоя. В связи с этим существует необходимость в установлении процессов, происходящих в покоящихся клетках с использованием более совершенной модели, лучше имитирующей истинное состояние покоя, такой как модель основанная на постепенном закислении культуральной среды описанная Шлеевой [14].

Для характеристики покоящихся клеток в моделях *in vivo* и *in vito* часто используют транскриптомный анализ, однако ценность такого анализа для покоящихся клеток в условиях сниженной (или отсутствующей) транскрипционной активности не велика. Более рационально исследовать

непосредственно присутствующие в покоящихся клетках белки и ферменты, что позволяет сделать протеомный анализ. В связи с этим, в данной работе исследуется изменения протемного профиля активных и покоящихся клеток *Mtb* и *Msm* в наиболее адекватной модели, основанной на закислении среды роста для выявления возможных процессов, участвующих в образовании и длительном поддержании состояния покоя.

•

2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Микробиологические методы и культуры клеток

2.1.1. Культуры клеток

Культура *Мусоbacterium smegmatis* mc²155 выращивалась в течение 24 часов на МПБ (мясопептонный бульон) ("Himedia") (NBE) в присутствии 0.05% Tween-80 при 37°С на шейкере (220 грm) в 50 мл среды в колбах на 100 мл. Полученный инокулят (10^5 – 10^6 клеток) добавляли в 200 мл среды Сатона, pH 7.0 до 1% имеющей следующий состав на 1 л: 0.5 г KH₂PO₄; 1.4 г MgSO× 7H₂O; 4 г L-аспарагина; 60 мл глицерина; 0,05 г цитрата аммония железа (III); 2 г цитрата натрия и 0.1 мл 1% ZnSO₄×7H₂O с добавлением 0.05% Твин-80 [225]. Культура для получения активных форм выращивалась в течение 2 дней при 37 °С на шейкере (220 грm).

Метод получения покоящихся форм *Msm* был разработан в нашей лаборатории ранее [106] и отличается от получения активных форм составом среды и временем культивирования. Модифицированная среда Сатона для получения покоящихся форм содержала те же самые компоненты, однако изначальный pH среды составлял 6.0–6.2 и культура выращивалась в течение 14–15 дней при 37 °C на шейкере (220 грm). Когда pH культуральной жидкости после периода защелачивания снова достигал 6.0–6.2, культуру переносили в пластиковые фальконы с плотно закрытой крышкой и хранили в течение 30 дней без перемешивания, при комнатной температуре, в темноте, в течение 30 дней.

Штамм *M. tuberculosis* H37Rv первоначально выращивали в течение 8 дней в жидкой среде Middlebrook 7H9 (Himedia, Индия) с добавлением 0.05% Tween 80 и ADC (Himedia, Индия). Культура с концентрации 10^5-10^6 клеток на мл выращенная в вышеуказанной среде, служила инокулятом, который добавляли в количестве 250 мкл в среду Сатона (pH 7.0) для получения активных клеток, и в модифицированную среду Сатона (pH 6.0) для получения покоящихся клеток

по методу разработанному ранее в нашей лаборатории [14]. Для *Mtb* среда Сатона дополнительно содержала 0.5% (мас. /об.) BSA (Cohn, Sigma), 0.025% (мас. /об.) тилоксапол и 5% (мас. /об.) глюкозы. Культуры инкубировали при 37 °С с перемешиванием (200 rpm) в течение 10 дней для получения активных клеток, или 30-45 дней для получения покоящихся клеток. Когда рН культуральной жидкости после периода защелачивания снова достигал 6.0-6.2, культуры переносили в пробирки с плотно закрытыми пластиковыми крышками (50 мл) И хранили далее в статических условиях, без перемешивания, при комнатной температуре, в темноте до 13 месяцев. Во время переноса добавляли MOPS, pH 6.0 до конечной концентрации 100 мМ для предотвращения быстрого закисления среды при длительном хранении.

2.1.2. Реактивация клеток

Покоящиеся клетки *Msm* после двукратной отмывки фосфатным буфером (pH 6.0) ресуспендировали в 200 мл реактивирующей среды, содержащей среду Сатона (pH 7.0) и МПБ смешанных в соотношении 1:1, с добавлением 0,025% тилоксапола. Для того чтобы получить культуру с оптической плотностью OD 600 = 0.3-0.4 клетки разводили средой роста и переносили в колбы на 500 мл. Инкубация проводилась при 37 °C в течение 24 ч с перемешиванием при 100–120 об/мин, и культуры периодически отбирались для проведения анализа.

2.1.3. Микроскопия

Фазово-контрастная и эпифлуоресцентная микроскопия для культур клеток производилась на микроскопе Nikon eclipse Ni-U microscope с использованием PI (propidium iodid) в конечной концентрации 3 mM для обнаружения мертвых клеток. Фазово-контрастная микроскопия производилась при 1500 кратном увеличении. Эпифлуоресцентная микроскопия производилась в режиме "TRITC channel" (Ex =540/25 nm; DM = 565 nm; BA =

605/55 nm). Фотографии сделаны с использованием камеры Nikon DS Qi2 (Japan).

2.1.4. Подсчет НВЧК

Подсчет наиболее вероятного числа клеток (НВЧК) (MPN, most probable number) производили в жидкой среде, в пластиковых 48 луночных планшетах (Corning). После проведения серии разведений (100 мкл культуры+900 мкл жидкой среды) планшеты инкубировались при 37°С и на шейкере (130 грт) в течение 10 дней. После инкубирования лунки планшета, имеющие видимый рост, считались как положительные при подсчете НВЧК, проведенного с использованием стандартных статистических методов [226]. Для Msm использовалась жидкая среда, содержащая среду Сатона (pH 7.0) и МПБ смешанных в соотношении 1:1. Для *Mtb* использовали усовершенствованную версию, позволяющую выращивать большее число потенциально живых клеток, что крайне важно покоящихся «не культивируемых» клеток не способных к росту на плотных средах. Среда для подсчета НВЧК для *Mtb* содержала: МПБ, среду Сатона (рН 7.0), среду Мейдельбрука 7Н9(Himedia, India), RPMI (Thermo Fisher Scientific, USA) разведенных в соотношении (1:1:1:1), с добавлением 0.5% (масс./об.) глицерина, 0.05% (масс./об.) Tween 80, 10% ADC (Himedia, India).

2.1.5. Подсчет КОЕ

Бактериальную культуру разводились шагом 10 в жидкой среде Сатона (pH 7.0) смешанной с МПБ в соотношении (1:1). Затем по 10 мкл из каждого разведения переносили на плотную питательную среду (МПБ+агар), в трех повторностях. Чашки инкубировали при 37 °C в течение 4–5 дней для *Msm* и 22-25 дней для *Mtb*. После инкубирования проводили подсчет КОЕ. Нижний предел обнаружения составляет 10 клеток/мл.

2.1.6. Проверка метаболической активности

Клеточная метаболическая активность была измерена с помощью включения радиоактивного [5,6-³H]-урацила (1 μ Ci, 0.02 μ моль) и L-[U-¹⁴C]аспарагина (4 MBq, 0.02 μ моль). Для этого добавляли 1 мкл радиоактивного вещества к 1 мл клеточной суспензии, и инкубировали в течение 4 часов (для *Msm*) или 24 часов (для *Mtb*) при 37 °C с перемешиванием, и параллельно при комнатной температуре без перемешивания. Клеточную культуру (200 мкл) осаждали на стеклянном фильтре (GF/CTM filter, Whatman, UK) и отмывали трижды по 3 мл 7% трихлоруксусной кислоты, затем 3 мл чистого этанола. После высушивания фильтр перемещали в 10 мл сцинтилляционной жидкости (Ultima GoldTM, Perkin Elmer, USA). Радиоактивное излучение регистрировали с помощью счетчика (Scintillation counter LS6500, Beckman, USA).

2.1.7. Проверка активности дыхательной цепи

Активность дыхательной цепи измеряли спектрофотометрически по восстановлению DCPIP (OD₆₀₀), а также по поглощению кислорода, что регистрировалось с помощью полярографа. DCPIP - это синтетический акцептор электронов, который восстанавливается за счет метахинона при условии активности дыхательной цепи. Реакционная смесь содержала 0.2 µмоль DCPIP, 0.6 µмоль менадиона и 400 мкл клеточной суспензии в фосфатном буфере (pH 7.4)

2.4. Проверка чувствительности к антибиотикам

Один миллилитр клеточной суспензии *Msm* разводили в клеточном супернатанте для получения концентрации 10⁸ КОЕ/мл. Затем к клеточной суспензии добавляли рифампицин или бедаквилин в концентрации 50 мкг/мл и инкубировали без перемешивания при 37 °C в течение 7 дней. С гигромицином

в концентрации 100 мкг/мл клетки инкубировались 1 день. Количество резистентных клеток измеряли с помощью НВЧК анализа.

2.2 Проведение двумерного электрофореза

2.2.1. Приготовление образцов для проведения двумерного электрофореза

Культуру клеток после наращивания биомассы откручивали при 7 000 грт 15 минут. После осаждения клетки были отмыты несколько раз с помощью буфера содержащего:8 г NaCl, 0.2 г KCl, 0.24 г Na₂HPO₄ (pH 7.4). После отмывки клеточный осадок ресуспензировали в растворе 100 мМ HEPES буфера (pH 8.0), содержащем коктель ингибиторов протеиназ (Sigma, USA) и PMSF(phenylmethanesulfonylfluoride). Клетки были разрушены на гомогенизаторе (MP Biomedicals FastPrep-24) с помощью циркониевых бус 5 раз по 1 минуте для активных клеток и 10 раз для покоящихся. Лизат клеток откручивали при 13 000 об/мин 15 минут при 4°С для удаления бус и неразрушенных клеток. Для получения мембран клеток лизат откручивали на ультрацентрифуге при 100 000 g (Bekman, USA) в течение 2 часов при 4°С. Мембранную фракцию отмывали трижды с помощь HEPES буфера каждый раз осаждая на ультрацентрифуге. Для получения экстракта белков из клеток Msm использовался цвиттерионый детергент CHAPS 2% (масс./об.). После первой экстракции мембраны отмывались с помощью HEPES буфера трижды и осаждались на ультрацентрифуге. После этого проводили вторую экстракцию с помощью сильного анионного детергента SDS 2% (масс./об.). Для *Mtb* первой и единственной являлась экстракция с помощью SDS. Цитозольную фракцию и экстракты из мембран переосаждали с использованием ReadyPrep 2-D cleanup kit (BioRad, USA) для удаления примесей небелковой природы и детергентов. Осадок белков перерастворяли буфере проведения В ДЛЯ изоэлетрофокусирования состава: 8M 2M следующего мочевины,

тиомочевины, 10 mM ДТТ, 2 мМ ТСЕР, CHAPS, 1% (масс./об.) Triton X-100, 1% (масс./об.) ASB и 0.4 % (об./об.) амфолиты 2% (pH 3–10).

2.2.2. Определение количества белка

Количественная оценка белка производилась по методу Flores [227]. В 180 мкл реакционной смеси содержался бромфеноловый синий (0.0075%), растворенный в растворе 15% этанола и 2.5% ледяной уксусной кислоты. К реакционной смеси добавляли 20 мкл образца. Оптическую плотность определяли спектрофотометрически при 610 нм.

2.2.3. Двумерный форез

Изоэлектрофокусирование белков в первом направлении представляло собой неравновесный электрофорез в градиенте рН,который создавался с помощью амфолинов в двух рядах рН, 3-9 и 4-6. Изоэлектрофокусирование проводилось в 5% акриламидном геле (Т=0.04) в стеклянных трубочках длинной 14 см, с внутренним диметром трубочек 2.4 мм, в камере Tube Cell (Model 175, BioRad, USA) до достижения 3700 вольт/часов. Акриламидный гель содержал 8М мочевины, 2% (об./об.) амфолитов рН 3-10 и 4-6 (1:4), 1% (масс./об.) CHAPS, 1% (масс./об.) Triton X-100, 0.4% (масс./об.) ASB. Непосредственно перед заполнением стеклянных трубок к смеси добавляли персульфат аммония и ТЕМЕД (0.036% конечная концентрация). После изоэлектрофокусирования гели извлекались из трубочек и фиксировали в растворе содержащем 0.375 M Tris-HCl, pH 6.8, 2М мочевины, 20% (об./об.) глицерин, 2% (масс./об.), SDS, 2% (масс./об.) DTT, а затем в буфере содержащем 0.375 M Tris-HCl, pH 6.8, 2М мочевины, 20% (об./об.) глицерин, 2% (масс./об.) SDS, 0.01% (масс./об.) бреомфеноловый синий в течение 15 минут в каждом. Полученные гели сразу использовали для фракционирования во втором направлении электрофореза.

Второе направление проводили согласно методике O'Farrell [228] в большом формате (20×20 см), в акриламидном геле с толщиной 1.5 мм в Трисглициновом буфере в камере PROTEAN II для вертикального электрофореза (BioRad, USA). Между стекол наслаивали разделяющий гель, содержащий 12% акриламид, 1% (масс./об). SDS, 0.375 М Tris-HCl pH 8.8, персульфат аммония и ТЕМЕД (0.036%) концентрация). конечная Сверху наслаивали концентрирующий гель. содержащий 6% акриламид, 0.125 М Tris-HCl pH 6.8, 1% (масс./об) SDS, персульфат аммония и ТЕМЕД (0.036% конечная концентрация). Гели полиакриламидного геля с разделенными белками после изоэлектрофокусирования использовали в качестве стартовой зоны на втором направлении и укладывалась на концентрирующий гель. Сверху гели, после изоэлектрофокусирования, полученные заливали расплавленным раствором агарозного геля, содержащим 1% агарозу в растворе электродного буфера для электорфореза с добавлением 0.125% бромфенолового синего. Второе направление электрофореза проводили при напряжении при 60 мА на одну пластину. Разделение белков прекращали, когда лидирующий краситель доходил до нижнего края разделяющего геля.

Полученные таким способом гели окрашивались с помощью Coomassie CBBG-250 (Roti-Blue Carl Roth, Germany), с последующим окрашиванием серебром. Для этого гели помещали в раствор тиосульфата натрия (0.01% масс./об.) на 2 минуты, и после трехкратной отмывки помещали 0.1% (масс./об.) водный раствор нитрата серебра содержащий 0.1% (об./об.) формальдегида на 15 минут. После трехкратной отмывки водой гели проявляли 4% карбоната натрия, растворе содержащем 1% формальдегида В (https://www.alphalyse.com/wp-content/uploads/2015/09/Silver-stainingprotocol.pdf).

Фотографии гелей были сделаны с использованием гельдокументирующей системы Syngene G:BOX Gel & Blot Imaging Systems (Syngene, UK). Фотографии гелей окрашенных Кумасси были использованы

для денситометрического анализа усредняли между двумя техническими проворностями с помощью программы TotalLab TL120 для каждой биологической повторности. Относительная погрешность для значений плотности каждого пятна не превышала 5%.

Каждое видимое пятно вырезалось из геля вручную и анализировалось с помощью MALDI-TOF. Данные пептидных последовательностей MS/MS полученные после анализа MALDI-TOF подверглись поиску в базе данных Mascot Protein Database (MSDB) для идентификации белков. Белки, для которых покрытие пептидной последовательностью, полученной после MALDI-TOF анализа было менее 10% в дальнейшем не рассматривались. Для идентифицированных белков описание было взято с базы данных Tuberculist для белков *Mtb* ил с базы данных Smegmalist для белков *Msm*.

2.2.4. Анализ MALDI-TOF

Все образцы геля, полученные после двумерного электрофореза, были гидролизованы с помощью трипсина в 0.05М NH₄HCO₃ с концентрацией 15мкг/мл. Гидролиз проводили в течение 5ч. при 37°С, затем к раствору добавляли 5.25мкл 0.5% трифторуксусной кислоты в 50% растворе водного ацетонитрила и тщательно перемешивали. Надгелевый раствор использовали для получения MALDI-масс-спектров. Масс-спектры были получены на MALDI-времяпролетно-времяпролетном масс-спектрометре Ultraflextreme BRUKER (Германия), оснащенном УФ лазером (Nd) в режиме положительных ионов с использованием рефлектрона; Macc-спектры были обработаны с помощью программного пакета FlexAnalysis 3.3 (Bruker Daltonics, Германия).

Данные полученные с прибора, спектры, результаты поиска, а также результат обработки можно обнаружить по ссылке на базу данных PeptideAtlas:

http://www.peptideatlas.org/PASS/PASS01450 (для *M. tuberculosis*) http://www.peptideatlas.org/PASS/PASS01462 (для *M. smegmatis*)

2.3.Измерение уровня метаболитов

2.3.1.Экстракция растворимых веществ

Растворимые вещества экстрагировали из клеток в соответствии с процедурой, описанной [229]. Один миллилитр хлороформа и 2 мл метанола добавляли к 0.8 г биомассы клеток. Экстракцию проводили в течение 12 ч. при комнатной температуре периодически встряхивая, потом центрифугировали при 5 000 g 15 минут для удаления клеток. После этого добавляли 1 мл воды и 1 мл хлороформа для разделения фаз. Водно-метанольный слой анализировали с помощью TCX, ЯМР или ВЭЖХ.

2.3.2. Измерение уровня тиолов

Биомассу клеток осаждали центрифугированием (5 000 g 15 минут), перерастворяли в 20 mM HEPES буфере, pH 7.4 содержащем 10 mM ЭДТА и 50% (масс./об.) ацетонитрила. Для получения экстракта образцы были прогреты при 60 °C в течение 10 минут. 2 мг DTNB растворялись в 3 мл HEPES–ЭДТА буфера, pH 7.4. Реакционная смесь содержала 100 мкл экстракта, 100 мкл раствора DTNB и 700 мкл HEPES–ЭДТА буфера. Тиолы при взаимодействии с DTNB образуют TNB (5-thio-2-nitrobenzoic acid), уровень которых определялся относительно стандартной калибровки, спектрофотометрически при 412 нм.

2.3.3. Измерение внутриклеточных концентраций NADH и NAD+

К 100 мг биомассы клеток добавляли 300 мкл 0.2М HCl (для HAД экстракции) или 300 мкл 0.2М NaOH (для HAДH экстракции). Затем экстракты динуклеотидов помещали в термостат на 75°C на 10 минут. После инкубации смеси охлаждались и нейтрализовались соответствующей концентрацией HCl или NaOH. После центрифугирования при 5 000 g 10 мин для удаления от клеток, экстракты динуклеотидов использовали немедленно для анализа по

методу Bernofsky and Swan [230]. Реакционная смесь содержала: 0.6 mM MTT, 3.7 mM феназин метасульфата, 3.4 µM этанола, 0.14 mM трицина (pH 8.0), 5.0 mM ЭДТА (pH 8.0), и 7 ед/мл дрожжевой алкогольдегидрогеназы (АДГ). Дрожжевая АДГ осуществляет превращение NAD+ в NADH, окисляя этанол. Восстановление MTT регистрировалось спектрофотометрически при 570 nm (Cary UV/Vis).

2.3.4. Измерение уровня цАМФ

К осадку клеток, полученному после центрифугирования культуры при 13 000 g 5 минут, добавляли 1 мл 0.1Н HCl и нагревали при 95 °C в течение 5 минут (для *M. smegmatis*) и в течение 10 минут (для *M. tuberculosis*), а затем немедленно охлаждали во льду. После разморозки охлажденные образцы разрушали на гомогенизаторе FastPrep-24, далее после удаления клеток центрифугированием (5000 g 15 минут) супернатант использовали для измерения уровня цАМФ. Уровень цАМФ измеряли с помощью метода конкурентной ELISA в 96-луночных плашках. Белок G (100 мкл) в концентрации 10 мкг/мл в 50 мМ PBS pH7,4 внесли в каждую лунку, инкубировали в течении 2-х часов при комнатной температуре. Затем плашку промыли 50 мМ PBS pH7,4, содержащим 0.05% Triton X-100 (PBST). Перед опытом полученные образцы нейтрализовали 2M Na₂CO₃.

В каждую лунку последовательно добавляли 100 мкл кроличьих антител к цАМФ (1:5000), затем коньюгат пероксидазы с цАМФ (1:20 000) и 50 мкл образца. Плашку инкубировали 2 часа с перемешиванием при комнатной температуре. Далее лунки были промыты (как указано выше). После чего в каждую лунку был добавлен свежеприготовленный субстрат, состоящий из 0.4 мМ 3,3',5,5'тетраметилбензидина (ТМБ) в 100 мМ цитратном буфере pH 4,0 с 3мМ H₂O₂. После 30-40 минут инкубации реакцию останавливали добавлением 100 µl 1М H2SO4. Яркость окрашивания регистрировали на спектрофотометре для плашек Zenyth 3100 (Anthos Labtec Instruments, Austria) при 450 nm

2.3.5. Измерение уровня АТФ

Осадок клеток, полученный после центрифугирования культуры при 5 000 g 5 минут промывали с помощью фосфатного буфера pH 7.5. После разрушения клеток на гомогенизаторе и центрифугирования для удаления неразрушенных клеток из супернатанта отбирали аликвоту в 10 мкл. К аликвоте добавляли 100 мкл "АТФ реагента" из набора для измерения уровня АТФ (Lumtek, Russia). Люменисценцию измеряли на хемилюминометре Lum-5773 (Disoft, Russia).

2.4 Измерение активности ферментов

2.4.1. Подготовка образцов

К образцам культур содержащим 100 мг биомассы клеток добавляли фосфатный буфер pH 7.5 и разрушали на гомогенизаторе FastPrep-24 (6 циклов по 25 сек. каждый). Фрагменты клеток осаждали на центрифуге при 15 000 g 15 минут. Супернатант использовали для измерения энзиматических активностей. Три биологические повторности были сделаны для каждого образца.

2.4.2. Активность трегалазы

Ферментативную активность трегалазы измеряли путем оценки высвобождающейся глюкозы с использованием глюкозооксидазного метода [231]. Реакционная смесь в каждой лунке содержала: 100 мМ фосфатного буфера (pH 7,1), 6 мМ MgCl₂, 50 мМ трегалозы и различные количества клеточного экстракта. Смесь инкубировали при 37 ° C в течение 5–200 мин и использовали для измерения активности.

2.4.3. Активность алкогольдегидрогеназы

Специфическую активность алкогольдегидрогеназы измеряли спектрофотометрически при 340 нм по скорости окисления НАДФН [232]. Реакционная смесь содержала 0.25 mM НАДФН растворенных в 0.02M

КH₂PO₄/Na₂HPO₄ буфере (pH 7.3), 50 μМ бензальдегида и 0.2 мл экстракта клеток.

2.4.4. Активность глицерол-3-фосфатдегидрогеназы

Активность фермента измерялась спектрофотометрически при 570 nm по восстановлению MTT с помощью феназин метасульфата. Реакционная смесь содержала 1% (масс./об.) n-октил-β-D-гликозид, 50 мM Tris-HCl буфер (pH 7.4), 75 мM хлорида натрия, 0.01М цианид натрия, 0.5 мM MTT, 0.2 мM PMS (1метокси-феназин-метосульфат) и 0.2 мл экстракта клеток. Реакция инициировалась добавлением 20 мМ глицерол-3фосфата [233].

2.4.5. Активность глицеролкиназы

Скорость реакции измеряли в связанной системе с пируваткиназой и лактатдегидрогеназой. Реакцию измеряли спектрофотометрически при 340 нм, в следующем составе реакционной смеси: карбонат-глициновый буфер (0.3 мМ глицин, содержащий 30 мМ карбонат калия, pH 8.9), 2 мМ АТФ, 0.3 мМ НАД⁺, 0.5 мМ PEP (фосфоенолпируват), 6.5 мМ MgSO₄, 6 мМ глутатиона в восстановленной форме, 3 mM глицерина, 3,5 ед/мл лактатдегидрогеназы и 1.6 ед/мл пируваткиназы и 0.2 мл клеточного экстракта. За единицу активности было принято количество, окисляющее 1 мМ НАДН.

2.4.6. Активность глицеральдегид -3-фосфатдегдрогеназы

Скорость реакции измеряли спектрофотометрически при 340 нм по восстановлению НАД в реакционной смеси, содержащей 10 мМ натрийфосфатного буфера (с добавлением 20 мМ арсената натрия) рН 8.5, 0.25 мМ НАД+, 3 мМ DTT и 0.25 µМ D-глицеральдегид-3-фосфата. Реакцию инициировали добавлением 0.2 мл клеточного экстракта.

2.4.7. Активность фосфоглицераткиназы

Ферментативные активности анализировали по обратной реакции, от 3фосфоглицерата до 1,3-бисфосфоглицерата. Реакционная смесь содержала: 80 мМ триэтаноламинового буфера (pH 7.6), 8.0 мМ MgSO₄, 0.25 мМ НАДН, 2.4 мМ АТФ, 12 мМ 3-фосфоглицерата, 50 µг мл⁻¹ глицеральдегид-3фосфатдегидрогеназы и 0.2 мл клеточного экстракта. Реакцию измеряли спектрофотометрически при 366 нм и 25° С [234].

2.4.8. Активность пируваткназы

Скорость реакции определяли в связанной системе с лактатдегидрогеназой, спектрофотометрически по поглощению при 340 нм в результате окисления НАДН. Реакцию измеряли в кювете, содержащей 45 мМ имидазольный буфер, содержащий 0.1 М хлорида калия и 0.05 М MgSO₄ (pH 7.6), 1.5 мМ АДФ, 0.22 мМ НАДН, 1.5 мМ фосфоенолпирувата и 5 ед /мл лактатдегидрогеназы. Реакцию инициировали добавлением 0.2 мл клеточного экстракта.

2.4.9. Активность лактатдегидрогеназы (ферментирующей)

Скорость реакции определяли спктрофотометрически по уменьшению поглощения при 340 нм в результате окисления НАДН. Реакционная смесь содержала 0.2 М Трис-HCl (pH 7.3), 0.2 мМ НАДН, 1 мМ пирувата натрия и 0.2 мл клеточного экстракта.

2.4.10. Активность хинон зависимой лактатдегидрогеназы

Реакцию измеряли спектрофотометрически при 340 нм. Реакционная смесь содержала 100 мМ фосфатного буфера (pH 7.5), 50 µМ DCPIP, 20 мМ L-лактата, 0.2 мМ НАД и 0.2 мл клеточного экстракта [235,236].
2.4.11. Активность изоцитратлиазы

Реакцию измеряли спектрофотометрически при 340 нм. Реакционная смесь содержала 30 мМ имидазола (pH 6.8), 5 мМ MgCl₂, 1 мМ EDTA, 4 мМ фенилгидразина и 1 мМ DL-изоцитрата и 0.2 мл клеточного экстракта.

2.4.12. Активность НАДН оксидазы

Скорость реакции определяли по уменьшению поглощения при 340 нм в результате окисления NADH. Реакционная смесь содержала 0.2 М Трис-HCl буфера (pH 7.3), 0.2 мМ NADH и 0.2 мл клеточного экстракта.

2.5 Другие виды анализа

2.5.1. ЯМР анализ

Пять мл водно-метанольного слоя, полученного после хлороформметанольной экстракции из клеток (см. выше), содержащего около 10 мг/мл органических веществ, сушили и растворяли в 1 мл D₂O. Спектры регистрировали с использованием спектрометра Bruker AM-300 при 100 МГц.

2.5.2. Тонкослойная хроматография

Десять мкл водно-метанольного экстракта клеток наносили тонким слоем на пластины, содержащие 60 F254-силикагель (Sorbfil, Россия). Хроматографию осуществляли с использованием смеси растворителей 1-пропанол: этилацетат: вода (6:1:3). Точечная визуализация была сделана смесью 10% H₂SO₄ в этаноле с последующей термической обработкой.

2.5.3. ВЭЖХ анализ концентрации трегалозы и глюкозы

Десять мкл водно-метанольного слоя, полученного после хлороформметанольной экстракции клеток (см. Выше), наносили на колонку Zorbax [размер 4,6 мм × 150 мм (Agilent, США) и регистрировали с помощью ВЭЖХ-

хроматографии Aquilon (Россия) оснащенного рефрактометрическим детектором при комнатной температуре. Подвижная фаза представляла собой ацетонитрил: вода (70:30), скорость потока составляла 1 мл / мин.

2.5.4. Экстракция РНК

РНК выделяли при переходе клеток *Msm* в состояние покоя. Для каждой временной точки использовали образцы культуры объемом 30 мл из трех биологических повторностей. Клетки собирали центрифугированием (4000 g, 10 мин) и к осадку добавляли 1 мл тризола. Клетки разрушали на гомогенизаторе FastPrep (MP Biomedicals, США) с использованием бус из диоксида циркония. После центрифугирования для удаления частиц клеток супернатант использовали для экстракции РНК. Затем нуклеиновые кислоты осаждали изопропанолом, собирали центрифугированием, промывали 70% этанолом и повторно растворяли в воде без нуклеаз (Promega, США), содержащей ингибитор рибонуклеаз RNAsin (Promega, США). Затем РНК выделяли с использованием набора RNeasy Mini (Qiagen). Каждый образец РНК обрабатывали свободной от РНКазы ДНКазой (Ambion), которую затем инактивировали нагреванием в соответствии с протоколом набора. РНК определяли количественно с использованием спектрофотометра BioDrop Touch Duo.

2.4.5. Количественный анализ ПЦР в реальном времени

Один микрограмм РНК был использован для синтеза кДНК со случайными гексануклеотидами и обратной транскриптазой SuperScript III (Life Technologies). Количественный ПЦР анализ проводили с использованием qPCRmix-HS SYBR (Evrogen, Россия) и систем ПЦР в реальном времени LightCycler 480 (Roche, Швейцария); условия циклирования были следующими: 95 ° в течение 20 сек., 60 °C в течение 20 сек., 72 °C в течение 30 сек., повтор 40

раз. Количество 16S рРНК в каждом образце использовали в качестве эталона; геноспецифичные праймеры использовавлись следующие:

 $MSMEG_5892R (5'- ATGTGCAGGAAGAAGCCGAT -3')$ $MSMEG_3954F (5'- ATCGGCATGAGTACGGGAAC - 3')$ $MSMEG_3954R (5'- TCTCTGGGATCTGCTTCGGA - 3')$ $MSMEG_4696F (5'- CACGACATCCACCGCTTCAT - 3')$ $MSMEG_4696R (5'- TAATCCGCCTTCACCAGACG - 3')$ $MSMEG_3184F (5'- TACCAGAGCACCCCGTCATA - 3')$ $MSMEG_3184R (5'- CACATCGGGACCTTCACTCC - 3')$ $MSMEG_3186F (5'- CAGTTCCGAATCCTGGCAGT - 3')$ $MSMEG_3186R (5'- CAAGCAGATGCGCAACATCA - 3')$ $MSMEG_6515F (5'- TGAAGAAGCGGTGCCAGTAG - 3')$ $MSMEG_6515R (5'- GGCGACTTCTACGTCTGGAG - 3')$

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Анализ протеомного профиля покоящихся клеток

3.1.1. Получение покоящихся форм *M. smegmatis* и их характеристика.

Популяция покоящихся клеток Msm была получена после постепенного закисления среды роста согласно опубликованному методу [106]. И последующего хранения в течение 1 месяца при комнатной температуре, без перемешивания, в закрытых пластиковых пробирках, в темноте. Оценка жизнеспособности образом полученных таким покоящихся клеток производилась по КОЕ, и оставалась неизменной (~1.5–5.0 × 10⁹ клеток в мл⁻¹) в разных биологических повторностях. Анализ НВЧК показал, что число жизнеспособных клеток близко к КОЕ, что отражает почти полную культивируемость покоящихся клеток Msm после длительного периода хранения (табл. 2).

Табл. 2. Некоторые свойства активных и покоящихся клеток *M. smegmatis* использованных для проведения протеомного анализа.

Характеристика	Активные клетки	Покоящиеся клетки
КОЕ кл./мл	$(2.6\pm2) \times 10^9$	$(1.5\pm1) \times 10^9$
НВЧК кл./мл	$(3.6\pm2) \times 10^9$	$(1.1\pm1) \times 10^9$
Размер клеток, длина /ширина,	$3.43{\pm}1.05$ / 0.61 ${\pm}0.06$	1.42±0.35 / 0.55 ±0.08
μм		
Включение метки H ³ -урацила	21383±3401	646±13
при 37 ⁰ С, СРМ/мг биомассы		
клеток		
Включение метки H ³ -урацила	6036±793	30±5
при 25° С, СРМ/мг биомассы		
клеток		
Дыхательная активность:		
DCPIP восстановление (OD ₆₀₀ /	0.18 ± 0.01	$0.01{\pm}0.005$
мин ⁻¹ мг ⁻¹)		
Поглощение кислорода (нмоль		
$O_2 \text{Muh}^{-1} \text{Mr}^{-1}$)	20±4.5	2.5±0.075
АТФ, пмоль \times мг биомассы $^{-1}$	82±13	10±2

цАМ Φ пмоль × мг биомассы $^{-1}$	116±16	28±6
Рифампицин, %*	$0.02{\pm}0.007$	62.5±17.8
Гигромицин,%*	0.0001 ± 0.00005	10±2
Бедаквилин,%*	1.4±0.5	30.8±9.2
Количество белка,	1.9±0.2	1.08±0.2
мг/г биомассы		

* Процент клеточной популяции от общего числа, устойчивый к воздействию антибиотика: гигромицин (100 мкг / мл), рифампицин (50 мкг / мл) и бедаквилин (50 мкг / мл) определяли из соотношений значений НВЧК

Покоящиеся были клетки, полученные путем закисления среды, проанализированы с помощью флуоресцентной микроскопии с целью выявления количества мёртвых клеток в культуре. Для этого клетки окрашивались с помощью йодида пропидиума (PI), способного окрашивать клетки с поврежденной клеточной стенкой (Рис. 1). С помощью этого метода удалось выявить 60 % интактных клеток в популяции. Полученные таким образом клетки, в отличие от палочковидных делящихся клеток, были овоидной формы, более мелкие и контрастные (Рис. 1).

Рис. 1. Фазово-контрастная и флуоресцентная микроскопия клеток *M. smegmatis* (увеличение × 1500): А, В – активных клеток в ранней стационарной фазе; С, D – покоящиеся клетки после 1 месяца хранения при комнатной температуре. А, С – фазово-контрастная микроскопия, В, D – флуоресентрная микроскопия клеток окрашенных с помощью PI для визуализации мертвых клеток. Бар на каждой фотографии соответствует 10 мкм.

Покоящиеся клетки были метаболически неактивны, о чем свидетельствует низкий уровень включения радиоактивно меченного урацила, а также низкий уровень активности дыхательной цепи, который измерялся с помощью восстановления DCPIP, и по потреблению кислорода (Табл. 2). Так покоящиеся клетки в этой модели были значительно менее чувствительны к ингибированию синтеза PHK, белка и ингибированию АТФазы, что было выявлено с помощью теста на чувствительность к рифампицину, гигромицину и бедаквилину (Табл. 2). После отмывки от мертвых клеток с помощью PBS

клетки были использованы для анализа белкового состава и сравнения с Количество активными делящимися клетками. белка измерялось В супернатантанте, полученном после разрушения клеток И осаждения неразрушенных клеток с помощью центрифугирования.

3.1.2. Получение покоящихся форм *M. tuberculosis* и их характеристика.

Активные клетки для протеомного анализа получали в ранней стационарной фазе после 10 дней выращивания клеток, при перемешивании (культура «А») на стандартной среде Сатона. Покоящиеся клетки Mtb в поздней стационарной фазе получали путем постепенного закисления среды, в соответствии с опубликованным протоколом [14]. После образования покоящихся форм культуру клеток хранили в пластиковых пробирках, в темноте, при комнатной температуре, в течение 4,5 месяцев (культура «D1»), до наступления снижения метаболической активности, и 13 месяцев до достижения полной «некультивируемости» (культура «D2»). Оценка жизнеспособности хранящихся таким образом покоящихся клеток с помощью КОЕ составляла около 10⁴ мл клеток для культуры D1, и ноль для культуры микобактерий D2 (Табл. 3).

Табл. 3. Некоторые свойства активных и покоящихся клеток *M. tuberculosis* использованных для проведения протеомного анализа.

Характеристика	Активные	Покоящиеся	Покоящиеся
	клетки	клетки после	клетки после
		4.5 месцев	13 месцев
		хранения	хранения (D2)
		(D1)	
КОЕ, кл./мл	$(5\pm 2) \times 10^7$	$(1\pm0.5)\times10^4$	0
НВЧК, кл./мл	$(1.2 \pm 3) \times 10^8$	$(9.3\pm4) \times 10^7$	$1.5\pm2.2 \times 10^{6}$
Размер клеток, длина/ ширина, им	2.5±0.4/	0.9±0.1/	0.9±0.3/
	0.4 ± 0.02	0.6 ± 0.04	$0.5\pm\!\!0.08$
Включение метки Н ³ -урацила	3623±52	0	0
СРМ/мг биомассы клеток			
Включение метки ¹⁴ С-аспарагина	340±20	0	0

СРМ/мг биомассы клеток			
DCPIP восстановление, нмоль	0.11±0.03	0.016 ± 0.003	0
DCPIP мин ⁻¹ $M\Gamma^{-1}$			
цАМ Φ пмоль × мг биомассы $^{-1}$	124±4	2±1	0
Количество белка в цитозольной	3.6±0.2	2.13±0.2	2.55±0.2
фракции, мг/г биомассы			
Количество белка в мембранной	76.2±5	39±5	20.7±5
фракции, µг/г биомассы			

Анализ наиболее вероятного числа (НВЧК) показал, что количество жизнеспособных клеток выше, чем КОЕ, что отражает «некультивируемость» покоящихся клеток *Mtb* после периода хранения (Табл. 3). Согласно данным по включению радиоактивно меченного урацила и аспарагина, покоящиеся клетки не проявляли транскрипционную И трансляционную активность, И характеризовались значительным снижением активности восстановления DCPIP, что отражает снижение дыхательной активности (комплекс 1) (Табл. 3).

Дополнительной характеристикой состояния покоя может служить уровень внутриклеточного цАМФ. Ранее было обнаружено, что переход *Mtb* в состояние покоя, в котором клетки «некультивиуемы» (КОЕ=0), имеет корреляцию с уменьшением концентрации внутриклеточного цАМФ. [237]. Кроме того, концентрация цАМФ увеличивается в клетках при реактивации, на Msm [238]. B случае с что показано покоящимися клетками, использованными для протеомного анализа, обнаруживается снижение концентрации внутриклеточного цАМФ в клетках *Mtb* после 4.5 месяцев хранения, что сопровождалось развитием «некультивируемости» (Табл. 3).

После отмывки с помощью фосфатного буфера, покоящиеся клетки выглядят контрастными, маленькими и округлыми, по сравнению с палочковидными активными клетками (Рис. 2). Такие покоящиеся формы содержат меньше белка на мг влажной массы клеток по сравнению с активными клетками. Это было более очевидно для мембранной фракции, чем для цитоплазмы. Полученные таким образом покоящиеся микобактерии использовали для протеомного анализа (Табл. 3).

Рис. 2. Фазово-контрастная микроскопия клеток *M. tuberculosis*: A – активных клеток в ранней стационарной фазе; В – покоящихся клеток после 4.5 месяца хранения при комнатной температуре; С – покоящиеся клетки после 13 месяцев хранения при комнатной температуре. Бар ниже на каждой фотографии соответствует 5 мкм

3.1.3. Сравнительный анализ протеомных профилей активных и покоящихся клеток *Msm* и *Mtb*.

Микобактерии являются сложным объектом для проведения протеомного исследования, поскольку микобактерии содержат большое количество разветвленных миколовых кислот, липидов и проч., что значительно мешает экстракции белковой фракции, а также ухудшает разделение белков на двумерном электрофорезе. В процессе перехода в состояние покоя клеточная стенка утолщается, и содержание миколовых кислот и липидных компонентов увеличивается, что лишь усугубляет проблему разделения и очистки белковой фракции. В связи с этим было необходимо подобрать условия специально для микобактерий. Двумерный электрофорез проводили отдельно для мембранной и цитозольной фракций активных и покоящихся клеток, что позволило улучшить качество разделения, и, как следствие, упрощения идентификации белков по сравнению с тотальным клеточным экстрактом. Позднее протеомный анализ клеток *Mtb* проводился в такой же постановке, с разделением на

мембраны и цитозоль, однако в случае с Msm было произведено две последовательные экстракции из мембран, а в случае с *Mtb* лишь одна. Такая постановка оказалась более продуктивной для *Mtb*, поскольку на этапе подбора условий выяснилось, что экстракция из мембранной фракции Mtb с помощью CHAPS неэффективна. Возможно это связано с тем, что белок-липидное соотношение в мембране *Mtb* смещено в сторону липидов, что препятствует экстракции слабым цвиттерионным детергентом CHAPS. В каждом эксперименте количество белка, используемое для электрофореза, было одинаковым для обоих типов клеток (активные и покоящиеся). Однако общее количество белка, экстрагируемого из биомассы активных клеток, всегда отличается от количества белка, экстрагируемого из одинаковой навески биомассы покоящихся клеток (Таб. 3). Следовательно, пересчет концентрации отдельных белков на биомассу клеток оказывается, в данном случае, не достоверным, и в связи с этим, было решено использовать метод, который показал свою эффективность при анализе транскриптома, когда общее количество мРНК значительно отличается между двумя типами клеток [239]. Этот метод состоит в ранжировании белков по данным денситометрического анализа, и каждому белку присваивается номер по представленности в протеомном профиле. Такой метод позволяет избежать разницы в содержании белка между типами клеток, и дает возможность сравнивать представленность того или иного метаболического пути по представленности белков, которые в нем участвуют.

На рисунке 3 и 4 представлены фотографии 2D-электрофореграмм для *Msm* (Рис. 3) и *Mtb* (Рис. 4) после окрашивания с помощью красителя Кумасси с последующим окрашиванием серебром. Каждое видимое пятно белка было вырезано из геля вручную и идентифицировалось путем анализа MALDI-TOF, и поиска в базе данных MASCOT (более подробно в разделе материалы и методы).

Рис. 3. Фотографии гелей после проведения двумерного электрофореза актвных и покоящихся клеток *M. smegmatis* A,B,C – аактивные клетки, ранняя стационарная фаза; D,E,F – покоящиеся клетки после 1 месяца хранения. A,D – Цитозольные фракции; B,E – Мембранные фракции после экстракции СНАРS; C,F – Мембранные фракции после экстракции SDS.

Рис. 4. Фотографии гелей после проведения двумерного электрофореза актвных и покоящихся клеток *M. tuberculosis*. A,D – аактивные клетки, ранняя стационарная фаза; B,E – покоящиеся клетки после 4.5 месяцев хранения C,F - покоящиеся клетки после 13 месяцев хранения A,B,C – Цитозольные фракции; D,E,F – Мембранные фракции после экстракции SDS.

3.1.4. Анализ представленности белков в двух типах клеток Msm

После анализа 726 пятен в разных фракциях активных и покоящихся клеток *Msm* удалось идентифицировать 586 белков аннотированных в электронной базе данных "Smegmalist" (http://svitsrv8.epfl.ch/mycobrowser/smegmalist.html). Поскольку характеристика и функции многих белков *Msm* остаются неизвестными, описание белков было взято у соответствующего ортолога в базе данных «Tuberculist». Каждое пятно содержало от 1 до 4 различных белков (1,2 в среднем в пятне). Для активных форм *Msm* идентифицировано 364 белка,

для покоящихся 351 белок в различных фракциях клеток. (Приложение 1). Было обнаружено, что только 170 белков (≤50% в протеоме) идентичны (соответственно номеру гена) для каждого типа бактерий, что указывает на существенную разницу в профилях экспрессии белка между активными и покоящимися клетками (Рис. 5) Даже среди «общих» белков представленность конкретного белка во всем протеоме значительно варьировалась (Приложение 1).

Рис. 5. Диаграмма Венна, показывающая перекрытие в белках между протеомным профилем активных и покоящихся клеток *Msm*.

Как видно из графика представленного на рисунке. 6 не более 10% идентифицированных белков были представлены аналогично в обоих типах клеток, что указывает на существенные изменения в метаболических процессах при переходе в состояние покоя (Рис. 6). Примерно 50% белков в протеомном профиле покоящихся форм *Msm* не были представлены в протеомном профиле активных клеток. Эта когорта белков будет упоминаться далее как «уникальные белки».

Рис. 6. Распределение белков по их представленности в протеоме активных и покоящихся *M. smegmatis*. Белки распределены в соответствии с «денсити» белкового пятна по месту в протеоме, от самого представленного (1 место) до наименее представленного (154 место для активного и 151 для неактивных клеток) представлений в протеоме. Белки не обнаруженные в протеомных профилях, обозначены как «ND» (Приложение 1).

Распределение белков по функциональным категориям выявило аналогичное распределение между активными и покоящимися клетками в цитозольной фракции, в отличие от распределения белков в мембранной фракции (CHAPS и SDS экстракты) (Рис.7).

А. Цитоплазма

Рис 7. Распределение белков в активных и покоящихся клетках *Msm* на основе функциональных категорий. Функциональные категории ортологов *Mtb* согласно базе данных TubercuList были использованы для белков *M. smegmatis*. А - белки фракции цитозоля. В - белки мембранной фракции (CHAPS и SDS экстракты).

Протеомный профиль покоящихся клеток содержит меньше белков в категории «процессы клеточной стенки» для обеих фракций по сравнению с

протеомным профилем активных клеток. В то же время в протеомном профиле увеличивается процент белков в категории «информационные процессы». Такие изменения, по-видимому, отражают подавление метаболичеких процессов, связанных с клеточной стенкой в покоящихся клетках, и активацию регуляторных механизмов, характерных для перехода в состояние покоя.

3.1.5. Анализ представленности белков в трех типах клеток Mtb

С целью выявить белки участвующие в образовании и поддержании состояния покоя был проведен сравнительный протеомный анализ активных клеток и покоящихся клеток *Mtb* в двух фазах хранения. С помощью двумерного электрофореза с последующим анализом MALDI-TOF удалось обработать 21703 пептидных последовательности (12318 цитозоль +9385 мембраны) принадлежащие 1131 белку в разных фракциях трех стадий клеток (629 цитозоль 502 мембраны). Из них 446 белков с уникальным номером экспрессирующего гена (305 цитозоль 243 мембраны) (Приложение 2).

Сравнение количества белков в разных типах клеток показывает, что в протеоме покоящихся клеток значительно меньше белков, чем в активных (350/155/192), что, возможно, связано с деградацией белков при длительном хранении. В то же время разница между белками в протеоме покоящихся клеток в разных временных точках не так высока. Более половины белков обнаруживается в двух типах покоящихся клеток, что говорит об их высокой стабильности. В то же время пул белков покоящихся клеток в точке D1 (4.5 месяца) содержит «уникальные» для своей временной точки белки, отличные от активных клеток и D2 (13 месяцев). Вероятно, это белки, которые сыграли свою роль в процессе перехода в состояние покоя, а затем деградировали.

Рис. 8. Диаграмма Венна, показывающая перекрытие в белках между протеомным профилем активных и покоящихся клеток *Mtb* в двух временных точках хранения.

Так же существует когорта белков, «уникальных» для долго хранившихся покоящихся клеток (D2). Очевидно это когорта стабильных белков, которые присутствуют в малых количествах в других типах клеток, и не обнаруживаются методом двумерного электрофореза. Таким образом, несмотря на большую продолжительность хранения клетки *Mtb* сохраняют значительное разнообразие белков.

3.1.6. Анализ метаболических процессов на основе данных протеомных профилей.

В ходе анализа метаболических путей выснилось, что процессы происходящие в покоящихся клетках *Mtb* и *Msm* очень сходные, что говорит о

том, что микобакетрии имеют общие принципы ответа на стресс во время перехода в состяние покоя.

3.1.6.1. Гликолиз

Метаболизму глюкозы придается большое значение при персистенции *Mtb*. Известно, что штамм с делецией фосфоглюкокиназы, осуществялющей первую стадию гликолиза, способен к заражению мышей, подобно дикому типу, однако не способен к формированию хронической инфекции у мышей [240]. Так же на штамме с делецией фосфофруктокиназы показано, что отсутствии активности этого фермента в условиях гипоксии приводит к накоплению токсичных промежуточных продуктов глюкозы [241]. Эти данные идут в разрез с общепринятой теорией о том, что после перехода в состояние покоя клетки *Mtb* переходят на липидный обмен, как основной способ получения энергии.

Превращение глюкозы в пируват осуществляется 9 ферментами, 7 из которых были обнаружены в протеомном профиле покоящихся клеток *Msm* или *Mtb* (Puc. 9), в то время как фосфоглюкомутаза (MSMEG_2136/Rv3068c) и фосфофруктокиназа (MSMEG_2366/Rv2029) не были найдены ни в протеоме активных клеток, ни в протеоме покоящихся форм, возможно в связи с их низкой концентрацией.

Для клеток микобактерий, выращенных на среде Сатона, источником углерода, в том числе на стадии покоя, может быть глицерин, присутствующий в среде роста даже после нескольких месяцев хранения. Несмотря на то, что в протеоме покоящихся клеток хорошо представлены ферменты осуществляющие путь превращения от глицерина до пирувата, один фермент – глицерин-3-фосфатдегидрогеназа (MSMEG_6761/MSMEG_4332/ Rv2249) – осуществляющий превращение глицерол-3-фосфата в дигидроксиацетон, не обнаружен в протеоме покоящихся клеток ни *Mtb*, ни *Msm*, однако его присутствие подтверждается энзиматически (Табл. 4). Обнаружен очень низкий уровнь активности глицерин-3-фосфатдегидрогеназы в клеточном экстракте

покоящихся клеток в отличие от активных клеток *Msm*, из чего следует, что превращение глицерина в состоянии покоя вряд ли возможно. В качестве альтернативы глюкоза может быть превращена в пируват девятью ферментами.

Рис. 9. Ферменты гликолитического пути, обнаруженные в протеомных профилях покоящихся клеток *Msm* и *Mb*.

Табл. 4. Ферментативная активность и концентрация некоторых метаболитов в активных и покоящихся клетках *M. smegmatis*.

		Активные клетки	Покоящиеся клетки
Ферментативные активности		μ моль мин ⁻¹ ·мг ⁻¹	
1	Глицеролкиназа	665±49	78±49
2	Глицерол-3-фосфатдегидрогеназа	2550±190	93±4
3	3-фосфоглицераткиназа	618±46	241±17
4	Глицеральдегид-3-Р-дегидрогеназа	322±15	108±9
5	Пируваткиназа	655±23	395±32
6	Лактатдегидрогеназа (хинон- зависимая)	350±20	270±30
7	Лактатдегидрогеназа	0	0
8	Алкогольдегидрогеназа	200±130	80±40
9	Изоцитратлиаза	68±33	0
10	НАДН оксидаза (OD ₃₄₀)	221±40	8±3
Мета	аболиты		'
12	Уровень тиолов µmol·mg ⁻¹	350±160	820±150
13	НАД нмоль/мг	0.038±0.012	0.0037±0.001
14	НАДН нмоль/мг	0.153±0.017	0.0137±0.002
15	Соотношение НАД/НАДН	4.03	3.7

Некоторые ферменты этого пути нами не были найдены в протеоме активных клеток, поэтому экспериментально подтвердили активность этих ферментов и обнаружили специфические активности 3-фосфоглицераткиназы, глицеральдегид-3-фосфат-дегидрогеназы и пируваткиназы в активных и покоящихся клетках *Msm* (Табл. 4). Наиболее представленным ферментом является пируваткиназа, которая превращает фосфоенолпируват в пируват. Эти результаты подтверждают возможность превращения глюкозы в пируват в покоящихся клетках. Поскольку среда роста не содержит глюкозы то можно предположить, что глюкозо-1-фосфат может быть образован из глюкана с помощью α -глюканфосфорилазы (обнаруженный у *Msm*/MSMEG_4915, но не у *Mtb*/Rv1328) или из гликогена α -1,6-глюкангидролазой (glycogen debranching enzyme/MSMEG_3186, не аннотирован у *Mtb*).

Другая возможность получения глюкозы – это гидролиз трегалозы ферментом трегалазой. Накопление трегалозы и роль трегалазной активности в поддержании жизнеспособности покоящихся клеток при длительном хранении была показана эксперементально (раздел 3.2). Свободная глюкоза может быть фосфорилирована глюкокиназой (MSMEG_2760/Rv2702) до 6-фосфата глюкозы, однако данный фермент не был обнаружен в протеомах покоящихся форм.

Дальнейшая судьба пирувата, который накапливается в значительных количествах в покоящихся клетках Msm (Никитушкин, личное сообщение), неясна. Пируват может быть превращен в ацетил-коА пируватсинтазой (реакция, которая играет роль в поддержании редокс- статуса клетки). Пируват также может быть превращен в оксалоацетат пируваткарбоксилазой. Пока нет достоверных данных о том, может ли пируват трансформироваться в конечные продукты гликолиза, как в анаэробных бактериях. Для получения этанола из пирувата клетка должна содержать пируват-декарбоксилазу (превращение пирувата в ацетальдегид). Хотя этот фермент не аннотирован в геноме Msm u Mtb, существует еще один фермент - индол-3-пируват-декарбоксилаза (MSMEG 5735/Rv0853), который обнаружен и хорошо представлен в протеоме покоящихся клеток. Этот фермент может использовать пируват в качестве субстрата его обычного субстрата индол-3-пирувата [242]. вместо Последующая конверсия ацетальдегида в этанол может осуществляться алкогольдегидрогеназой, обнаруженной в протеоме покоящихся клеток (MSMEG 0127, MSMEG 2079, MSMEG 6242/ Rv1862, Rv0761c, Rv3045).

Энзиматическая активность алкогольдегидрогеназы подтверждена экспериментально на клетках *Msm* (Табл. 4).

возможность превращения пирувата в Существует лактат, как это ферментирующих бактериях. происходит В Однако ферментирующая лактатдегидрогеназа (в отличие от хинон-зависимой лактатдегидрогеназы MSMEG 2492/Rv1872 осуществляющей обратную реакцию) не аннотируется в Энизматическая геноме *Msm* и *Mtb*. активность лактатдегидрогеназы экспериментально не обнаруживается (Табл. 4), таким образом способ образования лактата, который накапливается в значительных количествах в покоящихся клетках в нашей модели (неопубликованные данные, а также [243]) остается неизвестным. Нельзя исключать возможность того, что покоящиеся формы могут ферментировать в течение длительного периода хранения с помощью гликолитического пути. Так же этот путь дает возможным синтезировать АТФ в условиях нефункционирующей дыхательной цепи (Табл. 3, Табл. 4).

3.1.6.2. ЦТК и глиоксилатный шунт

В протеоме покоящихся форм *Msm* обнаружены все 8 ключевых ферментов цикла трикарбоновых кислот (ЦТК), но в протеомном профиле покоящихся клеток *Mtb* лишь 6. В протеомном профиле активных клеток *Mtb* и *Msm* обнаружены все ферменты ЦТК. В условиях сниженной активности электронтранспортной цепи (Табл. 2, Табл. 3) протекание этого процесса представляется маловероятным. Для адаптации к анаэробным условиям у микобактерий активируется глиоксилатный шунт, что показано на модели покоя Вейна в условиях гипоксии [51], а также в условиях заражения макрофагов и мышей [176,177]. Среди ферментов, включенных в глиоксилатный шунт, была обнаружена малат-синтаза (MSMEG_3640/Rv1837) как в протеомном профиле активных, так и покоящихся клеток *Msm* и *Mtb*. Однако изоцитрат-лиаза (Icl; MSMEG 0911; MSMEG 3706/ Rv1915, Rv1916) не была обнаружена в

протеомных профилях и анализ активности этого фермента демонстрирует его отсутствие в покоящихся клетках в отличие от активных клеток (Табл. 4). Этот факт ставит под сомнение значимость глиоксилатного шунта в покоящемся состоянии, а также очередной раз подчеркивает значительную разницу между покоящимися клетками в нашей модели и нереплиативным анаэробным состоянием в модели Вейна.

Zimmerman et al. предположил, что в анаэробных условиях микобактерии могут использовать восстановительную ветвь цикла Кребса от пирувата до сукцината через малат и фумарат (обратное направление) с внеклеточным накоплением сукцината. Это позволяет окислять восстановительные эквиваленты, образовавшиеся в гликолитическом пути, и дает возможность создавать мембранный потенциал за счет того, что выброс сукцината может быть электрогенным [243]. Это может быть необходимо для синтеза АТФ и поддержания жизнеспособности клеток при длительном хранении. Отсутствие в протеомном профиле покоящихся форм *Mtb* изоцитрат дегидрогеназы (Rv0066) и цитратсинтетазы (Rv0889) возможно, говорит о том, что в покоящихся клетках в нашей модели происходят сходные процессы несмотря на то, что покоящиеся формы в наших экспериментах не были анаэробными.

В протеомах покоящихся форм *Msm* и *Mtb* обнаружены ферменты синтеза и превращения аминокислот: аспарагина (аспарагиназа/MSMEG_3173/Rv1538), аспартата (аргининосукцинат синтетаза/Rv1658/MSMEG_3770, аспартаттрансаминаза/MSMEG_6286) и глутамата (сукцинатсемиальдегид дегидрогеназа/Rv0234), которые могут быть активными в покоящихся клетках. Аминокислоты в свою очередь способны за счет анаплеротических реакций служить дополнительным источником кетоглутарата и фумарата ЦТК.

Также интересен тот факт, что при крайне низкой активности дыхательной цепи в состоянии покоя, в протеомном профиле покоящихся клеток *Mtb* обнаружены компоненты АТФазы, (альфа субъединица/Rv1308, гамма

субъединица /Rv1309, бетта субъединица Rv1310) которые, хорошо сохраняются и будут активны на начальных этапах реактивации.

3.1.6.3. Транскрипция и трансляция

Несмотря на отсутствие процессов транскрипции и трансляции В покоящихся клетках, а также обычно низкие концентрации транскрипционных обнаружить некоторые регуляторов, нам удалось транскрипционные регуляторы в протеомном профиле покоящихся клеток, хотя и в малых количествах. Стоит отметить, что лишь один «общий» транскрипционный регулятор был обнаружен для покоящихся форм *Mtb* и *Msm*, это MprA Mycobacterial persistence regulator/Rv0981/ MSMEG 5488, количество которого значительно больше в протеоме покоящихся форм *Mtb* по сравнению с активными клетками, а для протеома покоящихся форм *Msm* является «уникальным». МprA это регуляторная часть гистидинкиназной системы -MprAB. На Mycobacterim smegmatis показано, что каскад реакций «строгого ответа» начинается с полифосфата, и синтез (p)ppGpp осуществляется через систему mprAB-sigE-relA [122]. Такой вариант при котором каскад реакций начинается с полифосфата является уникальным для микобактерий [123]. Кроме того, показано, что MprA регулирует экспрессию sigB [244], который играет важную роль в развитии бактериальной внутриклеточной персистенции [245]. SigB (MSMEG 2752) является «уникальным» белком в протеомном профиле покоящихся форм Msm. Этот сигма фактор является ключевым регулятором общей реакции на стресс [246] и способствует устойчивости к окислительному стрессу и углеродному голоданию в L. monocytogenes [247].

Другая двухкомпонентная система PhoPR, регулирует кластер генов espA необходимый для вирулентности [144,145]. В нашем случае уровень phoP/Rv0757 увеличивается в протеоме покоящихся форм по сравнению с активными клетками. Известно, что эта система активируется при попадании клетки в среду с низким pH, и результатом служит активация кластера генов,

помогающих клетке справиться с окислительным стрессом [149]. Недавно было показано, что PhoPR является негативным регулятором системы DosRS (DevRs) [150], возможно именно поэтому нам не удалось обнаружить сам регулятор DevR.

В покоящихся клетках *Mtb* обнаружен транскрипционный регулятор Wag31/Rv2145 который регулирует синтез клеточной стенки и форму клеток за счет воздействия на ферменты синтеза пептидогликана. Активность засвистит от степени фосфорилирования Wag31 с помощью фосфокиназ PknA и PknB [248].

У овоидных покоящихся клеток *Msm* транскрипционные регуляторы небольшом большинство обнаружены В числе и ИЗ НИХ оказалось репрессорами, что, в целом, отображает снижение активности метаболических процессов при переходе в состояние покоя. В протеомном профиле покоящихся клеток *Msm* обнаружен транскрипционный фактор элонгации NusA, который не обнаруживается у активных клеток Msm. Этот транскрипционный фактор в Escherichia coli стимулирует остановку и прекращение считывания ДНК ферментом ДНК-зависимой-РНК-полимеразой [249]. Также NusA может агрегации белков препятствовать В условиях теплового шока [250]. Обнаруженный в покоящихся клетках *Msm* транскрипционный регулятор IclR MSMEG 3335 принадлежит (isocitrate regulator) lyase семейству транскрипционных регуляторов. Лишь для некоторых регуляторов этого семейства достоверно показана физиологическая роль. Лучше всего описан белок IslR из E. coli, и показано, что он является репрессором оперона глиоксилатного шунта [251], что согласуется с нашими данными об отсутствии энзиматической активности изоцитрат-лиазы в экстракте покоящихся форм. Однако сравнении аминоксилотных последовательностей при транскрипционного регулятора MSMEG 3335 И вышеуказанного IslR реулятора из E. Coli обнаруживается слишком низкий уровень сходства (29%) идентичности), что возможно говорит об иной функции белка MSMEG 3335.

IslR Транскрипционные регуляторы семейства проявляют широкое разнообразие функций, например, регулятор так, этого семейства В Streptomyces coelicolor контролируют Streptomyces griseus И процесс споруляции [252], а в патогене растений *Erwinia sp* участвует в растворении полисахаридов клеточной стенки растений [253]. Также многие регуляторы этого семейства участвуют в катаболизме и деградации ароматических соединений [254].

Значительное накопление белка <u>MSMEG_6227</u> обнаружено в протеоме покоящихся форм, который согласно предварительной аннотации является транскрипционным регулятором PadR семейства (см. разел 3.3). PadR-подобные белки - это большое семейсво транскрипционных регуляторов, имеющих общий домен для связывания с нуклеиновой кислотой (HK), и способных участвовать в кайне разообразных метаболических процесах. Показано, что у *Pediococcus pentosaceus* белок PadR выступает в качестве негативного регулятора декарбоксилазы фенольных кислот (padA/ phenolic acid decarboxylase) [255]. Однако у *Msm* данный фермент отсуствует. Некоторые белки семейства PadR участвуют в вирулентности и ответе на тепловой шок [256,257]. Белок семейства PadR из *Lactococcus lactis* LmrR контролирует экспрессию гетеродимера ABC транспортера LmrCD, который участвует в множественной лекарственной устойчивости [258]. Белки, выполняющие подобные функции, могут быть важны для поддержания состояния покоя, поскольку клетки в состоянии глубокого покоя устойчивы к антибиотикам.

Так же в протеомных профилях покоящихся форм *Mtb* и *Msm* обнаружены факторы трансляции белка, которые, очевидно, являются «запасенными» и необходимы для быстрого запуска процесса реактивации. Например, стабильно высоким остается уровень фактора элонгации Tu/ Rv0685, который в норме доставляет аминоацил-тРНК к рибосоме, но в условиях стресса он фосфорилируется протеинкиназой PknB, за счет чего активность фактора элонгации Tu становится невозможной, и синтез белка прекращается [259].

Такой механизм позволяет регулировать активность фактора элонгации без необходимости синтеза *de novo*, что крайне важно на первых стадиях реактивации, когда транскрипция отсутствует.

3.1.6.4. Защитные механизмы

Микобактерии выработали разные принципы ДЛЯ защиты OT окислительного стресса: во-первых, это непосредственная инактивация активных форм кислорода (АФК), во-вторых, - восстановление поврежденных под действием АФК биомолекул и в-третьих, ограничение доступа АФК в или их активный выброс [260]. Последний вариант крайне клетку маловероятный для покоящихся клеток в силу почти полного отсутствия сообщения с внешней средой (см. раздел транспорт).

В протеомном профиле покоящиеся клеткок обнаружено значительное количество ферментов для инактивации AФK, среди них: супероксиддисмутазы (sodA Rv3846/MSMEG_6427; sodC Rv0432/MSMEG_0835), каталаза/пероксидаза (katG Rv1908/MSMEG_3461 bpoC/Rv0554), алкилгидропероксидаза (MSMEG_4890), алкилгидропероксидредуктазы (MSMEG_4891; MSMEG_4753), тиолпероксидаза MSMEG_3479), и альдо / кеторедуктаза (MSMEG 6746).

Для восстановления окисленных молекул многие бактерии используют глутатион, но актинобактрии его не синтезируют, поскольку он, как и нитрозоглутатион, токсичен для микобактерий [261], хотя микобактерии синтезируют аналоги глутатиона сходного действия, такие как микотиол и тиоредоксин.

Таким образом, к ферментам защиты косвенно можно отнести ферменты, участвующие в синтезе микотиола, такие ферменты были нами обнаруженны в протеоме покоящихся форм *Msm* (но не *Mtb*) («уникальные» для покоящихся форм MSMEG_5129, MSMEG_ 5261). Микотиол является функциональным эквивалентом глутатиона в микобактериях [262] и связан с защитой *Mtb* от

токсинов, окислителей и антибиотиков [213]. Микотиол-зависимые ферменты участвуют в детоксификации электрофильных компонентов и инактивации активных форм кислорода и азота, а также изомеризации [263]. Одной из этих реакций является участие микотиола в окислении формальдегида, действием микотиол-зависимой формальдегидосуществляемого под дегидрогеназы (MSMEG 4340, «уникальный для покоящихся форм Msm). Поэтому мы оценили уровень тиолов в клетках Msm. Концентрация тиолов в покоящихся клетках была в 2,5 раза выше, чем в активных клетках (Табл.4).

Другой функциональный эквивалент глутатиона – это тиоредоксин обнаружен в протеоме покоящихся форм Mtb, а именно тиоредоксин С (Rv3914), один из трех аннотированных для Mtb. Функции тиоредоксина связаны с восстановлением дисульфидных мостиков в белках, детоксификации форм кислорода, регуляции оксилсительно-восстановительного активных баланса цитоплазмы клетки [264]. Столь широкий спектр функциональных достигается тиоредоксином благодаря специальной, возможностей так называемой «тиоредоксиновой укладке», а также двум близкорасположенным остаткам цистеина, разделенных обычно двумя другими аминокислотными остатками [265]. Для восстановления тиоредоксина требуется тиоредоксинредуктаза (тиоредоксин-редуктаза Rv3913), заимствующая для этого протоны с НАДФН [266], также обнаруженная в протеомном профиле активных и покоящихся клеток *Mtb*.

В протеоме покоящихся клеток в значительном количестве представлены ферменты. ответственные за детоксикацию метилглиоксаля и других реакционноспособных альдегидов: альдегид-дегидрогеназы (MSMEG 2597) и глиоксалаз белка семейства (MSMEG 5680, «уникальный»), а также ферментов, инактивирующих активные соединения азота и их промежуточные [алкилгидропероксидредуктазы MSMEG 4891, продукты MSMEG 0903/Rv0462, дигидролипамидадегидрогеназы дигидролипамида-MSMEG 4283/Rv2215 сукцинилтрансферазы И алкилгидропероксидазы

MSMEG_4890 S-нитрозомикотиол редуктаза Rv2259]. Протеом покоящихся клеток также содержит фермент ответственный за детоксификацию окисленных липидов [глутатион S-трансфераза; MSMEG_5695 («уникальный», для покоящихся форм *Msm*).

В том числе, обнаруженны в покоящихся клетках *Msm* белки, участвующие в синтезе порфирина (см. раздел 3.3), их потенциальная активность подтверждается данными о накоплении в значительных количествах пигмента порфириновой структуры в процессе перехода в состояние покоя (раздел 3.3).

Для защиты белков от вредного воздействия АФК и репарации у микобактерий вырабатываются шапероны, которые обнаруживаются В протеоме обоих типов клеток (активных и покоящихся) в значительных количествах и разнообразии. Среди них GroL MSMEG 0880, dnaJ1/Rv0352; htpG/Rv2299, groEL2/Rv0440, dnaK/ MSMEG 0709/ Rv0350; groES/Rv3418; groEL1/Rv3417, триггер фактор MSMEG 4674/Rv2462; HtpG/Rv2299c, hspX/Rv2031 /MSMEG 3932; ClpB MSMEG 0732/Rv0384c. Неудивительно, что в протеомном профиле покоящихся форм *Mtb* и *Msm* обнаружен гомолог альфа кристаллина (hspX/Rv2031 /MSMEG 3932), входящий в состав Dos регулона, который стабильно обнаруживается при любом, в том числе неспецифическом стрессе и был неоднократно обнаружен в протеомах других моделей покоящихся форм [4,5,63]. Помимо гомолога альфа-кристаллина в протеомном профиле покоящихся форм обнаруживается лишь несколько белков из 48 членов Dos регулона, таких как универсальные стрессовые белки Rv2623, Rv1996, Rv2624 и белки с неизвестной функцией Rv2004, Rv2629, MSMEG 0082, MSMEG 3131.

Для стабилизации ДНК предотвращения повреждений в условиях стресса у микобактерий вырабатывается ДНК-свзыявающий гистоноподобный белок (hupB/Rv2986), обнаруженный в протеомном профиле покоящихся форм *Mtb*. Гистоноподобные белки имеют высокое сходство с гистонами эукариот и

оказывают большое влияние на компактизацию и топологию ДНК [224,267,268].

В мембранной фракции покоящихся клеток *Mtb* самым представленным является Rv0341(iniB) с неизвестной функцией, имеющий ДНК-связывающий домен, согласно базе данных Uniprot, и вероятно, выполянющий защитную функцию ДНК [269].

3.1.6.5. Биосинтетические процессы

В процессе перехода в состояние покоя в клетках останавливаются или сильно замедляются процессы биосинтеза, таким образом, неудивительно, что протеом покощихся клеток «беднее» ферментами биосинтеза по сравнению с протеомом активно-растущей культуры.

покоящихся Протеом клеток характеризуется отсутствием многих ферментов, биосинтез аминокислот: ответственных за гистидина (hisA/MSMEG 3209), лизина и диаминопимелата (dapA /Rv2753c, dapD/ Rv1201c, dapF/Rv2726c, dapB/Rv2773c, asd/Rv3708c), серина и глицина (glyA1/Rv1093), валина и изолейцина (ilvB1/Rv3003c; ilvG/Rv1820), треонина (thrC/ Rv1295), триптофана (trpC/Rv1611, Rv1613), trpA/ лейцина (leuA/Rv3710).

Также в протеоме покоящихся форм отсутствуют обнаруженные в протеоме активых клеток ферменты, осуществляющие метаболизм нукленовых кислот: (carA/MSMEG 3046), (MSMEG 3785, пиримидинов пуринов folD/MSMEG 1647/Rv3356; PurN/Rv0956), тимидилата (dut/MSMEG 2765) и биосинтеза других важных биомолекул: пиридоксина (pdxH/MSMEG 2937/Rv2607), кобаламина (cobQ2/MSMEG 6277, cobT/Rv2207) пантотаната (panC/MSMEG 6097), кофактора дегидрогеназ и оксидредуктаз молибдоптерина (moeB1/Rv3206c,moeA1/Rv0994) И менахинона (menD/Rv0555).

В то же время ферменты, участвующие в синтезе клеточной стенки, были обнаружены в покоящихся клетках *Mtb* и *Msm*. Наиболее представленными были следующие ферменты: секретируемая аланиндегидрогеназа MSMEG_2659/Rv2780, murF/MSMEG_4231/Rv2157c и murD/MSMEG_4229, murE/Rv2158, ddlA/Rv2981, участвующие в синтезе пептидогликана и отвечающие за изменение клеточной стенки микобактерий при переходе в покой [106].

Покоящиеся клетки *Msm* содержат «уникальные» ферменты синтеза порфирина (MSMEG_0953, MSMEG_0956, MSMEG_2780) и синтеза лейцина (MSMEG_6271 и MSMEG_2379).

По-видимому, покоящиеся клетки накапливают вещества в процессе хранения. Мы обнаружили несколько ферментов, участвующих в синтезе и накоплении гликогена (MSMEG_4918), трегалозы (MSMEG_6514 и MSMEG_6515) и полифосфатов (MSMEG_2391). Все эти ферменты были обнаружены только в протеоме покоящихся микобактерий.

Секретируемый белок миколилтрансфераза обнаружен в протеомном Mtb профиле покоящихся клеток как уникальный FbpB /Rv1886c. Миколилтрансфераза обеспечивает биосинтез трегалозо-димиколята, известного как корд-фактор, который в свою очередь является фактором вирулентности и необходим для поддержания целостности клеточной стенки при попадании бактериальной клетки в макрофаг [270].

3.1.6.6. Процессы деградации

Протеом покоящихся форм содержит множество ферментов, которые участвуют в деградации основных клеточных компонентов, таких как липиды, жирные кислоты, белки, пептиды и аминокислоты. Помимо липидных гидролаз, в протеоме покоящихся клеток имеются ферменты, обеспечивающие деградацию липидов и разветвленных жирных кислот: ацетил-соА-дегидрогеназа MSMEG 1821/Rv3272, пропионил-соА-карбоксилаза

MSMEG_1813/Rv3280, ацетил-соА-ацетилтрансфераза MSMEG_6008/Rv3556с, ацетил-соА-эстераза MSMEG 2938/Rv2605.

Ферменты с протеолитической активностью, хотя и были обнаружены в обоих типах клеток, более разнообразны и лучше представлены в протеоме покоящихся клеток: пептидазы MSMEG_0234; MSMEG_4200; MSMEG_4690, MSMEG_2092, Rv2535c; clp MSMEG_4672/Rv2460; MSMEG_0732/Rv0732; MSMEG_4673; Rv3596c протеасомы MSMEG_3895, Rv2110c, Rv2109c протеазы Rv0291.

Обнаружена экспрессия полинуклеотидфосфорилазы (MSMEG_2656) в протеоме покоящихся форм *Msm*. Этот фермент является компонентом PHK деградосом и непосредственно участвует в деградации мPHK [271].

С одной стороны обнаруженные ферменты деградации могут расщеплять поврежденные молекулы в отсутствие процессов синтеза de novo, с другой стороны продукты расщепления могут использоваться повторно ДЛЯ поддержания жизнедеятельности клетки при длительном хранении, обеспечивая так называемое «катаболическое выживание».

3.1.6.7. Транспорт через мембрану

В протеомных профилях активных клеток *Msm* и *Mtb* обнаружено большое количество белков, участвующих в транспорте (порины, ABC транспортеры и проч.), в том числе отвечающих за активный транспорт через клеточные мембраны белков, аминокислот, олигопептидов, ионов калия, железа, и тд. Однако в протеомных профилях покоящихся форм разнообразие траспортных систем значительно снижается и обнаружено лишь несколько белков, для которых показана транспортная активность, например, экспортер макролидов, для избавления клетки от проникновения антибиотиков (Rv2477c).

3.1.7. Белки сохраняющиеся при хранении Mtb

Отдельное внимание стоит уделить белкам, которые, несмотря на длительное хранение покоящихся клеток (13 месяцев) (D2), остаются в клетке

целыми (не деградированными). Несмотря на значительное снижение разнообразия белков в протеоме клеток после 13 месяцев хранения по сравнению с белками активных клеток все еще остается пул особо стабильных белков. Следует отметить, что некоторые белки сохранили свою высокую представленность в протеоме по сравнению с активными клетками, и эта когорта белков может быть полезна при создании диагностических систем на латентность туберкулеза.

Среди белков, обнаруженных в протеомном профиле долго хранившихся клеток *Mtb* (D2) встречается множество белков центральных метаболических путей (гликолиз, ЦТК, синтез аминокислот, дыхательная цепь), которые, однако, скорее всего неактивны в этом состянии. Так же хорошо сохранились белки участвующие в транскрипции и трансляции, такие как транскрипционные регуляторы или факторы трансляции белка, которые также, маловероятно могут сохранять активность в покоящихся клетках, и скорее всего нужны на первых стадиях реактивации.

С другой стороны белки, которые участвуют в защите от окислительного стресса (ферменты расщепляющие АФК или шапероны), как и «белки деградации» (протеазы, липазы и др.), могут быть активными в состоянии покоя для обеспечения метаболизма на низком уровне, необходимом для поддержания жизнеспособности.

Другие белки, которые обнаружены только в точке D2, и не обнаруживаются в протеоме покоящихся клеток более ранней стадии или активных клетках, вероятно, являются крайне стабильными, и обнаруживают себя за счет деградации других белков. Не исключено, что эти белки присутствуют в протеоме *Mtb* в других временных точек хранения, но не обнаруживают себя за счет низких количеств, ниже чувствительности метода двумерного электрофореза.

3.1.8. Сравнение полученных данных с другими моделями покоя.

Сравнение первых 200 наиболее представленных белков между активными и покоящимися клетками как для Msm, так и для Mtb выявило значительные различия в белковом составе. Таким образом, было обнаружено, что протеомы активных и покоящихся клеток перекрываются менее чем на 50%, (46% для Msm, 47% для Mtb) (Рис 5. Рис. 8). Подобное сравнение первых 200 наиболее представленных белков в других моделях показывает, что в случае в моделью гипоксии Вейна [7] перекрывание составляет 69%, а в случае с моделью голодания Лебеля [8] оно составляет 66%. (Рис 10) Вероятно, что столь значительное различие в белковом составе между активными и покоящимися клетками связано с высокой продолжительностью состояния покоя в нашей модели (1 месяц для Msm; до 13 месяцев для Mtb). Для других моделей время перебывания клеток Mtb в состоянии покоя значительно меньше и составляет от 20 дней (модель Вейна) до 6 недель (модель голодания Лёбеля).

Рис. 10. Диаграммы Венна наглядно показывающие перекрывание между первыми 200 самыми представленными белками в протеоме активных и покоящихся клеток.

Белки, составляющие основные различия в протеомных профилях в исследуемой модели также сильно отличаются от опубликованных ранее результатов, полученных в других исследованиях с использованием других моделей покоя микобактерий. Количество дифференциально-экспрессируемых белков в настоящем исследовании намного выше, чем в наиболее известной модели нерепликативного анаэробного состояния модель Вейна. Количество так называемых «белков отличия» от протеома активных клеток в модели Вейна составляет 16-21 белок полученные методом двумерного элетрофореза [4,5], в модели голодания 7 белков [3] и в поздней стационарной фазе 10 белков [211] для Mtb,. Это расхождение может быть объяснено тем, что покоящиеся клетки в настоящей модели помимо того, что они находятся в нерепликативном метаболической низкой состоянии, характеризуются активностью И

измененной морфологией (овоидные клетки), что отражает более глубокое состояние покоя таких клеток [14,106]

Мы обнаружили лишь несколько белков, которые накапливались в покоящихся клетках исследуемой модели сходно с опубликованными на других моделях. В частности, гомолог α-кристаллина (белок теплового шока HspX (Rv2031 /MSMEG 3932), значительная экспрессия которого была обнаружена в покоящихся клетках Msm и Mtb исследуемой модели, а также в нерепликативном анаэробном состоянии на модели Mtb (Wayne) [4,5], Msm [63] and *M. bovis* [218]. Аланиндегидрогеназа (MSMEG 2659) также является хорошо изученным белком, экспрессия которого увеличивается В опубликованных моделях покоя для микобактерий [4,210]. В нашей модели покоя для *Msm* также увеличивается экспрессия этого белка. Этот белок участвует в поддержании концентрации NAD в клетке в условиях, когда доступ к конечному акцептору электронов ограничен [272]. Кроме того, ΜЫ гепарин-связывающий гемагглютинин (MSMEG 0919) обнаружили как «уникальный» белок в покоящихся клетках. Так же для этого белка показано увеличение экспрессии В модели голодания Лёбеля достоверное С использованием двумерного электрофореза [8]. Показано, что гепаринсвязывающий гемагглютинин можно использовать в качестве маркера для латентной туберкулезной инфекции [273].

Самым значительным отличием белков покоящихся клеток в модели Вейна от протеомного профиля активных клеток являются белки Dos perулона [7,108]. В покоящихся клетках нам не удалось обнаружить регулятор Dos perулона (MSMEG_3944 / MSMEG_5244) и найдено лишь несколько белков, которые являются потенциальными участниками Dos perулона. Такой результат неудивителен, потому что в анаэробной модели Вейна при длительном хранении белки Dos perулона не экспрессируются в значительных количествах по сравнению со страндартной нерепликативной моделью [152], а модель длительного хранения ближе к той, которая использовалась в
настоящем исследовании. Стоит также отметить, что на модели голодания Лёбеля Dos peryлон также был крайне слабо представлен в протеоме. [8].

Для выявления сохранившихся белков общих для трех моделей также был проведен сравнительный анализ 200 наиболее представленных. При сравнении белков, полученных в протеомном профиле покоящихся клеток поздней стадии хранения (D2) с 200 самыми представленными в модели Вейна [7] и Лёбеля [8] обнаруживается 58 общих белков (Рис. 11). Одиннадцать белков из этой группы участвуют в защите от стресса и 14 из них в центральных метаболических путях. Также в этот список входят белки, участвующие в транскрипции и трансляции ДНК-зависимая-РНК-полимераза (альфа и бэтта субъединицы) и факторы элонгации (Tu/Rv0685, Ts/Rv2889c). Очевидно, что эти белки обладают высокой стабильностью и играют важную роль в поддержании жизнеспособности покоящихся клеток вне зависимости от стрессового воздействия.

Рис. 11. Диаграмма Венна показывающая перекрывание сохранившихся белков между тремя моделями покоя.

Следует отметить, что отношение НАД/ НАДН почти одинаково у активных и покоящихся клеток *Msm* (хотя концентрация динуклеотидов в покоящейся форме была в 10 раз меньше, чем в активных клетках. Это означает, что реакции, приводящие к генерации НАД все же происходят в покоящихся клетках, в противном случае концентрация НАД быстро уменьшалась бы из-за действия НАДН -потребляющих ферментов, таких как НАДН-оксидаза. В то же время основные биосинтетические процессы, такие как синтез белка или РНК, неактивны в покоящихся клетках, поскольку клетки в этом состоянии оказались почти нечувствительны к антибиотикам, бактерицидное действие которых основано на подавлении биосинтезов, а также неспособны к включению радиоактивных меток.

Таким образом, мы впервые демонстрируем стабильность белков в покоящихся микобактериях после длительного хранения и показываем сохранение ферментативной активности некоторых ферментов. Очевидно, что эта стабильность обеспечивается системами защиты, хорошо представленными в протеоме. Мы предполагаем, что все белки, обнаруженные в покоящихся клетках, можно разделить на три группы: 1) те, которые экспрессируются при переходе от активного состояния в состояние покоя; 2) те, которые являются «запасенными» и хранятся в покоящихся клетках для дальнейшей реактивации клеток в случае наступления благоприятных условий; 3) те, которые являются функциональными и могут играть роль в поддержании клеточного метаболизма на уровне достаточном для выживания.

3.2. Накопление свободной трегалозы покоящимися клетками Msm.

В протеомном профиле покоящихся клеток *Msm* был обнаружен фермент синтеза трегалазы, трегалосинтаза (TreS/MSMEG_6514), как «уникальный» (не обруживаются в протеомном профиле активнорастущей культуры *Msm*). Этот фермент участвует в пути синтеза трегалозы из мальтозы. Исходя из этого возникло предположение, что в покоящемся состоянии увеличивается синтез

трегалозы, по сравнению с активными клетками, что было подтверждено дальнейшими исследованиями. Мы проанализировали низкомолекулярные компоненты водно-метанольного экстракта покоящихся клеток Msm (14 дней инкубации) с помощью ¹Н- и ¹³С-ЯМР. Сравнение полученных данных с опубликованными спектрами стандартных растворов чистых веществ позволило идентифицировать основной компонент цитоплазмы покоящихся клеток как трегалозу (аномерный протон-дуплет при 5.18-5.19 ррт. и комплекс протонов между 3,44 и 3,85 ррт. в ЯМР спектр, (Рис. 12 А). Процентная доля трегалозы в покоящихся клетках *Msm* составляла примерно 64% неизменяемых протонов с дейтерием. Спектр ¹Н-ЯМР водно-метанольной фазы экстракта активных клеток *Msm* также выявил наличие трегалозы в цитоплазме бактерий, но в значительно меньшем количестве (15% от общего органического материала, не показано). ¹³С-ЯМР анализ подтвердил накопление трегалозы в покоящихся клетках. Сигналы химических сдвигов ¹³С-ЯМР (ppm) - 96, 75,2, 74,9, 73,8, 72,4 и 63,2 - были близки к опубликованным сдвигам для трегалозы [аномерный атом C-1 (95,96 ppm), атом C-2 (75,215 ppm.), атома C-3 (74,875 ppm), атома C-4 (73,765 ppm), атома C-5 (72,4 ppm), атома C-6 (63,246 ppm); (Рис. 12).

97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62

Рис. 12. Спектры ¹Н-ЯМР (A) и ¹³С-ЯМР (B) водно-метанольной фракции от хлороформ-метанол-водного экстракта овоидных покоящихся клеток *Mycobacterium smegmatis*. Клетки центрифугировали, промывали и экстрагировали хлороформ-метанолом. Дуплет при 5,18-5,19 ppm в спектре ¹Н-ЯМР (A) и пик при 95,96 ppm. в ¹³ С-ЯМР (B) относятся к аномерному протону и аномерному атому С-1 в молекуле трегалозы соответственно.

Msm, Водно-метанольные экстракты клеток взятые ИЗ разных физиологических фаз в процессе перехода в состояние покоя, анализировали хроматографически с помощью TCX на колонке Merck RP-18. Одно основное пятно экстракта покоящихся клеток (Rf = 0.87) соответствовало положению экстракте было стандарта трегалозы, НО В активных клеток ПЯТНО незначительным (Рис. 13). Оценка содержания трегалозы в клетках двумя методами (ЯМР и ТСХ) продемонстрировала значительное увеличение при переходе от стадии активного роста к состоянию покоя, что коррелировало с уменьшением уровня включения радиоактивно меченного H³-урацила, что указывает на развитие состояния покоя (Рис. 14). Высокая концентрация трегалозы поддерживалась в течение 2 месяцев хранения клеток.

Рис. 13. Накопление трегалозы при переходе клеток *M. smegmatis* в состояние покоя показано с помощью метода TCX. Водно-метанольные фракции из экстракта клеток на разных стадиях перехода в состояние покоя анализировали с помощью TCX. Пластины выдерживали в 10% H₂SO₄ для визуализации

Рис. 14. Накопление трегалозы при переходе в состояние покоя и длительном хранении клеток *M. smegmatis*. Вычисление процента трегалозы от общего количества растворимых веществ на основе ¹Н-ЯМР (столбцы) Включение ³Н-урацила в клетки представлено в виде СРМ на мг мокрого веса клеток культуры (кривая). Бары представляют собой ± стандартное отклонение.

3.2.1. Экспрессия генов, участвующих в синтезе трегалозы

Известно, что трегалоза может синтезироваться *de novo* у микобактерий через OtsA-OtsB (из глюкозо-6-фосфата) и TreY-TreZ (из цитозольных α -1,4связанных глюкозных полимеров). Ранее предполагалось, что третий путь биосинтеза трегалозы из мальтозы - TreS, вносит малый вклад в биосинтез трегалозы как у *Msm*, так и у *Mtb* [274,275]. Считается, что TreS путь более важен для поздних стадий туберкулезной инфекции, что было показано для персистирующей инфекции у мышей [276]. При выращивании клеток *Msm* образование трегалозы из мальтозы через TreS ограничено биосинтезом мальтозы [275]. Чтобы установить основной путь синтеза трегалозы во время образования покоящихся клеток *Msm* использовали ПЦР в реальном времени для того, чтобы отследить экспрессию генов, участвующих в этих реакциях. Все изученные гены экспрессировались в средней экспоненциальной фазе (3-

дневная культура, выращенная на среде Сатона с начальным значением pH 6,0). PHK, выделенная из клеток в этой фазе, принималась как положительный контроль для калибровки количественного определения относительной экспрессии при переходе микобактерий в состояние покоя.

В ранней стационарной фазе (около 4-5 дней) наблюдалось увеличение относительной экспрессии почти всех исследованных генов: экспрессия трегалозофосфатсинтазы (MSMEG_5892; OtsA) была увеличена в три раза, и экспрессия трегалозо-6- фосфат фосфатазы (MSMEG_3954; OtsB) повышалась в два раза через 5 дней с момента засева бактерий на среду (Рис. 15).Экспрессия мальтоолигозил-трегалозасинтазы (MSMEG_4696; TreY) была увеличена в 4,5 раза, а экспрессия мальтоолигозил-трегалозной трегалогидролазы (MSMEG_3184; TreZ) была значительно увеличена в 16,5 раза через 4 дня после инокуляции (Рис. 15).

Второй пик увеличения экспрессии ферментов OtsA, OtsB, TreY и TreZ наблюдался в поздней стационарной фазе (9-10 дней), когда начался переход микобактерий в покоящееся состояние, совместно с появлением овоидных клеток в культуре. Важность пути, реализуемого ферментом TreS, при переходе в состояние покоя не ясна, поскольку его транскрипционная активность остается постоянно низкой. Тем не менее, выявление белка TreS в протеомном профиле покоящихся клеток свидетельствует о его высокой стабильности и возможности его вовлеченности в процесс синтеза трегалозы на первых стадиях образования покоящихся клеток.

Рис. 15. Экспрессия генов *M. smegmatis*, ответственных за различные пути синтеза трегалозы во время перехода в состояние покоя. РНК была выделена из

клеток, отобранных из культуры в разные моменты времени. Количественную оценку RT-ПЦР проводили с использованием кДНК, полученной, как описано в разделе «Материалы и методы». Каждая точка представляет собой среднее из трех биологических повторов. Шкала погрешностей представляет собой стандартную погрешность от среднего значения. Каждая точка показывает относительную экспрессию определенного гена (уровень мРНК), нормированного на 16S PHK. Уровень мРНК активных клеток на третий день брался за единицу. А - Экспрессия генов пути OtsAB, В - экспрессия ключевых генов пути TreS.

Экспрессия генов, ответственных за все три пути синтеза трегалозы, возрастала во время активного роста (максимум через 4-5 дней), в то время как экспрессия OtsAB и TreYZ показала второй пик активности, соответствующий началу образования овоидных клеток в ответ на значительное закисление среды роста (9-11 дней). Очевидно, что эти два пути биосинтеза (OtsAB и TreYZ) вносят наиболее значимый вклад в накопление трегалозы на первых стадиях образования покоящихся клеток.

Таким образом, два известных взаимозаменяемых пути *in vitro* биосинтеза трегалозы (OtsAB и TreYZ) участвуют в синтезе трегалозы при переходе из активного состояния в состояние покоя в соответствии с RT-PCR (T3). В модели активного туберкулеза на мышах путь OtsAB2, который генерирует трегалозу из глюкозы и глюкозо-6-фосфата, является доминирующим путем, необходимым для роста и вирулентности *M. tuberculosis* [276]. Однако недавние исследования показали, что столь существенное влияние гена OtsB2 *in vivo* во время острой фазы инфекции, показанное на клетках с делецией этого гена, обусловлено накоплением субстрата трегалозо-6-фосфата, токсичного для клеток [277]. Инактивация второго пути (TreYZ), который генерирует трегалозу из α -1,4-связанных глюкозных полимеров, не влияла на рост *Msm* у мышей [276]. Объединение этих результатов предполагает взаимозаменяемость

двух путей *in vivo*. Фермент α-D-гликозилтрансфераза TreS, осуществляющий как реакцию образования мальтозы из трегалозы, так и обратную реакцию у *Msm* [275], и тем самым участвует в пути биосинтеза α-глюкана [278,279]. Достоверно установить направление реакции, осуществляемой ферментом TreS, обнаруженным в протеоме покоящихся форм *Msm*, не удалось.

3.2.2. Зависимость выживаемости клеток от уровня трегалозы

Чтобы установить насколько важна накопленная трегалоза в поддержании жизнеспособности покоящихся клеток *Msm*, мы проверяли жизнеспособность клеток с различными уровнями внутриклеточной трегалозы. Поскольку гены, ответственные за биосинтез трегалозы, необходимы для выживания клеток [280], мы варьировали уровень внутриклеточной трегалозы путем увеличения трегалазной активности, создав штамм *Msm* с гиперэкспрессией MSMEG_4535 (трегалаза) (штамм pES_MSMEG_4535 предоставлен Шумковой E.C.). В штамме с гиперэкспрессией трегалазы изначальный уровень удельной активности трегалазы в активно-растущих бактериях был увеличен в 10 раз по сравнению с контрольным штаммом (Рис. 16).

Рис. 16. Сравнение активности трегалазы в штамме с гиперэкспрессией трегалазы pES_MSMEG_4535 и контрольном штамме pES с пустой плазмидой. Бары представляют собой стандартное отклонение.

плотной жидкой При росте на И питательной среде штамм pES MSMEG 4535 проявлял сходный фенотип с контрольным штаммом в фазе активного роста и был способен образовывать покоящиеся клетки. Однако внутриклеточная концентрация трегалозы В клетках штамма с гиперэкспрессией трегалазы постепенно снижалась в течение периода хранения клеток, и через 75 дней была крайне низкой (Рис. 17).

Рис. 17. Зависимость жизнеспособности покоящихся клеток *M. smegmatis* от внутриклеточного содержания трегалозы. Покоящиеся клетки *M. smegmatis* пустую плазмиду pES (открытые символы) содержали И клетки с гиперэкспрессией трегалазы MSMEG 4535 (закрытые символы). Оценка жизнеспособности клеток проводилась методом НВЧК (кружки), уровня трегалозы (треугольники) с помощью ВЭЖХ. Точка ноль соответствует времени переноса 13-15-дневных клеток в поздней стационарной фазе в пластиковые закрытые пробирки. Эксперимент проводили в трех биологических повторностях. Бары представляют собой (95%) доверительные инервалы для анализа НВЧК. Бары для содержания трегалозы представляют собой \pm стандартной погрешности.

Оценка жизнеспособности покоящихся клеток методом КОЕ и НВЧК показала прямую корреляцию между содержанием трегалозы И жизнеспособностью клеток. Этот эксперимент показывает увеличение доли поврежденных клеток в популяции с низким уровнем трегалозы, что наглядно демонстрирует связь между содержанием трегалозы И поддержанием жизнеспособности покоящихся клеток в течение длительного времени без размножения.

3.2.3. Изменение уровня трегалозы и активности трегалазы в процессе реактивации.

Покоящиеся клетки *M. smegmatis* способны к самореактивации, то есть возобновлению роста и деления при попадании в свежую среду после некоторого периода «оживления», которое предшествует делению клеток [238]. Мы обнаружили, что содержание внутриклеточной трегалозы уменьшается на начальном этапе реактивации (1-5 ч) (Рис. 18) - задолго до возобновления метаболической активности (8-12ч)(Рис. 19), регистрируемой с помощью радиоактивно меченного урацила. Количество трегалозы продолжало уменьшаться до тех пор, пока не началось деление клеток (измеренное с помощью КОЕ) приблизительно через сутки после начала реактивации.

Рис. 18. Изменения уровня трегалозы (черные символы) и глюкозы (пустой символ) в клетках *M. smegmatis* во время реактивации из состояния покоя. Покоящиеся клетки получали после 3.5-4.5 месяцев хранения в статических условиях. Эксперимент выполнен в трех биологических проворностях. Показан один типичный эксперимент. Бары представляют собой ± стандартная погрешность.

Рис. 19. Изменение КОЕ (пустой символ) и включение H^3 -урацила (черный символ) в клетках *M. smegmatis* во время реактивации из состояния покоя. Покоящиеся клетки получали после 3,5-4,5 месяцев хранения в статических условиях. Эксперимент выполнен в трех биологических повторностях. Бары представляют собой ± стандартную погрешность.

После начала деления уровень трегалозы становится близким к уровню активных клеток в логарифмической фазе роста (0.2-0.5 мкг/мг мокрого веса клеток после 48 ч. культивирования). Очевидно, снижение количества трегалозы связано с ее гидролизом, поскольку на начальной стадии реактивации происходит увеличение концентрации глюкозы (Рис. 18). Как и в случае с трегалозой уровень глюкозы снижался после 5 ч. реактивации до тех пор, пока не достигал уровня активных клеток в логарифмической фазе роста (приблизительно 0.2 мкг/мг мокрого веса клеток). Вероятно, снижение содержания глюкозы связано с использованием глюкозы в начинающих работать метаболических путях.

Поскольку гидролиз трегалозы контролируется трегалазой, мы измеряли активность трегалазы на стадии реактивации. Через 2 часа после начала реактивации было обнаружено значительное увеличение активности трегалазы (Рис. 20), которое имело временный характер и сопровождалось резким увеличением уровня глюкозы, а затем быстрым снижением содержания трегалозы (Рис. 18). Второй пик активности трегалазы был обнаружен через 5-7 ч. после начала реактивации и третий через 24 часа, с началом деления клеток (Рис. 20). Эта активность поддерживалась на постоянном уровне во время всего периода логарифмического роста (не показано).

Рис. 20. Активность трегалазы и уровень АТФ в клетках *M. smegmatis* во время реактивации из состояния покоя. Эксперимент выполнен в трех биологических повторностях. Бары представляют собой ± стандартная погрешность.

Чтобы выявить причины флуктуаций активности трегалазы на стадии реактивации мы изучили активность трегалазы в неочищенном экстракте активных и покоящихся клеток in vitro. Интересно, что в то время, как активность трегалазы (измеренная путем высвобождения глюкозы) в активных клетках была обнаружена сразу после добавления субстрата, эта активность для покоящихся клеток проявляла значительную лаг-фазу до начала деградации демонстрируя самоактивацию фермента in vitro (Рис. 21). трегалозы, Действительно, предварительная инкубация экстракта покоящихся клеток в течение 3 ч. при комнатной температуре позволяла избежать лаг-фазы в реакции после добавления субстрата (Рис. 21).

Рис. 21. Самоактивация трегалазы, выделенной из покоящихся клеток M. smegmatis in vitro. Активность трегалазы определяли в 100 мМ фосфатном буфере. • - активность трегалазы в активных клетках, • - трегалазная активность покоящихся клеток; открытые символы - без АТФ, закрытые символы - с добавлением 2 мМ АТФ к реакционной среде. А - Реакцию проводили сразу после получения фракции. В - Цитозольную фракцию предварительно инкубировали в течение 3 часов при комнатной температуре без (кружки) или в присутствии 2 мМ АТФ (треугольники). Этот эксперимент повторяли пять раз. Показан один типичный эксперимент. Бары представляют собой \pm стандартная погрешность.

Согласно Carroll et al. [281] трегалазная активность в *Msm* ингибируется добавлением 20 мМ АТФ. Мы проверили влияние АТФ в широком диапазоне концентраций и обнаружили, что активность трегалазы из покоящихся клеток не поддается измерению в присутствии 2 мМ АТФ (Рис. 21). В активных же клетках, напротив, активность трегалазы не изменялась в присутствии этой концентрации АТФ и ингибировалась только в присутствии более 20 мМ АТФ. Интересно, что даже после активации в течение 3 часов фермент был частично чувствителен к 2 мМ АТФ в реакционной смеси. Очевидно, 2 мМ АТФ полностью останавливает самоактивацию трегалазы покоящихся клеток, что приводит к инактивации фермента.

Таким образом, наблюдаемая флуктуация активности трегалазы в процессе реактивации покоящихся клеток *Msm* может быть объяснена наличием инактивированном состоянии трегалазы В В покоящихся клетках И чувствительностью ее активности к флуктуирующим АТФ внутриклеточным концентрациям. Действительно, как показано на рисунке. 21, изменение активности трегалазы и АТФ обратно коррелируют после 2 ч. реактивации, когда концентрация внутриклеточного АТФ может достигать порогового уровня. Через 24 ч. после начала реактивации обнаруживалась значительная активность трегалазы при высокой концентрации АТФ, что сходно с ситуацией наблюдаемой у обычных активных клеток.

Мы обнаружили, что даже после 4 месяцев хранения покоящиеся клетки *Msm* содержали АТФ и глюкозу, хотя и на низком уровне. Предположительно, что при уменьшении концентрации внутриклеточного АТФ до точки ниже некоторого критического уровня (менее 2 мМ) может произойти расщепление трегалозы с последующим образованием свободной глюкозы для использования в гликолитических реакциях и синтезе АТФ.

Действительно, все ключевые ферменты гликолитического пути у *Msm* были обнаружены в протеоме покоящихся клеток. Такой механизм обратной связи позволяет контролировать энергетические обмен в покоящихся клетках в

Хотя отсутствие источников углеводов извне. механизм медленного расходования трегалозы может иметь важное значение в условиях голодания [274], клетки *Msm* в нашем случае хранились в избытке глицерина, мы считаем, что трегалоза для покоящихся клеток является защитным веществом, в чем и заключается ее основная роль. Тем не менее, высокая значимость накопленной свободной трегалозы В покоящихся клетках ДЛЯ поддержания жизнеспособности и целостности очевидна из экспериментов, в которых изменялось содержание трегалозы.

Изменения уровня трегалозы и активности трегалазы, обнаруженные при реактивации покоящихся клеток *Msm*, могут указывать на значительную роль расщепления трегалозы на ранней фазе реактивациии (0-12 ч). Чтобы подтвердить важную роль трегалазы для клеток во время реактивации был пременен специфический ингибитор трегалаз валидамицин A (VM-A), в том числе бактериальной трегалазы [282]. Сначала мы обнаружили, что VM-A ингибирует трегалазу в концентрации выше 1 мкМ *in vitro* (рис 21).

Рис. 22. Ингибирование активности трегалазы в неочищенносм экстракте *Msm* валидамицином. Бары представляют собой стандартную погрешность по трем биологическим повторностям.

Мы проверили влияние VM-А на реактивацию покоящихся клеток Msm. Введение VM-А в среду реактивации не останавливает реактивацию, но задерживает фазу роста и подавляет клеточное деление в экспоненциальной фазе (Рис. 23). Фактически, популяция покоящихся клеток содержит два типа клеток: культивируемые (которые могут быть оценены с помощью КОЕ) и «некультивируемые» клетки (клетки, которые не могут расти на плотной питательной среде, но способны размножаться в жидкой среде и могут быть оценены с помощью анализа MPN). Разница между двумя параметрами позволяет оценить долю «некультивиуемых» клеток в общей популяции покоящихся клеток [283] и изучить влияние VM-А на обе популяции отдельно. Для покоящихся клеток Msm после хранения 1,5 года соотношение НВЧК / КОЕ приближалась к 10^2 - 10^3 , что означает, что в популяции покоящихся микобактерий 99-99,9% клеток являются «некультивируемыми». Увеличение концентрации VM-A В среде реактивации уменьшало количество «некультивируемых» клеток, поскольку число НВЧК приближалось к числу КОЕ при концентрации VM-А 5 мг/мл (Рис. 23). Такая концентрация VM-А не влияла на НВЧК для активных клеток (ранних стационарных фаз), которые совпадали с числом КОЕ (Рис. 23). Таким образом, гидролиз трегалозы необходим для реактивации покоящихся клеток, и более жизненно важен для «некультивиуемых» покоящихся клеток Msm. Соответственно, видимый рост покоящихся клеток во время реактивации в присутствии VM-А обеспечивается культивируемой популяцией (Рис. 23).

Рис 23. Влияние валидамицина на реактивацию покоящихся клеток *M. smegmatis*. А - Рективацию покоящися клеток выполняли в колбах, как с добавлением ингибитора трегалазы VM-А так и без добавления. В - Для проведения анализа в формате НВЧК в каждую лунку добавляли различные концентрации VM-А с последовательно разведенной культурой бактерий. Линией штриховки показано число бактерий КОЕ для культуры в начале эксперимента. Эксперимент выполнен в четрырех биологических повторностях. Бары представляют собой 95% доверительные интервалы (А) для анализа НВЧК и стандартную погрешность для OD (В).

Поскольку VM-А также ингибирует фермент TreS [279], в период реактивации измеряли уровень внутриклеточной мальтозы. Было обнаружено, что в течение первых 24 ч. реактивации концентрация мальтозы поддерживалась на постоянном и одинаковом уровне как в культуре с добавлением VM-А, так и без добавления (Рис. 24).

Рис. 24. Измененеие уровня внутриклеточной глюкозы и мальтозы в клетках *Msm* во время реактивации. Бары представляют собой стандартную погрешность по трем биологиеским повтоностям.

Однако уровень внутриклеточной глюкозы снижался на начальном этапе реактивации (2-6 ч) в присутствии VM-А в отличие от контрольной культуры, где уровень глюкозы увеличивался, что отражает ингибирование трегалазы с помощью VM-А и возможное потребление первоначально доступной глюкозы. Этот эксперимент показывает, что путь TreS не работает на ранней стадии реактивации, а эффекты VM-А объясняются исключительно ингибированием активности трегалазы, по крайней мере, в фазе реактивации.

Подобно тому, как происходит прорастание спор дрожжей или актиномицетов [284], мы обнаружили уменьшение содержания трегалозы во

время реактивации покоящихся клеток Msm, что связано с активацией трегалазы на первых стадиях реактивации. Активность трегалазы Msm значительно повышается в течение первых двух часов реактивации, затем следует резкий спад активности, также как это происходит при прорастании дрожжевых спор [285,286]. Очевидно, активация трегалозы происходит не из-за синтеза белка *de novo*, поскольку первые биосинтетические процессы включаются на более поздних стадиях реактивации покоящихся клеток и начинаются лишь после 12-14 часов от начала реактивации. Более того, через 2 часа происходила самоактивация трегалазы даже в экстракте покоящихся клеток, который был очищен от целых клеток, когда биосинтез белка невозможен. Таким образом, активность трегалазы, вероятно, маскируется в покоящихся клетках, как было предложено для дрожжевых аскоспор [287]. Было предложено два возможных механизма этого явления: (1) активность трегалазы регулируется низкомолекулярными соединениями - АТФ-зависимое ингибирование или активируется фосфорилированием [288]; (2) низкий уровень гидратации в спорах может объяснять низкую активность трегалазы, в то время как повышенный уровень гидратации активирует фермент [289].

Регуляция активности трегалазы за счет изменения концентрации АТФ представляется наиболее вероятной, поскольку активность трегалазы в экстракте покоящихся клеток не содержащем живых бактерий ингибируется даже низкой концентрацией АТФ. Мы не можем исключить также роль гидратации покоящихся клеток *Msm* в активации трегалазы особенно на начальной стадии реактивации, что приводит в дальнейшем к снижению концентрации АТФ с последующей активацией трегалазы. Характер различия между чувствительностью к АТФ фермента, выделенного из покоящихся и активных клеток, остается не ясным, однако наличие трегалазы в больших агрегатах в покоящихся клетках в отличие от активных клеток может модулировать чувствительность трегалазы к АТФ.

Активация трегалазы при реактивации покоящегося *Msm* сопровождается уменьшением содержания трегалозы и увеличением концентрации глюкозы, что может указывать на использование новообразовавшейся глюкозы в начальный период реактивации, когда метаболизм еще не функционирует в полном объеме. Несмотря на то, что эта возможность для спор дрожжей экспериментально не доказано [290], замедление реактивации обнаруживается в присутствии специфического ингибитора трегалазы VM-A (в отличие от его влияния на рост активных) и снижение первоначально доступной глюкозы при ингибировании трегалазы / TreS могут добавить некоторую ценность для этой гипотезы.

3.2.4. Трегалоза как стрессовый метаболит

Трегалоза в микобактериях играет важную роль как компонент клеточной стенки, в форме трегаолза моно- и димиколята, так же известного как «корд фактор», который определяет патогенность и вирулентность туберкулеза и то заболеваний [274]. В некоторых других же время, будучи невосстанавливающимся дисахаридом, трегалоза обладает несколькими уникальными свойствами, включая высокую гидрофильность, химическую стабильность, способность образовывать аморфную формы «стекла» И способность связь образовывать водородную [291]. Сочетание ЭТИХ особенностей объясняет основную роль трегалозы в качестве стрессового метаболита [292]. Известно, что ряд прокариотических видов реагирует на стресс накопленим цитоплазматической трегалозы, либо за счет увеличения транспорта трегалозы в клетку извне, либо увеличением эндогенного синтеза. Показана роль трегалозы как осмопротектанта на клетках E. Coli [292], Corynebacterium glutamicum [293] и различных цианобактерии [294], где она замещает воду, то есть действует как совместимое вещество. Как и другие совместимые вещества трегалоза не оказывает негативного воздействия на клеточные функции при высоком содержании в клетке. Благодаря этому свойству трегалозу так же называют «сухая вода». Трегалоза играет важную

роль в адаптации бактерий к повышению и понижению температуры. На *E.coli* показано увеличение в 8 раз уровня трегалозы при холодовом шоке во время падения температуры до 16 ⁰C, что помогло клеткам выжить при температуре 4 ⁰С [295]. При тепловом шоке трегалоза, связываясь с полярными головками фосфолипидов мембран, помогает поддерживать прочность мембран, а так же увеличивает термическую стабильность белков [135]. Трегалоза защищает клетки дрожжей от теплового шока [296], высушивания [297] и окислительного стресса [298]. Ранее была опубликована работа в которой показано, что трегалоза обеспечивает защиту клеток *Msm* при повышенной температуре [280]. Трегалоза связывается водородными связями с нуклеотид фосфатам тем плавления ДНК [280,299]. самым снижаяя температуру Трегалоза предотвращает денатурацию и агрегацию поврежденных белков и, таким образом, облегчает их восстановление в пост-стрессовый период [292].

Для дрожжевых и нитевидных грибковых спор трегалоза может выполняет роль «хранилища» углерода [287], поскольку может быть гидролизована с образованием глюкозы, которая будет использована для получения АТФ, что необходимо для поддержания жизнеспособности спор [285,290].

Таким образом, в результате проведенных экспериментов мы впервые обнаружили накопление трегалозы в покоящихся клетках *Msm* и выявили ее значение для поддержания жизнеспособности покоящихся клеток *Msm*, а так же роль её распада для реактивации. Это позволяет установить сходство между покоящимися клетками микобактерий и истинными спорами грибов и дрожжей.

3.3. Накопление пигмента порфириновой структуры покоящимися клетками *Msm*

В протеомном профиле покоящихся клеток *Msm* обнаружены ферменты биосинтеза порфирина: порфобилиноген деаминаза (MSMEG_0953), дегидрогеназа дельта-аминолевулиновой кислоты (MSMEG_0956),

уропорфириноген декарбоксилаза (MSMEG 2780), которые не обнаруживаются в протемном профиле активных клеток, из чего возникло предположение, что в покоящихся клетках Msm повышается интенсивность синтеза профирина. И действительно, это предположение подтверждается данными о накоплении пигмента порфириновой структуры в покоящихся клетках *Msm*.

Известно, что при переходе клеток *Msm* в состояние покоя происходит накопление темного пигмента [238], который окрашивает культуральную жидкость (Рис. 25), однако структура и функции его оставались неизвестны.

Культура активных клеток M.smegmatis,

Рис. 25. Фотография культур активных и покоящихся клеток *M. smegmatis* в среде роста. На фото наглядно демонстрируется накопление пигмента порфириновой структуры в покоящихся клетках.

С целью подтверждения предположения о том, что накапливаемый пигмент имеет порфириновую структуру, был снят спектр поглощения супернтатанта, а также хлороформ-метанольного экстракта клеток Msm. Спектры поглощения супернатанта и экстракта покоящихся клеток *Msm* (Рис. 26) типичны для класса порфиринов [300]. Полученные таким же способом супенатанты и экстракты активнорастущей культуры Msm демонстируют спектр поглощения близкий к контролю (не показано).

Рис. 26. Спектр поглощения супернатанта (зеленый), и хлороформметанольного экстракта покоящихся клеток *M. smegmatis* (синий).

Н¹-ЯМР анализ подтвердил наличие порфирина в экстракте покоящихся клеток *Msm* (Рис. 27)..

Рис. 27. Н¹-ЯМР спектр хлороформенной фазы хлороформ-метанольного экстракта покоящихся клеток *Msm*, 10 ppm соответствуют мезопротонам порфиринового кольца.

Полученные сигналы сходны с полученными ранее для порфиринов [301], а точнее на 10 ppm соответствуют мезопротонам порфиринового кольца, на 3,7 ppm соответствуют CH₃ группам, на 3,3 и 4,5 ppm протоны остатков пропионовой кислоты присоединенные к пиролу

Как известно из литературы, порфирины, в протонированной форме, не содержащие железа в структуре, обладают способностью к флуоресценции в кислой среде [300]. Как видно на фотографии с микроскопа (Рис. 28) Msm обладают собственной флуоресценцией, покоящиеся клетки без добавления красителей, специальных что служит дополнительным подтверждением о накоплении в клетках в состоянии покоя пигмента порфириновой структуры. Также на фотографии видно, что флуоресцирующий пигмент в основном локализован в клеточной стенке микобактерий. В тоже время клетки активнорастущей культуры Msm, не содержащие порфирина не обладают способностью к флуоресценции.

Фазово-контрастная микроскопия Флуоресцентная микроскопия

Рис. 28. Флуоресцентная и фазово-контрастная микроскопия активных и покоящихся клеток *M. smegmatis*.

Стоит отметить, что ранее в литературе было описано накопление пигмента в культурах *Mtb* и *M. bovis* в состоянии длительного анаэробиоза [216], а также *Msm* [217], хотя и не в столь значительном количестве, но структуру авторы достоверно установить не смогли. Так, например, Cunningham продположил, что обаруженный пигмент имеет каротиноидную структуру, а Berney and Cook связали появление пигмента с накоплением цитохромов.

Роль пигмента порфириновой структуры, который накапливается в столь значительных количествах в покоящихся клетках, установить достоверно пока не удалось, однако он может играть важную роль в обеспечении защиты покоящихся форм от неблагоприятных условий среды. Так, например, известно, что порфирины и их комплексы с металлами, содержащие 2,6-дитрет-бутилфенол, проявляют свойства антиоксидантов и могут защищать клетки от активных форм кислорода и нуклеофильных соединений [302]. Такой эффект защитного действия порфиринов показан для бактерий [303], животных клеток [304] и митохондрий [305]. Точные механизмы остаются не ясны, однако авторы сообщают, что порфирины в комплексе с металлами проявляют структурное и функциональное сходство с активными центрами гемовых оксидоредуктаз, что, вероятно, и обусловливает их каталитическую активность в реакциях окисления органических субстратов [304]. Вполне вероятно, что порфирины могут также использоваться как предшественники ДЛЯ биосинтетических реакций во время реактивации покоящихся форм.

ЗАКЛЮЧЕНИЕ

Таким образом, данное исследование впервые демонстрирует наличие стабильных белков в покоящихся микобактериях *M. smegmatis* и *M. tuberculosis* после длительного пребывания в состоянии покоя и сохранение ферментативной активности некоторых ферментов. Очевидно, эта стабильность обеспечивается белками и ферментами систем защиты от стрессовых факторов, хорошо представленными в протеоме покоящихся клеток. Обнаруженный в покоящихся клетках пигмент порфириновой структуры также может выполнять защитную функцию.

В протеомном профиле покоящихся клетках *Msm* обнаруживается фермент (TreS/MSMEG 6514) осуществляющий синтез трегалозы. Соответственно, впервые было продемонстировано накопление трегалозы в покоящихся клетках при сравнении с активнорастущими клетками *M. smegmatis*. Вероятно, что трегалоза стабилизирует покоящиеся клетки, поскольку выявлена прямая корреляция между содержанием трегалозы и жизнеспособностью клеток. В процессе реактивации происходит уменьшение содержания трегалозы, что связано с активацией фермента трегалазы. Активация трегалазы при Msm реактивации покоящихся клеток сопровождается увеличением концентрации глюкозы, что указывает на использование вновь образованной глюкозы в начальный период реактивации, когда метаболизм еще не функционирует в полном объеме. Обнаруженные процессы, связанные с метаболизмом трегалозы, позволяют впервые провести параллель между формами микобактерий и истинными спорами грибов и покоящимися дрожжей.

выводы

1. Покоящиеся клетки *M. tuberculosis* и *M. smegmatis* сохраняют значительное количество белков в условиях длительного (до 13 месяцев года для *M. tuberculosis*) пребывания в состоянии покоя при сниженной метаболической активности, отсутствии деления и синтеза белков *de novo*.

2. В покоящихся клетках микобактерий снижается количество белков участвующих в метаболизме нуклеиновых кислот, других важных биомолекул (витаминов, кофакторов ферментов), а также транспортных белков.

3. Среди сохранившихся в покоящихся клетках белках присутствуют потенциально активные ферменты центральных метаболических путей, что может обеспечивать процессы необходимые для поддержания длительного выживания или реактивации из состояния покоя.

4. В протеомных профилях покоящихся клеток микобактерий значительно увеличивается представленность белков участвующих в защите от окислительного стресса, агрегации белков и стабилизации нуклеиновых кислот.

5. В покоящихся клетках *M. smegmatis* обнаружены в значительных количествах стабилизирующие молекулы - порфирины и трегалоза, а также ферменты их метаболизма.

6. Накопление трегалозы, определяющее жизнеспособность покоящихся клеток, и ее распад в первые часы реактивации позволяет установить сходство между покоящимися клетками микобактерий и истинными спорами грибов и дрожжей.

СПИСОК ЛИТЕРАТУРЫ

- Flynn J.L., Chan J. Tuberculosis: Latency and Reactivation // Infect. Immun. 2001. V. 69. №
 7. P. 4195–4201.
- Florczyk M.A., McCue L.A., Stack R.F., Hauer C.R., McDonough K.A. Identification and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins // *Infect. Immun.* 2001. V. 69. № 9. P. 5777–5785.
- Betts J.C., Lukey P.T., Robb L.C., McAdam R.A., Duncan K. Evaluation of a nutrient starvation model of *Mycobacterium tuberculosis* persistence by gene and protein expression profiling // Mol. Microbiol. 2002. V. 43. № 3. P. 717–731.
- Rosenkrands I., Slayden A.R., Janne C., Aagaard C., Barry C.E., Andersen P. Hypoxic response of *Mycobacterium tuberculosis* studied by metabolic labeling and proteome analysis of cellular and extracellular proteins // *J. Bacteriol.* 2002. V. 184. № 13. P. 3485–3491.
- Starck J., Ka G., Marklund B., Andersson D.I., Thomas A. Comparative proteome analysis of *Mycobacterium tuberculosis* grown under aerobic and anaerobic conditions // *Microbiology*. 2004. V. 150. P. 3821–3829.
- Devasundaram S., Gopalan A., Das S.D., Raja A. Proteomics analysis of three different strains of *Mycobacterium tuberculosis* under *In vitro* hypoxia and evaluation of hypoxia associated antigen's specific memory T cells in healthy household contacts // *Front. Microbiol.* 2016. V. 7. № September. P. 1275.
- Schubert O.T., Ludwig C., Kogadeeva M., Kaufmann S.H.E., Sauer U., Schubert O.T., Ludwig C., Kogadeeva M., Zimmermann M., Rosenberger G., Kaufmann S.H.E., Sauer U. Absolute proteome composition and dynamics during dormancy and resuscitation of *Mycobacterium tuberculosis // Cell Host Microbe*. 2015. V. 18. P. 1–13.
- Albrethsen J., Agner J., Piersma S.R., Højrup P., Pham T. V., Weldingh K., Jimenez C.R., Andersen P., Rosenkrands I. Proteomic Profiling of *Mycobacterium tuberculosis* identifies nutrient-starvation-responsive toxin–antitoxin systems // *Mol. Cell. Proteomics*. 2013. V. 12. № 5. P. 1180–1191.
- Wayne L.G. Dormancy of *Mycobacterium tuberculosis* and latency of disease. // Eur. J. Clin. Microbiol. Infect. Dis. 1994. V. 13. P. 908–914.
- Loebel R.O., Shorr E., Richardson H.B. The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. // *J. Bacteriol.* 1933. V. 26. № 2. P. 139– 166.

- Khomenko A.G., Golyshevskaya V.. Filtrable forms of mycobacteria tuberculosis. Z Erkr Atmungsorgane, 1984. V. 162. № 2. 147-154. p.
- Dhillon J., Lowrie D.B., Mitchison D.A. *Mycobacterium tuberculosis* from chronic murine infections that grows in liquid but not on solid medium // *BMC Infect. Dis.* 2004. V. 4. № 51. P. 4–7.
- Chao M.C., Rubin E.J. Letting sleeping dos lie: Does dormancy play a role in tuberculosis? // Annu. Rev. Microbiol. 2010. V. 64. № 1. P. 293–311.
- Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. Dormant ovoid cells of *Mycobacterium tuberculosis* are formed in response to gradual external acidification // *Tuberculosis*. Elsevier Ltd, 2011. V. 91. № 2. P. 146–154.
- Selwyn P., Alcabes P, Hartel D., Buono D., Schoenbaum E., Klein R., Davenny K., Friedland G. Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection // N. Engl. J. Med. 1992. V. 327. № 4. P. 248–254.
- Janssens J.P., Roux-Lombard P., Perneger T., Metzger M., Vivien R., Rochat T. Quantitative scoring of an interferon-γ assay for differentiating active from latent tuberculosis // *Eur. Respir. J.* 2007. V. 30. № 4. P. 722–727.
- Mohan A.K., Timothy R.C., Block J.A., Manadan A.M., Siegel J.N., Braun M.M. Tuberculosis following the Use of Etanercept, a Tumor Necrosis Factor Inhibitor // Clin. Infect. Dis. 2004. V. 39. № 3. P. 295–299.
- Blumberg H.M. Update on the Treatment of Tuberculosis and Latent Tuberculosis Infection
 // Jama. 2005. V. 293. № 22. P. 2776.
- Bigger J.W. Treatment of Staphylococcal Infections With Penicillin By Intermittent Sterilisation // Lancet. 1944. V. 244. № 6320. P. 497–500.
- 20. McDermott W. Microbial persistence // Yale J. Biol. Med. 1958. V. 30. № 4. P. 257-291.
- Rieger M., Mauch H., Hakenbeck R. Long Persistence of a *Streptococcus pneumoniae* 23F Clone in a Cystic Fibrosis Patient // *mSphere*. 2017. V. 2. № 3. P. e00201-17.
- 22. Wood D.N., Chaussee M.A., Chaussee M.S., Buttaro B.A. Persistence of *Streptococcus* pyogenes in stationary-phase cultures // J. Bacteriol. 2005. V. 187. № 10. P. 3319–3328.
- Balaban N.Q. Bacterial Persistence as a Phenotypic Switch // Science. 2004. V. 305. № 5690. P. 1622–1625.
- 24. Yogeswari L., Chacko C.W. Persistence of T. pallidum and its significance in penicillintreated seropositive late syphilis. // Br. J. Vener. Dis. 1971. V. 47. № 5. P. 339–347.
- 25. Tuomanen E. Phenotypic tolerance: the search for 3-lactam antibiotics that kill nongrowing

bacteria // Rev. Infect. Dis. 1986. V. 8. № August. P. 279-291.

- Young M., Mukamolova G., Kaprelyants A. (2005). Mycobacterial Dormancy and Its Relation to Persistence. Mycobacterium: Molecular Microbiology. // Norwich, Horizon Scientific press. 2005. P. 265–320.
- 27. Ford C.B., Lin P.L., Chase M.R., Shah R.R., Iartchouk O., Galagan J., Mohaideen N., Ioerger T.R., Sacchettini J.C., Lipsitch M., Flynn J.L., Fortune S.M. Use of whole genome sequencing to estimate the mutation rate of *Mycobacterium tuberculosis* during latent infection // Nat. Genet. 2011. V. 43. № 5. P. 482–488.
- Lillebaek T., Dirksen A., Baess I., Strunge B., Thomsen V.Ø., Andersen Å.B. Molecular Evidence of Endogenous Reactivation of *Mycobacterium tuberculosis* after 33 Years of Latent Infection // J. Infect. Dis. 2002. V. 185. № 3. P. 401–404.
- Lillebaek T., Dirksen A., Vynnycky E., Baess I., Thomsen V.O., Andersen Å.B. Stability of DNA Patterns and Evidence of Mycobacterium tuberculosis Reactivation Occurring Decades after the Initial Infection // J. Infect. Dis. 2003. V. 188. № 7. P. 1032–1039.
- Colangeli R., Arcus V.L., Cursons R.T., Ruthe A., Karalus N., Coley K., Manning S.D., Kim S., Marchiano E., Alland D. Whole genome sequencing of *Mycobacterium tuberculosis* reveals slow growth and low mutation rates during latent infections in humans // *PLoS One*. 2014. V. 9. № 3. P. 1–9.
- Robertson H.E. The Persistence of Tuberculous Infections. // Am. J. Pathol. 1933. V. 9. P. 711-718.1.
- Ewer K., Millington K.A., Deeks J.J., Alvarez L., Bryant G., Lalvani A. Dynamic antigenspecific T-cell responses after point-source exposure to *Mycobacterium tuberculosis* // Am. J. Respir. Crit. Care Med. 2006. V. 174. № 7. P. 831–839.
- Myers A., Bearman J., Dixon H. The natural history of the tuberculosis in the human body // Am. Rev. Respir. Dis. 1962. V. 87. P. 354–369.
- Kaplan G., Post F.A., Moreira A.L., Wainwright H., Kreiswirth B.N., Tanverdi M., Mathema B., Ramaswamy S. V., Walther G., Steyn L.M., Barry C.E., Bekker L.-G. *Mycobacterium tuberculosis* Growth at the Cavity Surface: a Microenvironment with Failed Immunity // *Infect. Immun.* 2003. V. 71. № 12. P. 7099–7108.
- 35. McDermott W. Inapparent infection:Relation of Latent and Dormant Infections To Microbial Persistence // *Public Health Rep.* 1959. V. 74. № 6. P. 485–500.
- Rabinowitsch L. Zur Frage latenter Tuberkelbazillen // Berl. klin. Wochenschr. 1907. V. 44.
 P. 35–39.
- 37. Behr M.A., Waters W.R. Is tuberculosis a lymphatic disease with a pulmonary portal? //

Lancet Infect. Dis. Elsevier Ltd, 2014. V. 14. № 3. P. 250-255.

- Opie E., Aronson J. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. // Arch. Pathol. Lab. Med. 1927. V. 4. P. 1–21.
- Medlab E.M., Bernstein S., Steward D.M. A Bacteriologic Study of Resected Tuberculous Lesions. // Am. Rev. Tuberc. Pulm. Dis. 1952. V. 66. № 1. P. 36–43.
- Hobby G., Auerbach O., Lenert T., Small M., Comer J. The late emergence of *M. tuberculosis* in liquid cultures of pulmonary lesions resected from humans // *Am. Rev. Tuberc.* 1954. V. 70. P. 191–218.
- Hernández-Pando R., Jeyanathan M., Mengistu G., Aguilar D., Orozco H., Harboe M., Rook G.A.W., Bjune G. Persistence of DNA from *Mycobacterium tuberculosis* in superficially normal lung tissue during latent infection // *Lancet*. 2000. V. 356. № December. P. 2133–2138.
- Barrios-Payán J., Saqui-Salces M., Jeyanathan M., Alcántara-Vazquez A., Castañon-Arreola M., Rook G., Hernandez-Pando R. Extrapulmonary locations of *Mycobacterium tuberculosis* DNA during latent infection // *J. Infect. Dis.* 2012. V. 206. № 8. P. 1194–1205.
- Jain S.K., Paul-Satyaseela M., Lamichhane G., Kim K.S., Bishai W.R. *Mycobacterium tuberculosis* Invasion and Traversal across an *In Vitro* Human Blood-Brain Barrier as a Pathogenic Mechanism for Central Nervous System Tuberculosis // *J. Infect. Dis.* 2006. V. 193. № 9. P. 1287–1295.
- 44. Neyrolles O., Hernández-Pando R., Pietri-Rouxel F., Fornès P., Tailleux L., Payán J.A.B.,
 Pivert E., Bordat Y., Aguilar D., Prévost M.C., Petit C., Gicquel B. Is adipose tissue a place for *Mycobacterium tuberculosis* persistence? // *PLoS One*. 2006. V. 1. № 1.
- 45. Salina E.G., Waddell S.J., Hoffmann N., Rosenkrands I., Butcher P.D., Kaprelyants A.S. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states // Open Biol. 2014. V. 4. № 10. P. e140106.
- 46. Dhillon J., Lowrie D.B., Mitchison D.A. *Mycobacterium tuberculosis* from chronic murine infections that grows in liquid but not on solid medium // *BMC Infect. Dis.* 2004. V. 4. P. 4–7.
- Sala C., Dhar N., Hartkoorn R.C., Zhang M., Ha Y.H., Schneider P., Cole S.T. Simple model for testing drugs against nonreplicating *Mycobacterium tuberculosis* // *Antimicrob. Agents Chemother*. 2010. V. 54. № 10. P. 4150–4158.
- 48. Hobby G.L., Lenert T.F. The *in vitro* action of antituberculous agents against multiplying and non-multiplying microbial cells. // Am. Rev. Tuberc. 1957. V. 76. № 6. P. 1031–1048.
- 49. Xie Z., Siddiqi N., Rubin E.J. Differential Antibiotic Susceptibilities of Starved

Mycobacterium tuberculosis Isolates Differential Antibiotic Susceptibilities of Starved Mycobacterium tuberculosis Isolates // Antimicrob. Agents Chemother. 2005. V. 49. № 11. P. 1–4.

- 50. Cole S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence // *Nature*. 1998. V. 396. № November. P. 537–544.
- Wayne L.G., Lin K.Y. Glyoxylate metabolism and adaptation of *Mycobacterium* tuberculosis to survival under anaerobic conditions // Infect. Immun. 1982. V. 37. № 3. P. 1042–1049.
- Wayne L.G., Hayes L.G. An *in vitro* model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence // *Infect. Immun.* 1996. V. 64. № 6. P. 2062–2069.
- 53. Dick T., Lee B.H., Murugasu-Oei B. Oxygen depletion induced dormancy in *Mycobacterium smegmatis* // *FEMS Microbiol. Lett.* 1998. V. 163. № 2. P. 159–164.
- Lim A., Dick T. Plate-based dormancy culture system for *Mycobacterium smegmatis* and isolation of metronidazole-resistant mutants // *FEMS Microbiol. Lett.* 2001. V. 200. № 2. P. 215–219.
- 55. Wayne L.G., Sramek H.A. Metronidazole is bactericidal to dormant cells of *Mycobacterium tuberculosis* // *Antimicrob*. *Agents Chemother*. 1994. V. 38. № 9. P. 2054–2058.
- 56. Via L.E., Lin P.L., Ray S.M., Carrillo J., Allen S.S., Seok Y.E., Taylor K., Klein E., Manjunatha U., Gonzales J., Eun G.L., Seung K.P., Raleigh J.A., Sang N.C., McMurray D.N., Flynn J.A.L., Barry C.E. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates // Infect. Immun. 2008. V. 76. № 6. P. 2333–2340.
- 57. Lin P.L., Dartois V., Johnston P.J., Janssen C., Via L., Goodwin M.B., Klein E., Barry C.E., Flynn J.L. Metronidazole prevents reactivation of latent *Mycobacterium tuberculosis* infection in macaques // *Proc. Natl. Acad. Sci.* 2012. V. 109. № 35. P. 14188–14193.
- 58. Carroll M.W. et al. Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis // *Antimicrob. Agents Chemother*. 2013. V. 57. № 8. P. 3903–3909.
- 59. Hu Y., Coates A.R., Mitchison D.A. Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant *Mycobacterium tuberculosis // Int. J. Tuberc. Lung Dis.* 2006. V. 10. N
 № 3. P. 317–322.
- 60. Stead W. w., Kerby G. r., Schlueter D. p., Jordahl C. w. The Clinical Spectrum of Primary Tuberculosis in Adults: Confusion with Reinfection in the Pathogenesis of Chronic Tuberculosis // Ann. Intern. Med. 1968. V. 68. № 4. P. 731.
- 61. Deb C., Lee C.M., Dubey V.S., Daniel J., Abomoelak B., Sirakova T.D., Pawar S., Rogers

L., Kolattukudy P.E. A novel *in vitro* multiple-stress dormancy model for *Mycobacterium tuberculosis* generates a lipid-loaded, drug-tolerant, dormant pathogen // *PLoS One*. 2009. V.
4. № 6.

- 62. Taneja N.K., Dhingra S., Mittal A., Naresh M., Tyagi J.S. *Mycobacterium Tuberculosis* Transcriptional Adaptation, Growth Arrest and Dormancy Phenotype Development is Triggered by Vitamin C // PLoS One. 2010. V. 5. № 5. P. 18–24.
- 63. Mishra A., Sarkar D. Qualitative and quantitative proteomic analysis of Vitamin C induced changes in *Mycobacterium smegmatis* // *Front. Microbiol.* 2015. V. 6. № 451. P. 1–10.
- 64. Albeldas C., Ganief N., Calder B., Nakedi K.C., Garnett S., Nel A.J.M., Blackburn J.M., Soares N.C. Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis // *J. Proteomics*. Elsevier, 2018.
 V. 180. № September. P. 1–10.
- 65. Puissegur M.P., Botanch C., Duteyrat J.L., Delsol G., Caratero C., Altare F. An *in vitro* dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells // *Cell. Microbiol.* 2004. V. 6. № 5. P. 423–433.
- 66. Kapoor N., Pawar S., Sirakova T.D., Deb C., Warren W.L., Kolattukudy P.E. Human Granuloma *In Vitro* Model, for TB Dormancy and Resuscitation // *PLoS One*. 2013. V. 8. № 1.
- 67. Manabe Y.C., Bishai W.R. Latent *Mycobacterium tuberculosis* Persistence, patience, and winning by waiting // *Nat. Med.* 2000. V. 6. № 12. P. 1327–1329.
- 68. Rees R.J., Hart P.D. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. // *Br. J. Exp. Pathol.* 1961. V. 42. P. 83–88.
- 69. Gill W.P., Harik N.S., Whiddon M.R., Liao R.P., Mittler J.E., Sherman D.R. A replication clock for *Mycobacterium tuberculosis* // *Nat. Med.* 2009. V. 15. № 2. P. 211–214.
- Talaat A.M., Ward S.K., Wu C.W., Rondon E., Tavano C., Bannantine J.P., Lyons R., Johnston S.A. Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: Insights from genome-wide transcriptional profiling // *J. Bacteriol.* 2007. V. 189. № 11. P. 4265–4274.
- 71. Phyu S., Mustafa T., Hofstad T., Nilsen R., Fosse R., Bjune G. A mouse model for latent tuberculosis. // Scand. J. Infect. Dis. 1998. V. 30. № 1. P. 59–68.
- McCune R.M. Microbial Persistence: II Characteristics of the Sterile State of Tubercle Bacilli // J. Exp. Med. 1966. V. 123. № 3. P. 469–486.
- 73. McCune R.M., Feldmann F.M., Lambert H.P., McDermott W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. *// J. Exp. Med.* 1966. V.
123. № 3. P. 445–468.

- 74. McCune R.M., McDermott W., Tompsett R. The fate of *Mycobacterium tuberculosis* in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. // J. Exp. Med. 1956. V. 104. № 5. P. 763–802.
- Scanga C.A., Mohan V.P., Joseph H., Yu K., Chan J., Flynn J.L. Reactivation of latent tuberculosis: Variations on the cornell murine model // *Infect. Immun.* 1999. V. 67. № 9. P. 4531–4538.
- Nuermberger E.L., Yoshimatsu T., Tyagi S., Bishai W.R., Grosset J.H. Paucibacillary Tuberculosis in Mice after Prior Aerosol Immunization with *Mycobacterium bovis* BCG // *Infect. Immun.* 2004. V. 72. № 2. P. 1065–1071.
- 77. Zhang T., Zhang M., Rosenthal I.M., Grosset J.H., Nuermberger E.L. Short-course therapy with daily rifapentine in a murine model of latent tuberculosis infection // Am. J. Respir. Crit. Care Med. 2009. V. 180. № 11. P. 1151–1158.
- 78. Dutta N.K., Illei P.B., Jain S.K., Karakousis P.C. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice // Am. J. Pathol. American Society for Investigative Pathology, 2014. V. 184. № 7. P. 2045–2055.
- 79. Karakousis P.C., Yoshimatsu T., Lamichhane G., Woolwine S.C., Nuermberger E.L., Grosset J., Bishai W.R. Dormancy Phenotype Displayed by Extracellular *Mycobacterium tuberculosis* within Artificial Granulomas in Mice // J. Exp. Med. 2004. V. 200. № 5. P. 647– 657.
- Klinkenberg L.G., Sutherland L.A., Bishai W.R., Karakousis P.C. Metronidazole Lacks Activity against Mycobacterium tuberculosis in an *In Vivo* Hypoxic Granuloma Model of Latency // J. Infect. Dis. 2008. V. 198. № 2. P. 275–283.
- Bharmadhikari A.S., Nardell E.A. What animal models teach humans about tuberculosis // Am. J. Respir. Cell Mol. Biol. 2008. V. 39. № 5. P. 503–508.
- Tsai M.C., Chakravarty S., Zhu G., Xu J., Tanaka K., Koch C., Tufariello J., Flynn J., Chan J. Characterization of the tuberculous granuloma in murine and human lungs : cellular composition and relative tissue oxygen tension // *Cell. Microbiol.* 2006. V. 8. № September 2005. P. 218–232.
- Singh A.K., Gupta U.D. Animal models of tuberculosis: Lesson learnt // Indian J. Med. Res.
 2018. V. 147. P. 456–463.
- 84. Ly L.H., Russell M.I., McMurray D.N. Cytokine profiles in primary and secondary pulmonary granulomas of guinea pigs with tuberculosis // *Am. J. Respir. Cell Mol. Biol.*

2008. V. 38. № 4. P. 455–462.

- 85. Lenaerts A.J., Hoff D., Aly S., Ehlers S., Andries K., Cantarero L., Orme I.M., Basaraba R.J. Location of persisting mycobacteria in a guinea pig model of tuberculosis revealed by R207910 // Antimicrob. Agents Chemother. 2007. V. 51. № 9. P. 3338–3345.
- 86. Ahmad Z., Klinkenberg L.G., Pinn M.L., Fraig M.M., Peloquin C.A., Bishai W.R., Nuermberger E.L., Grosset J.H., Karakousis P.C. Biphasic Kill Curve of Isoniazid Reveals the Presence of Drug-Tolerant, Not Drug-Resistant, *Mycobacterium tuberculosis* in the Guinea Pig // J. Infect. Dis. 2009. V. 200. № 1. P. 1136–1143.
- Mcmurray D.N., CollIns F.M., Dannenberg A.M. Pathogenesis of Experimental Tuberculosis in Animal Models // *Tuberculosis* / ed. Shinnick T.M. Springer, Berlin, Heidelberg, 1996. P. 157–179.
- Manabe Y.C., Dannenberg A.M., Tyagi S.K., Hatem C.L., Yoder M., Woolwine S.C., Zook B.C., Pitt M.L.M., Bishai W.R. Different Strains of *Mycobacterium tuberculosis* Cause Various Spectrums of Disease in the Rabbit Model of Tuberculosis // *Infect. Immun.* 2003. V. 71. № 10. P. 6004–6011.
- Tsenova L., Ellison E., Harbacheuski R., Moreira A.L., Kurepina N., Reed M.B., Mathema B., Iii C.E.B., Kaplan G. Virulence of Selected *Mycobacterium tuberculosis* Clinical Isolates in the Rabbit Model of Meningitis Is Dependent on Phenolic Glycolipid Produced by the Bacilli // J. Infect. Dis. 2005. V. 192. P. 98–106.
- 90. Manabe Y.C., Kesavan A.K., Lopez-molina J., Hatem C.L., Brooks M., Fujiwara R., Hochstein K., Pitt M.L.M., Tufariello J., Chan J., Mcmurray D.N., Bishai W.R., Dannenberg A.M., Mendez S. The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome // *Tuberculosis*. 2008. V. 88. P. 187–196.
- Kesavan A.K., Brooks M., Tufariello J., Chan J., Manabe Y.C. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model // *Tuberculosis*. Elsevier Ltd, 2009. V. 89. № 1. P. 17–21.
- 92. Subbian S., Tsenova L., Brien P.O., Yang G., Kushner N.L., Parsons S., Peixoto B., Fallows D. Spontaneous Latency in a Rabbit Model of Pulmonary Tuberculosis // Am. J. Pathol. Elsevier Inc., 2012. V. 181. № 5. P. 1711–1724.
- 93. Subbian S., Brien P.O., Kushner N.L., Yang G., Tsenova L., Peixoto B., Bandyopadhyay N., Bader J.S., Karakousis P.C., Fallows D., Kaplan G. Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis // *Cell Commun. Signal.* 2013. V. 11. № 16. P. 1–16.
- 94. Lin P.L., Rodgers M., Smith L., Bigbee M., Myers A., Bigbee C., Chiosea I., Capuano S. V.,

Fuhrman C., Klein E., Flynn J.A.L. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model // *Infect. Immun.* 2009. V. 77. № 10. P. 4631–4642.

- 95. Lin P.L., Pawar S., Myers A., Pegu A., Fuhrman C., Reinhart T.A., Capuano S. V., Klein E., Flynn J.A.L. Early events in *Mycobacterium tuberculosis* infection in cynomolgus macaques // *Infect. Immun.* 2006. V. 74. № 7. P. 3790–3803.
- 96. Walsh G.P., Tan E. V., Dela Cruz E.C., Abalos R.M., Villahermosa L.G., Young L.J., Cellona R. V., Nazareno J.B., Horwitz M.A. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease // Nat. Med. 1996. V. 2. № 4. P. 430–436.
- 97. Iii S.V.C., Croix D. a, Pawar S., Zinovik A., Myers A., Lin P.L., Fuhrman C., Klein E., Flynn J.L., Bissel S. Experimental *Mycobacterium tuberculosis* Infection of Cynomolgus Macaques Closely Resembles the Various Manifestations of Human M. tuberculosis Infection Experimental Mycobacterium tuberculosis Infection of Cynomolgus Macaques Closely Resembles the // *Infect. Immun.* 2003. V. 71. № 10. P. 5831–5844.
- Pawar S.N., Mattila J.T., Sturgeon T.J., Lin P.L., Narayan O., Montelaro R.C., Flynn J.L. Comparison of the Effects of Pathogenic Simian Human Immunodeficiency Virus Strains SHIV-89.6P and SHIV-KU2 in Cynomolgus Macaques // AIDS Res. Hum. Retroviruses. 2008. V. 24. № 4. P. 643–654.
- 99. Diedrich C.R., Mattila J.T., Klein E., Janssen C., Phuah J., Sturgeon T.J., Montelaro R.C., Lin P.L., Flynn J.L. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load // *PLoS One*. 2010. V. 5. № 3. P. 1–12.
- 100. Lin P.L., Ford C.B., Coleman M.T., Myers A.J., Gawande R., Ioerger T., Sacchettini J., Fortune S.M., Flynn J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing // Nat. Med. Nature Publishing Group, 2014. V. 20. № 1. P. 75–79.
- 101. Swaim L.E., Connolly L.E., Volkman H.E., Humbert O., Born D.E., Ramakrishnan L. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity // Infect. Immun. 2006. V. 74. № 11. P. 6108–6117.
- 102. Davis J.M., Clay H., Lewis J.L., Ghori N., Herbomel P., Ramakrishnan L. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos // *Immunity*. 2002. V. 17. № 6. P. 693–702.
- 103. Heifets L., Simon J., Pham V. Capreomycin is active against non-replicating M. tuberculosis

// Ann. Clin. Microbiol. Antimicrob. 2005. V. 4. P. 1-7.

- Hu Y., Mangan J.A., Dhillon J., Sole K.M., Mitchison D.A., Butcher P.D., Coates A.R.M. Detection of mRNA transcripts and active transcription in persistent *Mycobacterium tuberculosis* induced by exposure to rifampin or pyrazinamide // *J. Bacteriol.* 2000. V. 182. N
 № 22. P. 6358–6365.
- 105. Kaprelyants A., Salina E.G., Makarov V.A. How to Kill Dormant *Mycobacterium Tuberculosis* // *Int. J. Mycobacteriology*. 2017. V. 6. № 3. P. 239–245.
- 106. Kudykina Y.K., Shleeva M.O., Artsabanov V.Y., Suzina N.E., Kaprelyants A.S. Generation of dormant forms by *Mycobacterium smegmatis* in the poststationary phase during gradual acidification of the medium // *Microbiology*. 2011. V. 80. № 5. P. 638–649.
- Primm T.P., Andersen S.J., Mizrahi V., Avarbock D., Rubin H., Barry C.E. The stringent response of *Mycobacterium tuberculosis* is required for long-term survival // *J. Bacteriol.* 2000. V. 182. № 17. P. 4889–4898.
- 108. Park H.D., Guinn K.M., Harrell M.I., Liao R., Voskuil M.I., Tompa M., Schoolnik G.K., Sherman D.R. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of *Mycobacterium tuberculosis* // *Mol. Microbiol.* 2003. V. 48. № 3. P. 833–843.
- Boon C., Dick T. *Mycobacterium bovis* BCG Response Regulator Essential for Hypoxic Dormancy Mycobacterium bovis BCG Response Regulator Essential for Hypoxic Dormancy // J. Bacteriol. 2002. V. 184. № 24. P. 6760–6767.
- Shi L., Sohaskey C.D., Pfeiffer C., Datta P., Parks M., McFadden J., North R.J., Gennaro M.L. Carbon flux rerouting during *Mycobacterium tuberculosis* growth arrest // *Mol. Microbiol.* 2010. V. 78. № 5. P. 1199–1215.
- Zhou P., Wang X., Zhao Y., Yuan W., Xie J. Sigma factors mediated signaling in Mycobacterium tuberculosis // Future Microbiol. 2018. V. 13. № 2. P. 561–563.
- 112. Dahl J.L., Kraus C.N., Boshoff H.I.M., Doan B., Foley K., Avarbock D., Kaplan G., Mizrahi V., Rubin H., Barry C.E. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of *Mycobacterium tuberculosis* in mice // *Proc. Natl. Acad. Sci.* 2003. V. 100. № 17. P. 10026–10031.
- 113. Klinkenberg L.G., Lee J., Bishai W.R., Karakousis P.C. The Stringent Response Is Required for Full Virulence of *Mycobacterium tuberculosis* in Guinea Pigs // *J. Infect. Dis.* 2010. V. 202. № 9. P. 1397–1404.
- 114. Sajish M., Tiwari D., Rananaware D., Nandicoori V.K., Prakash B. A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins // J. Biol. Chem. 2007. V. 282. № 48. P. 34977–34983.

- 115. Kuroda A., Murphy H., Cashel M., Kornberg A. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in *Escherichia coli* // J. Biol. Chem. 1997. V. 272. № 34. P. 21240–21243.
- Kornberg A., Rao N.N., Ault-riché D. Inorganic polyphosphate: a molecule of many functions // Annu. Rev. Biochem. 1999. V. 68. P. 89–125.
- 117. Sureka K., Dey S., Datta P., Singh A.K., Dasgupta A., Rodrigue S., Basu J., Kundu M. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria // Mol. Microbiol. 2007. V. 65. № 2. P. 261–276.
- 118. Chuang Y.-M., Belchis D.A., Karakousis P.C. The Polyphosphate Kinase Gene ppk2 Is Required for Mycobacterium // Am. Soc. Microbiol. 2013. V. 4. № 3. P. 1–9.
- 119. Ault-Riché D., Fraley C.D., Tzeng C.M., Kornberg A. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in *Escherichia coli* // J. Bacteriol. 1998. V. 180. № 7. P. 1841–1847.
- 120. Choi M.Y., Wang Y., Wong L.L.Y., Lu B. tai, Chen W. yang, Huang J.D., Tanner J.A., Watt R.M. The two PPX-GppA homologues from *Mycobacterium tuberculosis* have distinct biochemical activities // *PLoS One*. 2012. V. 7. № 8.
- 121. Thayil S.M., Morrison N., Schechter N., Rubin H., Karakousis P.C. The role of the novel exopolyphosphatase MT0516 in *Mycobacterium tuberculosis* drug tolerance and persistence // *PLoS One*. 2011. V. 6. № 11.
- 122. Sureka K., Ghosh B., Dasgupta A., Basu J., Kundu M., Bose I. Positive feedback and noise activate the stringent response regulator rel in mycobacteria // *PLoS One*. 2008. V. 3. № 3.
- Magnusson L.U., Farewell A., Nyström T. ppGpp: A global regulator in *Escherichia coli* // *Trends Microbiol.* 2005. V. 13. № 5. P. 236–242.
- Hengge-Aronis R. Signal Transduction and Regulatory Mechanisms Involved in Control of the RpoS Subunit of RNA Polymerase // *Microbiol. Mol. Biol. Rev.* 2002. V. sep. P. 373– 395.
- 125. Shiba T., Tsutsumi K., Yano H., Ihara Y., Kameda A., Tanaka K., Takahashi H., Munekata M., Rao N.N., Kornberg A. Inorganic polyphosphate and the induction of rpoS expression. // Proc. Natl. Acad. Sci. U. S. A. 1997. V. 94. № 21. P. 11210–11215.
- 126. Raman S., Puyang X., Song T., Husson R.N., Bardarov S., Jacobs W.R. The Alternative Sigma Factor SigH Regulates Major Components of Oxidative and Heat Stress Responses in *Mycobacterium tuberculosis* // J. Bacteriol. 2001. V. 183. № 20. P. 6119–6125.
- 127. Sharp J.D., Lyubetskaya A., Gomes A.L.C., Singh A.K., Potluri L.-P., Raman S., Galagan J.E., Park S.T., Husson R.N., Peterson M.W. Comprehensive Definition of the SigH Regulon

of *Mycobacterium tuberculosis* Reveals Transcriptional Control of Diverse Stress Responses // *PLoS One*. 2016. V. 11. № 3. P. e0152145.

- 128. Forrellad M.A., Klepp L.I., Gioffré A., García J.S., Morbidoni H.R., de la Paz Santangelo M., Cataldi A.A., Bigi F. Virulence factors of the *Mycobacterium tuberculosis* complex // *Virulence*. 2013. V. 4. № 1. P. 3–66.
- 129. Hengge-Aronis R. Recent insights into the general stress response regulatory network in *Escherichia coli* // *Mol. Microbiol.* 2002. V. 4. № 3. P. 341–346.
- Tuveson R.W. Genetic control of near-UV (300–400 nm) sensitivity independent of the recA gene in strains of Escherichia coli K12 // *Photochem. Photobiol.* 1979. V. 30. P. 667–676.
- 131. Loewen P.C., Triggs B.L. Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in *Escherichia coli* // *J. Bacteriol.* 1984. V. 160. № 2. P. 668–675.
- 132. Sak B.D., Eisenstark A., Touati D. Exonuclease III and the catalase hydroperoxidase II in *Escherichia coli* are both regulated by the katF gene product. // *Proc. Natl. Acad. Sci.* 1989.
 V. 86. № 9. P. 3271–3275.
- 133. Lange R., Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in *Escherichia coli* // *Mol. Microbiol.* 1991. V. 5. № 1. P. 49–59.
- 134. Touati E., Dassa E., Dassa J., Boquet P.L., Touati and D. Are appR and katF the same *Escherichia coli* gene encoding a new sigma transcription initiation factor? // *Res. Microbiol.* 1991. V. 142. № 1. P. 29–36.
- 135. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in *Escherichia coli* // J. Bacteriol. 1991. V. 173. № 24. P. 7918–7924.
- 136. Lange R., Hengge-Aronis R. The cellular concentration of the sigma subunit of RNA polymerase in *Escherichia coli* is controlled at the levels of transcription, translation, and protein stability // *Genes Dev.* 1994. V. 8. № 13. P. 1600–1612.
- 137. Mok W.W.K., Orman M.A., Brynildsen M.P. Impacts of global transcriptional regulators on persister metabolism // *Antimicrob. Agents Chemother*. 2015. V. 59. № 5. P. 2713–2719.
- 138. Nosho K., Fukushima H., Asai T., Nishio M., Takamaru R., Kobayashi-Kirschvink K.J., Ogawa T., Hidaka M., Masaki H. cAMP-CRP acts as a key regulator for the viable but nonculturable state in *Escherichia coli* // *Microbiology*. 2018. V. 164. № 3. P. 410–419.
- 139. Manganelli R., Voskuil M.I., Schoolnik G.K., Smith I. The *Mycobacterium tuberculosis* ECF sigma factor σE: role in global gene expression and survival in macrophages // *Mol*.

Microbiol. 2001. V. 41. Nº 2. P. 423–437.

- 140. Ando M., Yoshimatsu T., Ko C., Converse P.J., Bishai and W.R. Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial persistence in the lungs of aerosol-infected mice // *Infect. Immun.* 2003. V. dec. P. 7170– 7172.
- 141. Datta P., Shi L., Bibi N., Balázsi G., Gennaro M.L. Regulation of central metabolism genes of *Mycobacterium tuberculosis* by parallel feed-forward loops controlled by sigma factor E (σE) // *J. Bacteriol.* 2011. V. 193. № 5. P. 1154–1160.
- Parish T. Two-Component Regulatory Systems of Mycobacteria // Microbiol. Spectr. 2014.
 V. 2. № 1. P. 1–14.
- Pang X., Vu P., Byrd T.F., Ghanny S., Soteropoulos P., Mukamolova G. V., Wu S., Samten B., Howard S.T. Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of *Mycobacterium tuberculosis* // *Microbiology*. 2007. V. 153. № 4. P. 1229–1242.
- 144. Pang X., Samten B., Cao G., Wang X., Tvinnereim A.R., Chen X.L., Howard S.T. MprAB regulates the espA operon in *Mycobacterium tuberculosis* and modulates ESX-1 function and host cytokine response // *J. Bacteriol.* 2013. V. 195. № 1. P. 66–75.
- 145. Zhang P., Fu J., Zong G., Liu M., Pang X., Cao G. Novel MprA binding motifs in the phoP regulatory region in *Mycobacterium tuberculosis // Tuberculosis*. Elsevier, 2018. V. 112. № August. P. 62–68.
- 146. Bretl D.J., He H., Demetriadou C., White M.J., Penoske R.M., Salzman N.H., Zahrt T.C. MprA and DosR coregulate a *Mycobacterium tuberculosis* virulence operon encoding Rv1813c and Rv1812c // *Infect. Immun.* 2012. V. 80. № 9. P. 3018–3033.
- Pang X., Howard S.T. Regulation of the α-crystallin gene acr2 by the MprAB two-component system of *Mycobacterium tuberculosis* // *J. Bacteriol.* 2007. V. 189. № 17. P. 6213–6221.
- 148. Zahrt T.C., Deretic V. *Mycobacterium tuberculosis* signal transduction system required for persistent infections // *Proc. Natl. Acad. Sci.* 2001. V. 98. № 22. P. 12706–12711.
- 149. García A.E., Blanco C.F., Bigi M.M., Vazquez L.C., Forrellad A.M., Rocha R., Golby P., Soria M.A., Bigi F. Characterization of the two component regulatory system PhoPR in *Mycobacterium bovis // Vet. Microbiol.* 2018. V. 222. P. 30–38.
- 150. Vashist A., Malhotra V., Sharma G., Tyagi J.S., Clark-Curtiss J.E. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent *Mycobacterium tuberculosis // J. Biol. Chem.* 2018. P. jbc.RA118.004331.

- 151. Feng L., Chen S., Hu Y. PhoPR positively regulates whiB3 expression in response to low pH in pathogenic mycobacteria // J. Bacteriol. 2018. V. 200. № 8. P. 1–11.
- 152. Rustad T.R., Harrell M.I., Liao R., Sherman D.R. The enduring hypoxic response of Mycobacterium tuberculosis // PLoS One. 2008. V. 3. № 1. P. 1–8.
- Rustad T.R., Sherrid A.M., Minch K.J., Sherman D.R. Hypoxia: A window into Mycobacterium tuberculosis latency // Cell. Microbiol. 2009. V. 11. № 8. P. 1151–1159.
- 154. Sherman D.R., Voskuil M., Schnappinger D., Liao R., Harrell M.I., Schoolnik G.K. Regulation of the *Mycobacterium tuberculosis* hypoxic response gene encoding alpha crystallin. // Proc. Natl. Acad. Sci. U. S. A. 2001. V. 98. № 13. P. 7534–7539.
- 155. Voskuil M.I., Schnappinger D., Visconti K.C., Harrell M.I., Dolganov G.M., Sherman D.R., Schoolnik G.K. Inhibition of Respiration by Nitric Oxide Induces a *Mycobacterium tuberculosis* Dormancy Program // J. Exp. Med. 2003. V. 198. № 5. P. 705–713.
- 156. Kumar A., Deshane J.S., Crossman D.K., Bolisetty S., Yan B.S., Kramnik I., Agarwal A., Steyn A.J.C. Heme oxygenase-1-derived carbon monoxide induces the *Mycobacterium tuberculosis* dormancy regulon // *J. Biol. Chem.* 2008. V. 283. № 26. P. 18032–18039.
- Schnappinger D., Ehrt S., Voskuil M.I., Liu Y., Mangan J.A., Monahan I.M., Dolganov G., Efron B., Butcher P.D., Nathan C., Schoolnik G.K. Transcriptional Adaptation of *Mycobacterium tuberculosis* within Macrophages // *J. Exp. Med.* 2003. V. 198. № 5. P. 693–704.
- 158. Shi L., Jung Y.-J., Tyagi S., Gennaro M.L., North and R.J. Expression of Th1-mediated immunity in mouse lungs induces a *Mycobacterium tuberculosis* transcription pattern characteristic of nonreplicating persistence // *Inorg. Chem.* 1993. V. 32. № 7. P. 2221–2223.
- 159. Honaker R.W., Dhiman R.K., Narayanasamy P., Crick D.C., Voskuil M.I. DosS responds to a reduced electron transport system to induce the *Mycobacterium tuberculosis* DosR regulon // J. Bacteriol. 2010. V. 192. № 24. P. 6447–6455.
- Peddireddt V., Doddam S.N., Ahmed N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis // Front. Immunol. 2017. № February. P. 1–19.
- 161. Trauner A., Lougheed K.E.A., Bennett M.H., Hingley-Wilson S.M., Williams H.D. The dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria // J. Biol. Chem. 2012. V. 287. № 28. P. 24053–24063.
- 162. Graham J., Clark-Curtiss J. Identification of *Mycobacterium tuberculosis* RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences // *Proc. Natl. Acad. Sci. U S A.* 2017. V. 5. № 1. P. 17–24.
- 163. Dubnau E., Chan J., Mohan V.P., Smith I. Responses of Mycobacterium tuberculosisto

Growth in the Mouse Lung // Infect. Immun. 2005. V. 73. № 6. P. 3754–3757.

- 164. Lam T.H.J., Yuen K.Y., Ho P.L., Wong K.C., Leong W.M., Law H.K.W., Weng X.H., Zhang W.H., Chen S., Yam W.C. Differential fadE28 expression associated with phenotypic virulence of *Mycobacterium tuberculosis* // *Microb. Pathog.* 2008. V. 45. № 1. P. 12–17.
- 165. Pandey A.K., Sassetti C.M. Mycobacterial persistence requires the utilization of host cholesterol // *Proc. Natl. Acad. Sci.* 2008. V. 105. № 11. P. 4376–4380.
- 166. Hunter R.L., Jagannath C., Actor J.K. Pathology of postprimary tuberculosis in humans and mice: Contradiction of long-held beliefs // *Tuberculosis*. 2007. V. 87. № 4. P. 267–278.
- 167. Van der Geize R., Yam K., Heuser T., Wilbrink M.H., Hara H., Anderton M.C., Sim E., Dijkhuizen L., Davies J.E., Mohn W.W., Eltis L.D. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into *Mycobacterium tuberculosis* survival in macrophages // *Proc. Natl. Acad. Sci.* 2007. V. 104. № 6. P. 1947–1952.
- Maxfield F.R., Wüstner D. Intracellular cholesterol transport // Biol. Biochem. Cholest. 2002.
 V. 110. № 7. P. 891–898.
- 169. Rachman H., Strong M., Ulrichs T., Grode L., Schuchhardt J., Mollenkopf H.;, Kosmiadi G.A., Eisenberg D., Kaufmann S.H.E. Unique Transcriptome Signature of *Mycobacterium tuberculosis* in Pulmonary Tuberculosis // Society. 2006. V. 74. № 2. P. 1233–1242.
- 170. Daniel J., Deb C., Dubey V.S., Sirakova T.D., Abomoelak B., Morbidoni H.R., Kolattukudy P.E. Induction of a Novel Class of Diacylglycerol Acyltransferases and Triacylglycerol Accumulation in Mycobacterium tuberculosis as It Goes into a Dormancy-Like State in Culture // J. Bacteriol. 2004. V. 186. № August. P. 5017–5030.
- 171. Deb C., Daniel J., Sirakova T.D., Abomoelak B., Dubey V.S., Kolattukudy P.E. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in *Mycobacterium tuberculosis // J. Biol. Chem.* 2006. V. 281. № 7. P. 3866–3875.
- 172. Glickman M.S., Cox J.S., Jacobs W.R. A Novel Mycolic Acid Cyclopropane Synthetase Is Required for Cording, Persistence, and Virulence of *Mycobacterium tuberculosis // Mol. Cell.* 2000. V. 5. P. 717–727.
- 173. Darzins E., Fahr G. Cord-Forming Property, Lethality and Pathogenicity of Mycobacteria // Chest. The American College of Chest Physicians, 1956. V. 30. № 6. P. 642–648.
- 174. Converse S.E., Mougous J.D., Leavell M.D., Leary J.A., Bertozzi C.R., Cox J.S. MmpL8 is required for sulfolipid-1 biosynthesis and *Mycobacterium tuberculosis* virulence. // Proc. Natl. Acad. Sci. U S A. 2003. V. 100. № 10. P. 6121–6126.
- 175. Rousseau C., Turner O.C., Rush E., Bordat Y., Sirakova T.D., Kolattukudy P.E., Ritter S.,

Orme I.M., Gicquel B., Jackson M. Sulfolipid Deficiency Does Not Affect the Virulence of *Mycobacterium tuberculosis* H37Rv in Mice and Guinea Pigs // *Infect. Immun.* 2003. V. 71. № 8. P. 4684–4690.

- 176. McKinney J.D., Höner Zu Bentrup K., Muñoz-Elias E.J., Miczak A., Chen B., Chan W.T., Swenson D., Sacchettini J.C., Jacobs W.R., Russell D.G. Persistence of *Mycobacterium tuberculosis* in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase // Nature. 2000. V. 406. № 6797. P. 735–738.
- 177. Muñoz-Elías E.J., McKinney J.D. *M. tuberculosis* isocitrate lyases 1 and 2 are jointly required for *in vivo* growth and virulence // *Nat Med.* 2005. V. 11. № 6. P. 638–644.
- 178. Liu K., Yu J., Russell D.G. pckA-deficient *Mycobacterium bovis* BCG shows attenuated virulence in mice and in macrophages // *Microbiology*. 2003. V. 149. № 7. P. 1829–1835.
- 179. Collins D.M., Wilson T., Campbell S., Buddle B.M., Wards B.J., Hotter G., de Lisle G.W. Production of avirulent mutants of *Mycobacterium bovis* with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures // *Microbiology*. 2002. V. 148. № 10. P. 3019–3027.
- 180. Timm J., Post F.A., Bekker L.-G., Walther G.B., Wainwright H.C., Manganelli R., Chan W.-T., Tsenova L., Gold B., Smith I., Kaplan G., McKinney J.D. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients // Proc. Natl. Acad. Sci. 2003. V. 100. № 24. P. 14321–14326.
- 181. Bishai W. Microbiology: Lipid lunch for persistent pathogen // Nature. 2000. V. 406. № 6797. P. 683–685.
- 182. Sassetti C.M., Rubin E.J. Genetic requirements for mycobacterial survival during infection // Proc. Natl. Acad. Sci. 2003. V. 100. № 22. P. 12989–12994.
- 183. Feng L., Chen Z., Wang Z., Hu Y., Chen S. Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis // *Microbiology*. 2016. № 162. P. 889–897.
- 184. Singh A., Guidry L., Narasimhulu K. V., Mai D., Trombley J., Redding K.E., Giles G.I., Lancaster J.R., Steyn A.J.C. *Mycobacterium tuberculosis* WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival // *Proc. Natl. Acad. Sci.* 2007. V. 104. № 28. P. 11562–11567.
- 185. Banaiee N., Jacobs W.R., Ernst J.D. Regulation of *Mycobacterium tuberculosis* whiB3 in the mouse lung and macrophages // *Infect. Immun.* 2006. V. 74. № 11. P. 6449–6457.
- 186. Steyn A.J.C., Collins D.M., Hondalus M.K., Jacobs W.R., Kawakami R.P., Bloom B.R. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is

dispensable for *in vivo* growth // Proc. Natl. Acad. Sci. 2002. V. 99. № 5. P. 3147–3152.

- 187. Singh A., Crossman D.K., Mai D., Guidry L., Voskuil M.I., Renfrow M.B., Steyn A.J.C. Mycobacterium tuberculosis WhiB3 Maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response // *PLoS Pathog.* 2009. V. 5. № 8. P. e1000545.
- 188. Casonato S., Sánchez A.C., Haruki H., González M.R., Provvedi R., Dainese E., Jaouen T., Gola S., Bini E., Vicente M., Johnsson K., Ghisotti D., Palù G., Hernández-Pando R., Manganelli R. WhiB5, a transcriptional regulator that contributes to *Mycobacterium tuberculosis* virulence and reactivation // *Infect. Immun.* 2012. V. 80. № 9. P. 3132–3144.
- Deretic V., Song J., Pagán-Ramos E. Loss of oxyR in Mycobacterium tuberculosis // Trends Microbiol. 1997. V. 5. № 9. P. 367–372.
- 190. Pagan-Ramos E., Pritchett C.L., Reimschuessel R., Deretic V., Master S.S., Trucksis M., Timmins G.S. Molecular and Physiological Effects of Mycobacterial oxyR Inactivation // J. Bacteriol. 2006. V. 188. № 7. P. 2674–2680.
- 191. Schuster C.F., Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate // *FEMS Microbiol. Lett.* 2013. V. 340. № 2. P. 73–85.
- 192. Wang X., Lord D.M., Hong S.H., Peti W., Benedik M.J., Page R., Wood T.K. A Novel Type V TA System Where mRNA for Toxin GhoT is Cleaved by Antitoxin GhoS // Nat. Chem. Biol. 2012. V. 8. № 10. P. 855–861.
- 193. Sharp J.D., Cruz J.W., Raman S., Inouye M., Husson R.N., Woychik N.A. Growth and translation inhibition through sequence-specific RNA binding by *Mycobacterium tuberculosis* VapC toxin // J. Biol. Chem. 2012. V. 287. № 16. P. 12835–12847.
- 194. Zhu L., Sharp J.D., Kobayashi H., Woychik N.A., Inouye M. Noncognate Mycobacterium tuberculosis toxin-antitoxins can physically and functionally interact // J. Biol. Chem. 2010. V. 285. № 51. P. 39732–39738.
- 195. Gerdes K., Christensen S.K., Løbner-Olesen A. Prokaryotic toxin-antitoxin stress response loci // Nat. Rev. Microbiol. 2005. V. 3. № 5. P. 371–382.
- 196. Ramage H.R., Connolly L.E., Cox J.S. Comprehensive functional analysis of *Mycobacterium tuberculosis* toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution // *PLoS Genet*. 2009. V. 5. № 12.
- 197. Korch S.B., Contreras H., Clark-Curtiss J.E. Three *Mycobacterium tuberculosis* rel toxinantitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages // J. Bacteriol. 2009. V. 191. № 5. P. 1618–1630.
- 198. Agarwal S., Tiwari P., Deep A., Kidwai S., GuptaKrishan S., Thakur G., Singh R. System-

Wide Analysis Unravels the Differential Regulation and *In Vivo* Essentiality of Virulence-Associated Proteins B and C Toxin-Antitoxin Systems of Mycobacterium tuberculosis // *J. Infect. Dis.* 2018. V. 217. № 11. P. 1809–1820.

- 199. Ahidjo B.A., Kuhnert D., McKenzie J.L., Machowski E.E., Gordhan B.G., Arcus V., Abrahams G.L., Mizrahi V. VapC toxins from *Mycobacterium tuberculosis* are ribonucleases that differentially inhibit growth and are neutralized by cognate vapB antitoxins // *PLoS One*. 2011. V. 6. № 6.
- 200. Keren I., Minami S., Rubin E., Lewis K. Characterization and transcriptome analysis of mycobacterium tuberculosis persisters // *MBio*. 2011. V. 2. № 3. P. 3–12.
- 201. Santra M., Dill K.A., de Graff A.M.R. How Do Chaperones Protect a Cell's Proteins from Oxidative Damage? // Cell Syst. Elsevier Inc., 2018. V. 6. № 6. P. 743-751.e3.
- 202. Susin M.F., Baldini R.L., Gueiros-Filho F., Gomes S.L. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus // J. Bacteriol. 2006. V. 188. № 23. P. 8044–8053.
- 203. Frees D., Gerth U., Ingmer H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of *Staphylococcus aureus* // *Int. J. Med. Microbiol.* Elsevier GmbH., 2014. V. 304. № 2. P. 142–149.
- 204. Tribble G.D., Lamont R.J., Demuth D.R., Capestany C.A., Maeda K. Role of the Clp System in Stress Tolerance, Biofilm Formation, and Intracellular Invasion in Porphyromonas gingivalis // J. Bacteriol. 2007. V. 190. № 4. P. 1436–1446.
- 205. Qamra R., Mande S.C., Coates A.R.M., Henderson B. The unusual chaperonins of Mycobacterium tuberculosis // Tuberculosis. 2005. V. 85. № 5–6. P. 385–394.
- 206. Zügel U., Kaufmann S.H.E. Role of heat shock proteins in protection from and pathogenesis of infectious diseases // *Clin. Microbiol. Rev.* 1999. V. 12. № 1. P. 19–39.
- 207. Wong D.K., Lee B., Horwitz M. a, Gibson W. Identification of fur, aconitase, and other proteins expressed by *Mycobacterium tuberculosis* under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry identification of fur, aconit // *Infect. Immun.* 1999. V. 67. № 1. P. 327–336.
- 208. Yuan Y., Crane D.D., Barry C.E. Stationary phase-associated protein expression in *Mycobacterium tuberculosis*: Function of the mycobacterial α-crystallin homolog // J. *Bacteriol.* 1996. V. 178. № 15. P. 4484–4492.
- 209. Betts J.C., Dodson P., Quan S., Lewis A.P., Thomas P.J., Duncan K., McAdam R.A. Comparison of the proteome of *Mycobacterium tuberculosis* strain H37Rv with clinical isolate CDC 1551 // *Microbiology*. 2000. V. 146. № 12. P. 3205–3216.

- 210. Jungblut P.R., Schaible U.E., Mollenkopf H., Raupach B., Mattow J., Halada P., Lamer S., Hagens K., Kaufmann S.H.E. Comparative proteome analysis of *Mycobacterium tuberculosis* and *Mycobacterium bovis* BCG strains : towards functional genomics of microbial pathogens // *Mol. Microbiol.* 1999. V. 33. № 6. P. 1103–1117.
- 211. Ang K., Ibrahim P., Gam L., Sciences P. Analysis of differentially expressed proteins in late-stationary growth phase of *Mycobacterium tuberculosis* H37Rv // *Biotechnol. Appl. Biochem.* 2014. V. 61. № 2. P. 153–164.
- 212. Gu D., Luo T., Chen W., Mi Y., Gong X., Bao L. Improved immunogenicity of *Mycobacterium tuberculosis* Rv0577 by a heterologous prime-boost vaccination strategy in mice // J. Clin. Exp. Pathol. 2017. V. 10. № 3. P. 2774–2783.
- 213. Buchmeier N.A., Newton G.L., Koledin T., Fahey R.C. Association of mycothiol with protection of *Mycobacterium tuberculosis* from toxic oxidants and antibiotics // *Mol. Microbiol.* 2003. V. 47. № 6. P. 1723–1732.
- 214. Cundliffe E. How Antibiotic-Producing Organism Avoid Suicide // Annu. Rev. Genet. 1989.
 V. 43. P. 207–233.
- 215. Kim S.Y., Lee B.S., Sung J.S., Kim H.J., Park J.K. Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions // J. Med. Microbiol. 2008. V. 57. № 12. P. 1473–1480.
- 216. Cunningham A.F., Ashton P.R., Spreadbury C.L., Lammas D.A., Craddock R., Wharton C.W., Wheeler P.R. Tubercle bacilli generate a novel cell wall-associated pigment after long-term anaerobic culture // *FEMS Microbiol. Lett.* 2004. V. 235. № 1. P. 191–198.
- 217. Berney M., Cook G.M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia // *PLoS One*. 2010. V. 5. № 1.
- 218. Boon C., Li R., Qi R. Proteins of *Mycobacterium bovis* BCG induced in the Wayne dormancy model // J. Bacteriol. 2001. V. 183. № 8. P. 2672–2676.
- 219. Singh K.S., Sharma R., Keshari D., Singh N., Singh S.K. Down-regulation of malate synthase in *Mycobacterium tuberculosis* H37Ra leads to reduced stress tolerance, persistence and survival in macrophages // *Tuberculosis*. 2017. V. 106. P. 73–81.
- Li Z., Kelley C., Collins F., Rouse D., Morris S. Expression of katG in *Mycobacterium tuberculosis* is associated with its growth and persistence in mice and guinea pigs. // J. Infect. Dis. 1998. V. 177. № 4. P. 1030–1035.
- 221. Cunningham A.F., Spreadbury C.L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog.
 // J. Bacteriol. 1998. V. 180. № 4. P. 801–808.

- 222. Desjardin L.E., Hayes L.G., Sohaskey C.D., Wayne L.G., Eisenach K.D. Microaerophilic induction of the alpha-crystallin chaperone protein homologue (hspX) mRNA of *Mycobacterium tuberculosis* // *J. Bacteriol.* 2001. V. 183. № 18. P. 5311–5316.
- 223. Monahan I.M., Betts J., Banerjee D.K., Butcher P.D. Differential expression of mycobacterial proteins following phagocytosis by macrophages // *Microbiology*. 2001. V. 147. № 2. P. 459–471.
- 224. Colangeli R., Haq A., Arcus V.L., Summers E., Magliozzo R.S., McBride A., Mitra A.K., Radjainia M., Khajo A., Jacobs W.R., Salgame P., Alland D. The multifunctional histonelike protein Lsr2 protects mycobacteria against reactive oxygen intermediates // Proc. Natl. Acad. Sci. 2009. V. 106. № 11. P. 4414–4418.
- 225. Connell N.D. Mycobacterium: isolation, maintenance, transformation, and mutant selection // Methods cell biol. 1994. V. 45. P. 107–125.
- 226. de Man J.C. The probability of most probable numbers // Eur. J. Appl. Microbiol. 1974. V. 1.
 № July. P. 67–78.
- 227. Flores R. A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue // *Anal. Biochem.* 1978. V. 88. № 2. P. 605–611.
- 228. O'Farrell P.H. High resolution two-dimensional electrophoresis of proteins. // J. Biol. Chem.
 1975. V. 250. № 10. P. 4007–4021.
- Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. V. 37. № 8. P. 911–917.
- Bernofsky C., Swan M. An improved cycling assay for nicotinamide adenine dinucleotide // Anal. Biochem. 1973. V. 53. № 2. P. 452–458.
- 231. Green F., Clausen C.A., Highley T.L. Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates // Anal. Biochem. 1989. V. 182. № 2. P. 197– 199.
- 232. Galamba A., Soetaert K., Buyssens P., Monnaie D., Jacobs P., Content J. Molecular and biochemical characterisation of *Mycobacterium smegmatis* alcohol dehydrogenase C // *FEMS Microbiol. Lett.* 2001. V. 196. № 1. P. 51–56.
- 233. Yeh J.I., Du S., Tortajada A., Paulo J., Zhang S. Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase // *Biochemistry*. 2005. V. 44. № 51. P. 16912–16919.
- 234. Krietsch W.K.G., Bucher T. 3-Phosphoglycerate kinase from rabbit sceletal muscle and yeast // *Eur. J. Biochem.* 1970. V. 17. № 3. P. 568–580.
- 235. Molinary R., Lara F. The lactic dehydrogenase of Propionibacterium pentosaceum //

Biochem. J. 1958. V. 75. P. 57-65.

- 236. Billig S., Schneefeld M., Huber C., Grassl G.A., Eisenreich W., Bange F.C. Lactate oxidation facilitates growth of *Mycobacterium tuberculosis* in human macrophages // *Sci. Rep.* Springer US, 2017. V. 7. № 1. P. 1–12.
- 237. Shleeva M.O., Kondratieva T.K., Demina G.R., Rubakova E.I., Goncharenko A. V., Apt A.S., Kaprelyants A.S. Overexpression of Adenylyl Cyclase Encoded by the *Mycobacterium tuberculosis* Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice // *Front. Cell. Infect. Microbiol.* 2017. V. 7. № August. P. 1–8.
- 238. Shleeva M., Goncharenko A., Kudykina Y., Young D., Young M., Kaprelyants A. Cyclic amp-dependent resuscitation of dormant mycobacteria by exogenous free fatty acids // PLoS One. 2013. V. 8. № 12.
- 239. Salina E.G., Mollenkopf H.J., Kaufmann S.H.E., Kaprelyants A.S. *M. tuberculosis* gene expression during transition to the "non-culturable" state // *Acta Naturae*. 2009. V. 1. № 2. P. 73–77.
- 240. Marrero J., Trujillo C., Rhee K.Y., Ehrt S. Glucose phosphorylation Is required for *Mycobacterium tuberculosis* persistence in mice // *PLoS Pathog.* 2013. V. 9. № 1.
- 241. Phong W.Y., Lin W., Rao S.P.S., Dick T., Alonso S., Pethe K. Characterization of Phosphofructokinase Activity in *Mycobacterium tuberculosis* Reveals That a Functional Glycolytic Carbon Flow Is Necessary to Limit the Accumulation of Toxic Metabolic Intermediates under Hypoxia // *PLoS One*. 2013. V. 8. № 2.
- 242. Schütz A., Golbik R., Tittmann K., Svergun D.I., Koch M.H.J., Hübner G., König S. Studies on structure-function relationships of indolepyruvate decarboxylase from *Enterobacter cloacae*, a key enzyme of the indole acetic acid pathway // *Eur. J. Biochem.* 2003. V. 270. № 10. P. 2322–2331.
- Zimmermann M., Kuehne A., Boshoff H.I., Barry C.E., Zamboni N., Sauer U. Dynamic exometabolome analysis reveals active metabolic pathways in non-replicating mycobacteria // *Environ. Microbiol.* 2015. V. 17. № 11. P. 4802–4815.
- 244. He H., Hovey R., Kane J., Singh V., Zahrt T.C. MprAB Is a Stress-Responsive Two-Component System That Directly Regulates Expression of Sigma Factors SigB and SigE in *Mycobacterium tuberculosis* // J. Bacteriol. 2006. V. 188. № 6. P. 2134–2143.
- 245. Tuchscherr L., Bischoff M., Lattar S.M., Noto Llana M., Pförtner H., Niemann S., Geraci J., Van de Vyver H., Fraunholz M.J., Cheung A.L., Herrmann M., Völker U., Sordelli D.O., Peters G., Löffler B. Sigma Factor SigB Is Crucial to Mediate *Staphylococcus aureus*

Adaptation during Chronic Infections // PLoS Pathog. 2015. V. 11. № 4. P. 1–26.

- 246. Van Schaik W., Abee T. The role of σBin the stress response of Gram-positive bacteria -Targets for food preservation and safety // *Curr. Opin. Biotechnol.* 2005. V. 16. № 2. P. 218– 224.
- 247. Ferreira A., O'Byrne C.P., Boor K.J. Role of sigma(B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in *Listeria monocytogenes // Appl. Environ. Microbiol.* 2001. V. 67. № 10. P. 4454–4457.
- 248. Kang C., Nyayapathy S., Lee J., Suh J., Husson R.N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria // *Microbiology*. 2008. V. 154. P. 725–735.
- 249. Yakhnin A. V., Yakhnin H., Babitzke P. Function of the *Bacillus subtilis* transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader // *Proc. Natl. Acad. Sci.* 2008. V. 105. № 42. P. 16131–16136.
- Li K., Jiang T., Yu B., Wang L., Gao C., Ma C., Xu P., Ma Y. *Escherichia coli* transcription termination factor NusA: heat-induced oligomerization and chaperone activity // *Sci. Rep.* 2013. V. 3. P. 2347.
- 251. Sunnarborg A., Klumpp D., Chung T., LaPorte D.C. Regulation of the glyoxylate bypass operon: Cloning and characterization of *iclR* // *J. Bacteriol.* 1990. V. 172. № 5. P. 2642–2649.
- 252. Van Wezel G.P., Van der Meulen J., Kawamoto S., Luiten R.G.M., Koerten H.K., Kraal B. ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation // J. Bacteriol. 2000. V. 182. № 20. P. 5653–5662.
- 253. Thomson N.R.L., Nasser W., McGowan S., Sebaihia M., Salmond G.P.C. *Erwinia carotovora* has two Kdg R-li ke proteins belonging to the IclR family of transcriptional regulators : identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis // *Mol. Microbiol.* 1999. V. 145. P. 1531–1545.
- 254. Molina-Henares A.J., Krell T., Eugenia Guazzaroni M., Segura A., Ramos J.L. Members of the IclR family of bacterial transcriptional regulators function as activatorsand/or repressors // FEMS Microbiol. Rev. 2006. V. 30. № 2. P. 157–186.
- 255. Barthelmebs L., Lecomte B., Divies C., Cavin J.F. Inducible metabolism of phenolic acids in *Pediococcus pentosaceus* is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator // *J. Bacteriol.* 2000. V. 182. № 23. P. 6724–6731.
- 256. Madoori P.K., Agustiandari H., Driessen A.J.M., Thunnissen A.-M.W.H. Structure of the

transcriptional regulator LmrR and its mechanism of multidrug recognition. // *EMBO J*. 2009. V. 28. № 2. P. 156–166.

- 257. Tran N.P., Gury J., Dartois V., Nguyen T.K.C., Seraut H., Barthelmebs L., Gervais P., Cavin J.-F. Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of *Bacillus subtilis* // *J. Bacteriol.* 2008. V. 190. № 9. P. 3213–3224.
- 258. Lubelski J., De Jong A., Van Merkerk R., Agustiandari H., Kuipers O.P., Kok J., Driessen A.J.M. LmrCD is a major multidrug resistance transporter in *Lactococcus lactis* // Mol. Microbiol. 2006. V. 61. № 3. P. 771–781.
- 259. Sajid A., Arora G., Gupta M., Singhal A., Chakraborty K., Nandicoori V.K., Singh Y. Interaction of *Mycobacterium tuberculosis* elongation factor Tu with GTP is regulated by phosphorylation // J. Bacteriol. 2011. V. 193. № 19. P. 5347–5358.
- 260. Ткаченко А.Г. Молекулярные механизмы стрессовых ответов у микроорганизмов. Екатеринбург: УрО РАН, 2012. 268 р.
- 261. Dayaram Y.K., Talaue M.T., Connell N.D., Venketaraman V. Characterization of a glutathione metabolic mutant of *Mycobacterium tuberculosis* and its resistance to glutathione and nitrosoglutathione // *J. Bacteriol.* 2006. V. 188. № 4. P. 1364–1372.
- 262. Newton G.L., Fahey R.C. Mycothiol biochemistry // Arch. Microbiol. 2002. V. 178. № 6. P. 388–394.
- 263. Newton G.L., Buchmeier N., Fahey R.C. Biosynthesis and functions of mycothiol, the unique protective thiol of actinobacteria // *Microbiol. Mol. Biol. Rev.* 2008. V. 72. № 3. P. 471–494.
- 264. Akif M., Khare G., Tyagi A.K., Mande S.C., Sardesai A.A. Functional Studies of Multiple Thioredoxins from *Mycobacterium tuberculosis* // J. Bacteriol. 2008. V. 190. № 21. P. 7087– 7095.
- 265. Martin J.L. Thioredoxin -a fold for all reasons // Structure. 1995. V. 3. № 3. P. 245–250.
- 266. Budde H., Flohé L., Radi R., Trujillo M., Singh M., Jaeger T., Menge U. Multiple thioredoxin-mediated routes to detoxify hydroperoxides in *Mycobacterium tuberculosis* // *Arch. Biochem. Biophys.* 2004. V. 423. № 1. P. 182–191.
- 267. Anuchin A.M., Goncharenko A. V., Demina G.R., Mulyukin A.L., Ostrovsky D.N., Kaprelyants A.S. The role of histone-like protein, Hlp, in Mycobacterium smegmatis dormancy // FEMS Microbiol. Lett. 2010. V. 308. № 2. P. 101–107.
- 268. Gupta M., Sajid A., Sharma K., Ghosh S., Arora G., Singh R., Nagaraja V., Tandon V., Singh Y. HupB, a nucleoid-associated protein of *Mycobacterium tuberculosis*, is modified by serine/threonine protein kinases *in vivo* // *J. Bacteriol.* 2014. V. 196. № 14. P. 2646–2657.

- 269. Shleeva M., Trutneva K., Shumkov M., Demina G., A. Kaprelyants. A major protein Rv0341 in the membrane of dormant *Mycobacterium tuberculosis* binds DNA and reduces the rate of RNA synthesis // *FEBS Open Bio.* 2018. V. 8. № S1. P. 400.
- 270. Nguyen L., Chinnapapagari S., Thompson C.J. FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of *Mycobacterium smegmatis* // J. Bacteriol. 2005. V. 187. № 19. P. 6603– 6611.
- 271. Py B., Higgins C.F., Krisch H.M., Carpousis A.J. A DEAD-box RNA helicase in the *Escherichia coli* RNA degradosome. // *Nature*. 1996. V. 381. № 6578. P. 169–172.
- 272. Hutter B., Dick T. Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis // FEMS Microbiol. Lett. 1998. V. 167. № 1. P. 7–11.
- 273. Hougardy J.M., Schepers K., Place S., Drowart A., Lechevin V., Verscheure V., Debrie A.S., Doherty T.M., Van Vooren J.P., Locht C., Mascart F. Heparin-binding-hemagglutinininduced IFN-γ release as a diagnostic tool for latent tuberculosis // *PLoS One*. 2007. V. 2. № 10. P. 926.
- 274. Kalscheuer R., Koliwer-Brandl H. Genetics of Mycobacterial Trehalose Metabolism // Microbiol. Spectr. 2014. V. 2. № 3. P. 1–15.
- 275. Miah F., Koliwer-Brandl H., Rejzek M., Field R.A., Kalscheuer R., Bornemann S. Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria // Chem. Biol. Elsevier Ltd, 2013. V. 20. № 4. P. 487–493.
- 276. Murphy H.N., Stewart G.R., Mischenko V. V., Apt A.S., Harris R., McAlister M.S.B., Driscoll P.C., Young D.B., Robertson B.D. The OtsAB pathway is essential for trehalose biosynthesis in *Mycobacterium tuberculosis* // *J. Biol. Chem.* 2005. V. 280. № 15. P. 14524– 14529.
- 277. Korte J., Alber M., Trujillo C.M., Syson K., Koliwer-Brandl H., Deenen R., Köhrer K., DeJesus M.A., Hartman T., Jacobs W.R., Bornemann S., Ioerger T.R., Ehrt S., Kalscheuer R. Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in *Mycobacterium tuberculosis In Vitro* and in Mice // *PLoS Pathog.* 2016. V. 12. № 12. P. 1–22.
- 278. Koliwer-Brandl H., Syson K., van de Weerd R., Chandra G., Appelmelk B., Alber M., Ioerger T.R., Jacobs W.R., Geurtsen J., Bornemann S., Kalscheuer R. Metabolic Network for the Biosynthesis of Intra- and Extracellular α-Glucans Required for Virulence of *Mycobacterium tuberculosis // PLoS Pathog.* 2016. V. 12. № 8. P. 1–26.
- 279. Kalscheuer R., Syson K., Veeraraghavan U., Weinrick B., Biermann K.E., Liu Z.,

Sacchettini J.C., Besra G., Bornemann S., Jacobs W.R. Self-poisoning of *Mycobacterium tuberculosis* by targeting GlgE in an α-glucan pathway // *Nat. Chem. Biol.* Nature Publishing Group, 2010. V. 6. № 5. P. 376–384.

- 280. Woodruff P.J., Carlson B.L., Siridechadilok B., Pratt M.R., Senaratne R.H., Mougous J.D., Riley L.W., Williams S.J., Bertozzi C.R. Trehalose is required for growth of *Mycobacterium smegmatis* // J. Biol. Chem. 2004. V. 279. № 28. P. 28835–28843.
- 281. Carroll J.D., Pastuszak I., Edavana V.K., Pan Y.T., Elbein A.D. A novel trehalase from *Mycobacterium smegmatis* Purification, properties, requirements // *FEBS J.* 2007. V. 274. № 7. P. 1701–1714.
- 282. Li H., Su H., Kim S.B., Chang Y.K., Hong S.K., Seo Y.G., Kim C.J. Enhanced production of trehalose in *Escherichia coli* by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity // *J. Biosci. Bioeng.* 2012. V. 113. № 2. P. 224–232.
- 283. Shleeva M., Mukamolova G. V., Young M., Williams H.D., Kaprelyants A.S. Formation of "non-culturable" cells of *Mycobacterium smegmatis* in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation // *Microbiology*. 2004. V. 150. № 6. P. 1687–1697.
- 284. Hey-Ferguson A., Mitchell M., Elbein A.D. Trehalose metabolism in germinating spores of Streptomyces hygroscopicus // J. Bacteriol. 1973. V. 116. № 2. P. 1084–1085.
- 285. Thevelein J.M., den Hollander J. a, Shulman R.G. Changes in the activity and properties of trehalase during early germination of yeast ascospores: correlation with trehalose breakdown as studied by *in vivo* 13C NMR. // *Proc. Natl. Acad. Sci. U. S. A.* 1982. V. 79. № 11. P. 3503–3507.
- 286. Thevelein J.M., Jones K.-A. Reversibility characteristics of glucose-induced trehalase activation associated with the breaking of dormancy in yeast ascospores // Eur. J. Biochem. 1983. V. 136. № 3. P. 583–387.
- 287. Thevelein J.M. Regulation of trehalase mobilization in fungi // *Microbiol. Rev.* 1984. V. 48.
 № 1. P. 42–59.
- 288. Ortiz C.H., Maia J.C.C., Tenan M.N., Braz-Padrão G.R., Mattoon J.R., Panek A.D. Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylationdephosphorylation cascade system // J. Bacteriol. 1983. V. 153. № 2. P. 644–651.
- 289. McBride M.J., Ensign J.C. Regulation of trehalose metabolism by *Streptomyces griseus* spores // *J. Bacteriol.* 1990. V. 172. № 7. P. 3637–3643.
- 290. Barton J.K., Den Hollander J.A., Hopfield J.J., Shulman R.G. 13C nuclear magnetic

resonance study of trehalose mobilization in yeast spores // *J. Bacteriol.* 1982. V. 151. № 1. P. 177–185.

- 291. Romeo G. Dynamic and Configurational Approach to the Glass Transition by Nanoscale Cooperativity // Open J. Biophys. 2012. V. 2012. № July. P. 88–100.
- 292. Strøm A.R., Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. // *Mol. Microbiol.* 1993. V. 8. № 2. P. 205–210.
- 293. Wolf A., Krämer R., Morbach S. Three pathways for trehalose metabolism in *Corynebacterium glutamicum* ATCC13032 and their significance in response to osmotic stress // Mol. Microbiol. 2003. V. 49. № 4. P. 1119–1134.
- 294. Kempf B., Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments // Arch. Microbiol. 1998. V. 170. № 5. P. 319–330.
- 295. Kandror O., DeLeon A., Goldberg A.L. Trehalose synthesis is induced upon exposure of *Escherichia coli* to cold and is essential for viability at low temperatures // Proc. Natl. Acad. Sci. 2002. V. 99. № 15. P. 9727–9732.
- 296. Singer M. a, Lindquist S. Thermotolerance in *Saccharomyces cerevisiae*: the Yin and Yang of trehalose. // *Trends Biotechnol*. 1998. V. 16. № 11. P. 460–468.
- 297. Singer M.A., Lindquist S. Multiple effects of trehalose on protein folding in *vitro* and *in vivo* // *Mol. Cell.* 1998. V. 1. № 5. P. 639–648.
- 298. Benaroudj N., Lee D.H., Goldberg A.L. Trehalose Accumulation during Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals // J. Biol. Chem.
 2001. V. 276. № 26. P. 24261–24267.
- 299. Bezrukavnikov S., Mashaghi A., Van Wijk R.J., Gu C., Yang L.J., Gao Y.Q., Tans S.J. Trehalose facilitates DNA melting: A single-molecule optical tweezers study // R. Soc. Chem. Royal Society of Chemistry, 2014. V. 10. № 37. P. 7269–7277.
- 300. Gouterman M. Spectra of Porphyrins // J. Mol. Spectrosc. 1961. V. 6. P. 138–163.
- 301. Francisco S. A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris. 1998. V. 95. № April. P. 4853–4858.
- 302. Fuhrhop J. -H. The reactivity of the porphyrin ligand // Angew. Chemie Int. Ed. English.
 1974. V. 13. № 5. P. 321–335.
- 303. Patel M., Day B.J. Metalloporphyrin class of therapeutic catalytic antioxidants // Trends Pharmacol. Sci. 1999. V. 20. № 9. P. 359–364.
- 304. Antonova N.A., Osipova V.P., Kolyada M.N., Movchan N.O., Milaeva E.R., Pimenov Y.T. Study of the antioxidant properties of porphyrins and their complexes with metals //

Macroheterocycles. 2010. V. 3. № 2–3. P. 139–144.

305. Castello P., Drechsel D.A., Day B.J., Patel M. Inhibition of mitochondrial hydrogen peroxide production by lipophilic metalloporphyrins // J. Pharmacol. Exp. Ther. 2008. V. 324. № 3. P. 970–976.

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность научному руководителю – доктору биологических наук, профессору Арсению Сумбатовичу Капрельянцу за постоянную помощь и поддержку, чуткое руководство при написании статей и подготовке диссертационной работы на всех этапах выполнения.

Автор выражает искреннюю благодарность коллективу лаборатории биохимии стрессов за доброжелательное отношение и плодотворное сотрудничество.

Отдельную благодарность автор выражает Шлеевой Маргарите Олеговне за помощь в освоении методов и обсуждении результатов.

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1. Белки обнаруженые в протеомном профиле и покоящихся активных клеток M.smegmatis

Белки обнаруженые в цитозольных и мембранных фракциях (cyt – цитозоль; chaps – chaps экстракт из мембран; sds –sds экстракт из мембран) активных и покоящихся клеток *M.smegmatis*. Активные клетки (обозначенные как «act») выращивались на среде Сатона 2 дня; покоящиеся клетки (обозначенные как «dorm») получали после постепенного закисления среды с последующим хранением в течение одного месяца при комнатной температуре. Более подробно описано в разделе материалы и методы.

В столбцах, обозначенных как «place», предствленно место, которое белок занимает в протеомном профиле. Все белки были ранжированы в соответствии с «денсити» пятна от самого высокопредставленного (1) до наименее представленного (154 для активных и 151 для покоящихся клеток). Белки, которые отсутствовали в конкретном протеоме, обозначены как «N/D». Если одно пятно содержало несколько разных белков, общая плотность пятен распределялась пропорционально между белками. Белки в таблице отсортированны по номеру гена. Элекстронную версию таблицы, как и данные полученные с прибора, спектры и результаты поиска, можно обнаружить по ссылке: http://www.peptideatlas.org/PASS/PASS01462.

Cell type, Act-A cells, D-dormanrt cells	Cell fraction	Sample number	Spot density	Density, %	Protein name (Smegmalist)	Gene Name	Mtb Ortholog	Coverage	Score	Mass Values Matched	Place Active	Place Dormant
Dorm	chaps	1562	21,1	0,1106	Nucleotidyl transferase	LOCUS AFP38256 373 aa		24%	78	7	N/D	97
Dorm	cytoplasm	468	8,4	0,0844	adenosylhomocysteinase	LOCUS WP_003893235 485 aa		76%	236	33	N/D	80
Dorm	cytoplasm	469	16,2	0,1628	adenosylhomocysteinase	LOCUS WP_003893235 485 aa		38%	70	12	N/D	80
Act	chaps	1297	13,3	0,0735	peptidase M75 family protein	LOCUS WP_003896817 390 aa		14%	84	5	107	47
Dorm	chaps	1528	65	0,3408	peptidase M75 family protein	LOCUS WP_003896817 390 aa		86%	429	37	107	47
Act	cytoplasm	392	67,7	0,4367	DUF2587 domain-containing protein	LOCUS WP_003897773 176 aa		34%	98	7	55	N/D
Dorm	cytoplasm	447	17,1	0,1719	dephospho-CoA kinase	LOCUS WP_014877836 375 aa		67%	87	13	N/D	76
Dorm	cytoplasm	579	7,5	0,0754	mycothiol acetyltransferase	LOCUS WP_014878453 295 aa		64%	120	10	N/D	120
Act	sds	1575	10,9	0,0707	peptidase M75 family protein	LOCUS WP_029104416 390 aa		70%	384	27	80	N/D
Dorm	chaps	1522	6,8	0,0357	bifunctional folylpolyglutamate synthase/dihydrofolate synthase	LOCUS WP_029104421 469 aa		71%	180	22	N/D	130
Dorm	cytoplasm	553	1,2	0,0121	diol dehydratase reactivase subunit alpha	LOCUS WP_029104561 623 aa		46%	202	19	N/D	150
Dorm	cytoplasm	557	9,1	0,0915	elongation factor G	LOCUS WP_081319411 701 aa		74%	397	42	N/D	107
Dorm	chaps	1512	41,3	0,2166	elongation factor G	LOCUS WP_081319411		56%	427	39	N/D	65

						701 aa						1
Dorm	cytoplasm	510	24,8	0,2492	6-phosphogluconate dehydrogenase, decarboxylating	MSMEG_0002	Rv1122	87%	262	19	N/D	53
Dorm	cytoplasm	479	28,6	0,2874	DNA gyrase, A subunit	MSMEG_0006	Rv0006	47%	119	28	N/D	48
Act	cytoplasm	326	424,4	2,7377	peptidyl-prolyl cis-trans isomerase B	MSMEG_0024	Rv0009	97%	238	16	4	31
Dorm	cytoplasm	533	43,5	0,4372	peptidyl-prolyl cis-trans isomerase B	MSMEG_0024	Rv0009	92%	200	12	4	31
Dorm	chaps	1736	7,9	0,0414	peptidyl-prolyl cis-trans isomerase B	MSMEG_0024	Rv0009	72%	168	12	N/D	129
Dorm	chaps	1514	14,6	0,0766	serine-threonine protein kinase	MSMEG_0028	Rv0014c	73%	335	33	N/D	116
Dorm	chaps	1737	3,1	0,0163	anthranilate synthase component 2	MSMEG_0029	Rv0013	75%	164	12	N/D	137
Act	cytoplasm	284	68,2	0,4399	FHA domain protein	MSMEG_0035	Rv0020c	54%	169	14	54	99
Act	sds	1571	14,2	0,0921	FHA domain protein	MSMEG_0035	Rv0020c	43%	87	9	79	N/D
Dorm	cytoplasm	444	11,7	0,1176	FHA domain protein	MSMEG_0035	Rv0020c	65%	237	17	54	99
Dorm	chaps	1524	12,1	0,0634	FHA domain protein	MSMEG_0035	Rv0020c	62%	84	12	N/D	121
Act	cytoplasm	277	8,9	0,0574	antigen MTB48	MSMEG_0076	Rv3881c	51%	198	21	129	N/D
Dorm	sds	1627	14,4	0,5536	oxidoreductase, zinc-binding dehydrogenase family protein	MSMEG_0097	Rv0149	38%	55	10	N/D	30
Dorm	cytoplasm	564	1,3	0,0131	acyl-CoA dehydrogenase	MSMEG_0108		49%	123	14	N/D	149
Act	chaps	1283	181,7	1,0041	extracellular solute-binding protein, family protein 3	MSMEG_0114		65%	162	14	17	20
Act	chaps	1284	47,2	0,2608	extracellular solute-binding protein, family protein 3	MSMEG_0114		86%	194	21	17	20
Dorm	chaps	1346	175	0,9176	extracellular solute-binding protein, family protein 3	MSMEG_0114		86%	226	20	17	20
Dorm	sds	1649	2,9	0,1402	oxidoreductase, zinc-binding dehydrogenase family protein	MSMEG_0127	Rv0162c	62%	121	15	N/D	46
Dorm	sds	1650	3,3	0,1546	oxidoreductase, zinc-binding dehydrogenase family protein	MSMEG_0127	Rv0162c	53%	118	17	N/D	46
Act	cytoplasm	399	11,2	0,0722	serine esterase, cutinase family protein	MSMEG_0194		53%	94	7	122	N/D
Act	chaps	1300	66	0,3647	L-sorbosone dehydrogenase	MSMEG_0214		62%	147	14	37	121
Act	sds	1571	14,2	0,0921	L-sorbosone dehydrogenase	MSMEG_0214		44%	87	9	79	N/D
Dorm	chaps	1524	12,1	0,0634	L-sorbosone dehydrogenase	MSMEG_0214		63%	144	17	37	121
Act	cytoplasm	329	70,7	0,4561	3-hydroxyacyl-CoA dehydrogenase	MSMEG_0216		91%	323	22	50	75
Dorm	cytoplasm	501	13,6	0,1367	3-hydroxyacyl-CoA dehydrogenase	MSMEG_0216		70%	165	16	50	75
Dorm	cytoplasm	502	17,8	0,1789	3-hydroxyacyl-CoA dehydrogenase	MSMEG_0216		48%	58	6	50	75
Dorm	chaps	1735	23,6	0,1237	3-hydroxyacyl-CoA dehydrogenase	MSMEG_0216		41%	69	8	N/D	92
Act	chaps	1504	75,1	0,415	monoglyceride lipase	MSMEG_0220	Rv0183	87%	367	26	34	N/D

Act	sds	1615	27	0,1751	monoglyceride lipase	MSMEG_0220	Rv0183	78%	225	21	11	N/D
Act	sds	1616	202,4	1,3126	monoglyceride lipase	MSMEG_0220	Rv0183	70%	194	17	11	N/D
Act	cytoplasm	376	70,2	0,4528	O-methyltransferase MdmC	MSMEG_0224	Rv0187	72%	95	9	53	N/D
Dorm	cytoplasm	434	40,5	0,407	metallopeptidase	MSMEG_0234	Rv0198c	79%	421	58	N/D	35
Dorm	cytoplasm	485	40,8	0,41	metallopeptidase	MSMEG_0234	Rv0198c	43%	128	25	N/D	35
Act	chaps	1298	26,5	0,1464	secreted peptidase	MSMEG_0247		34%	124	10	79	N/D
Dorm	cytoplasm	433	55,1	0,5537	phosphoenolpyruvate carboxykinase	MSMEG_0255	Rv0211	58%	172	26	N/D	24
Act	cytoplasm	368	114,8	0,7405	3-oxoacyl-[acyl-carrier-protein] reductase	MSMEG_0269		77%	121	13	31	N/D
Dorm	cytoplasm	442	23,8	0,2392	oxidoreductase, FAD-binding	MSMEG_0301		50%	65	13	N/D	55
Act	cytoplasm	412	9,4	0,0606	2-dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-oxoglutarate aldolase	MSMEG_0312		52%	97	9	126	139
Dorm	cytoplasm	577	3,4	0,0342	2-dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-oxoglutarate aldolase	MSMEG_0312		63%	137	7	126	139
Act	sds	1571	14,2	0,0921	conserved hypothetical protein	MSMEG_0317	Rv0227c	62%	112	15	40	N/D
Act	sds	1572	47,2	0,3061	conserved hypothetical protein	MSMEG_0317	Rv0227c	75%	286	30	40	N/D
Dorm	chaps	1525	12,8	0,0671	conserved hypothetical protein	MSMEG_0317	Rv0227c	56%	112	16	N/D	111
Dorm	chaps	1526	16,5	0,0865	conserved hypothetical protein	MSMEG_0317	Rv0227c	77%	380	35	N/D	111
Act	chaps	1308	27,2	0,1503	conserved hypothetical protein	MSMEG_0365		62%	196	25	76	N/D
Act	chaps	1510	21	0,116	MaoC like domain protein	MSMEG_0371	Rv0241c	44%	153	12	91	44
Dorm	chaps	1387	77,6	0,4069	MaoC like domain protein	MSMEG_0371	Rv0241c	60%	275	17	91	44
Act	cytoplasm	307	19,6	0,1264	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	88%	411	35	99	N/D
Act	chaps	1268	829,3	4,5827	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	86%	228	28	2	2
Act	sds	1592	54,4	0,3528	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	44%	101	14	34	N/D
Dorm	chaps	1344	596,5	3,1277	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	90%	401	38	2	2
Dorm	chaps	1356	118,5	0,6213	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	60%	168	21	2	2
Dorm	chaps	1551	33,2	0,1741	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	67%	164	23	2	2
Dorm	chaps	1552	31,4	0,1646	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	43%	94	15	2	2

Dorm	chaps	1553	50,1	0,2627	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	49%	76	18	2	2
Dorm	chaps	1733	5,1	0,0267	oxidoreductase, short chain dehydrogenase/reductase family protein	MSMEG_0372	Rv0242c	41%	73	13	2	2
Act	chaps	1328	270,8	1,4964	3-ketoacyl-CoA thiolase	MSMEG_0373	Rv0243	63%	195	23	12	7
Act	chaps	1328	270,8	1,4964	3-ketoacyl-CoA thiolase	MSMEG_0373	Rv0243	55%	175	21	12	7
Dorm	chaps	1332	328,1	1,7204	3-ketoacyl-CoA thiolase	MSMEG_0373	Rv0243	68%	388	29	12	7
Dorm	chaps	1333	63,6	0,3335	3-ketoacyl-CoA thiolase	MSMEG_0373	Rv0243	74%	394	29	12	7
Dorm	sds	1456	3,2	0,151	3-ketoacyl-CoA thiolase	MSMEG_0373	Rv0243	37%	77	14	N/D	47
Act	chaps	1505	55,1	0,3045	Rmt2 protein	MSMEG_0387		45%	66	9	45	N/D
Act	sds	1615	27	0,1751	Rmt2 protein	MSMEG_0387		64%	160	16	11	N/D
Act	sds	1616	202,4	1,3126	Rmt2 protein	MSMEG_0387		30%	78	9	11	N/D
Act	sds	1596	33,6	0,2179	Macrocin-O-methyltransferase	MSMEG_0388		68%	127	16	56	N/D
Act	chaps	1719	54,1	0,299	Macrocin-O-methyltransferase	MSMEG_0388		56%	147	14	46	N/D
Act	chaps	1719	54,1	0,299	Macrocin-O-methyltransferase	MSMEG_0388		56%	145	14	46	N/D
Act	cytoplasm	413	221,2	1,4269	transferase	MSMEG_0422		61%	102	12	15	96
Dorm	cytoplasm	580	12,2	0,1226	transferase	MSMEG_0422		83%	187	17	15	96
Dorm	cytoplasm	581	12,8	0,1286	transferase	MSMEG_0422		89%	144	17	15	96
Act	chaps	1468	6,2	0,0343	Periplasmic binding protein	MSMEG_0438	Rv0265c	79%	228	16	118	N/D
Dorm	chaps	1536	27,9	0,1463	conserved hypothetical protein, putative	MSMEG_0441		68%	48	9	N/D	86
Act	cytoplasm	400	25,9	0,1671	phosphomethylpyrimidine kinase	MSMEG_0464		87%	264	19	81	N/D
Act	chaps	1275	480,7	2,6563	probable sugar ABC transporter, substrate-binding protein, putative	MSMEG_0505		60%	146	16	5	N/D
Dorm	cytoplasm	563	5,1	0,0513	putative acyl-CoA dehydrogenase	MSMEG_0531		49%	126	18	N/D	127
Act	cytoplasm	412	9,4	0,0606	intracellular protease, Pfpl family protein	MSMEG_0536		78%	150	12	126	N/D
Act	sds	1611	142,9	0,9267	transcriptional regulator, Crp/Fnr family protein	MSMEG_0539		54%	106	7	14	N/D
Act	sds	1612	104,8	0,6797	transcriptional regulator, Crp/Fnr family protein	MSMEG_0539		45%	60	7	14	N/D
Act	chaps	1282	217,6	1,2024	sulfonate binding protein	MSMEG_0550		78%	341	25	15	N/D
Act	sds	1606	4,3	0,0279	sulfonate binding protein	MSMEG_0550		78%	257	25	88	N/D
Act	sds	1597	29,8	0,1933	ABC nitrate/sulfonate/bicarbonate transporter, ATPase subunit	MSMEG_0551		18%	69	5	61	N/D
Dorm	cytoplasm	579	7,5	0,0754	trans-aconitate 2-methyltransferase	MSMEG_0629	Rv0294	61%	142	12	N/D	120
Act	sds	1617	34,6	0,2244	oligopeptide transport ATP-binding protein AppF	MSMEG_0639		81%	282	27	54	20

Act	chaps	1710	19,8	0,1094	oligopeptide transport ATP-binding protein AppF	MSMEG_0639		58%	171	16	96	N/D
Dorm	sds	1447	29,9	1,1107	oligopeptide transport ATP-binding protein AppF	MSMEG_0639		80%	392	26	54	20
Dorm	sds	1645	1,4	0,0863	oligopeptide transport ATP-binding protein AppF	MSMEG_0639		38%	48	8	54	20
Act	sds	1580	19,5	0,1265	oligopeptide transport ATP-binding protein OppD	MSMEG_0640		68%	157	19	73	N/D
Dorm	chaps	1570	92,7	0,4861	oligopeptide transport ATP-binding protein OppD	MSMEG_0640		46%	94	11	N/D	31
Act	cytoplasm	281	23,6	0,1522	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		59%	275	26	84	59
Act	chaps	1272	332,3	1,8363	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		68%	457	50	9	1
Act	chaps	1273	52,1	0,2879	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		43%	137	17	9	1
Act	sds	1389	101,7	0,6596	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		51%	284	27	18	29
Dorm	cytoplasm	437	22,5	0,2261	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		54%	349	29	84	59
Dorm	chaps	1329	1255,5	6,5832	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		68%	436	52	9	1
Dorm	chaps	1523	8,5	0,0446	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		44%	110	19	9	1
Dorm	chaps	1524	12,1	0,0634	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		36%	61	11	9	1
Dorm	chaps	1525	12,8	0,0671	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		37%	61	12	9	1
Dorm	chaps	1526	16,5	0,0865	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		36%	61	11	9	1
Dorm	sds	1623	14,5	0,5572	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		70%	459	53	18	29
Dorm	chaps	1725	53,5	0,2805	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		47%	146	16	9	1
Dorm	chaps	1726	8,7	0,0456	extracellular solute-binding protein, family protein 5, putative	MSMEG_0643		26%	124	12	9	1
Act	cytoplasm	405	38,6	0,249	conserved hypothetical protein	MSMEG_0683	Rv0333	96%	185	10	66	N/D
Act	cytoplasm	271	4,2	0,0271	conserved hypothetical protein	MSMEG_0692		55%	184	15	142	N/D
Act	chaps	1460	36,6	0,2022	conserved hypothetical protein	MSMEG_0692		44%	80	13	65	N/D
Act	cytoplasm	368	114,8	0,7405	monooxygenase	MSMEG_0702		98%	278	28	31	19
Dorm	cytoplasm	518	68,3	0,6864	топоохудепаѕе	MSMEG_0702		87%	250	21	31	19
Dorm	cytoplasm	578	18,4	0,1849	monooxygenase	MSMEG_0702		55%	112	10	31	19
Dorm	chaps	1385	18,3	0,096	conserved hypothetical protein	MSMEG_0703	Rv1929c	76%	227	17	N/D	106
Act	cytoplasm	280	238,1	1,5359	chaperone protein DnaK	MSMEG_0709	Rv0350	72%	439	36	14	16
Act	chaps	1274	106,7	0,5896	chaperone protein DnaK	MSMEG_0709	Rv0350	78%	701	51	28	18
Act	sds	1390	40,5	0,2627	chaperone protein DnaK	MSMEG_0709	Rv0350	42%	415	33	44	72
Dorm	cytoplasm	435	87,1	0,8753	chaperone protein DnaK	MSMEG_0709	Rv0350	68%	481	37	14	16
Dorm	chaps	1330	187,4	0,9826	chaperone protein DnaK	MSMEG_0709	Rv0350	83%	552	45	28	18

Dorm	cdc	1657	1 1	0.0755	chaparana protoin Dnak	MSMEG 0700	Pv0250	68%	245	24	44	72
Domi	sus	1037	1,1	0,0755		IVISIVIEG_0709	KV0550	00%	545	54	44	12
Act	cytoplasm	414	100,4	0,6477	co-chaperone GrpE	MSMEG_0710	Rv0351	89%	141	17	36	N/D
Act	cytoplasm	416	33,4	0,2155	aldose 1-epimerase subfamily protein	MSMEG_0717		85%	133	16	69	N/D
Dorm	chaps	1511	11	0,0577	chaperone ClpB	MSMEG_0732	Rv0384c	65%	443	49	N/D	122
Dorm	sds	1655	2,1	0,1114	chaperone ClpB	MSMEG_0732	Rv0384c	28%	180	22	N/D	61
Dorm	cytoplasm	566	5,3	0,0533	fructose-bisphosphate aldolase, class II	MSMEG_0752	Rv0363c	65%	206	21	N/D	125
Act	chaps	1497	23,2	0,1282	conserved hypothetical protein	MSMEG_0753	Rv0361	74%	196	18	84	N/D
Dorm	cytoplasm	531	44,4	0,4462	conserved hypothetical protein	MSMEG_0768	Rv0390	88%	110	9	N/D	30
Act	chaps	1503	62,9	0,3476	metallo-beta-lactamase superfamily protein	MSMEG_0775	Rv0406c	72%	246	17	39	N/D
Act	cytoplasm	318	13,6	0,0877	F420-dependent glucose-6-phosphate dehydrogenase	MSMEG_0777	Rv0407	89%	395	31	115	13
Act	sds	1604	18,4	0,1193	F420-dependent glucose-6-phosphate dehydrogenase	MSMEG_0777	Rv0407	61%	90	15	75	N/D
Dorm	cytoplasm	496	99,1	0,9959	F420-dependent glucose-6-phosphate dehydrogenase	MSMEG_0777	Rv0407	83%	369	27	115	13
Dorm	cytoplasm	565	3,6	0,0362	F420-dependent glucose-6-phosphate dehydrogenase	MSMEG_0777	Rv0407	72%	258	19	115	13
Act	cytoplasm	330	29,9	0,1929	thiamine-phosphate pyrophosphorylase	MSMEG_0789	Rv0414c	84%	137	16	77	N/D
Act	chaps	1508	24,2	0,1337	ABC transporter ATP-binding protein	MSMEG_0795		36%	85	11	82	N/D
Act	sds	1593	43,8	0,2841	ABC transporter ATP-binding protein	MSMEG_0795		86%	287	31	42	N/D
Act	chaps	1465	16	0,0884	hydrolase	MSMEG_0806	Rv0418	88%	386	36	103	N/D
Act	chaps	1471	10	0,0553	peptide deformylase	MSMEG_0832	Rv0429c	46%	64	7	111	N/D
Act	chaps	1285	198,3	1,0958	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	66%	93	8	16	4
Act	sds	1399	238,8	1,5487	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	66%	146	8	7	26
Act	sds	1400	151,2	0,9806	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	34%	71	5	7	26
Act	sds	1605	10,1	0,0655	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	31%	92	4	7	26
Act	sds	1607	37,2	0,2413	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	41%	45	5	7	26
Dorm	chaps	1335	466,5	2,4461	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	48%	64	8	16	4
Dorm	chaps	1355	129,9	0,6811	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	37%	79	7	16	4
Dorm	sds	1628	22,4	0,8411	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	34%	82	5	7	26
Dorm	sds	1630	2,8	0,1366	copper/zinc superoxide dismutase	MSMEG_0835	Rv0432	37%	99	7	7	26
Act	cytoplasm	279	2,3	0,0148	cell division control protein Cdc48	MSMEG_0858	Rv0435c	65%	389	34	146	N/D
Act	cytoplasm	380	22,9	0,1477	transcriptional regulator, TetR family protein	MSMEG_0859		36%	177	17	85	103

Dorm	cvtoplasm	543	10.4	0.1045	transcriptional regulator. TetR family protein	MSMEG 0859		36%	218	20	85	103
Act	cytoplasm	414	100,4	0,6477	hydrolase	MSMEG 0867	Rv1225c	76%	124	20	36	N/D
Act	cytoplasm	287	44,1	0,2845	chaperonin GroL	 MSMEG_0880		74%	343	31	62	64
Act	sds	1393	262,1	1,6998	chaperonin GroL	MSMEG_0880		78%	409	38	6	63
Act	sds	1427	83,7	0,5428	chaperonin GroL	MSMEG_0880		54%	111	22	6	63
Dorm	cytoplasm	441	21,3	0,2141	chaperonin GroL	MSMEG_0880		63%	299	25	62	64
Dorm	chaps	1368	91,9	0,4819	chaperonin GroL	MSMEG_0880		74%	363	36	N/D	33
Dorm	sds	1658	1,8	0,1006	chaperonin GroL	MSMEG_0880		31%	55	11	6	63
Dorm	cytoplasm	576	2,3	0,0231	conserved hypothetical protein	MSMEG_0887		51%	79	7	N/D	143
Act	chaps	1481	7,3	0,0403	dihydrolipoamide dehydrogenase	MSMEG_0903	Rv0462	60%	203	21	116	50
Dorm	chaps	1373	59,8	0,3136	dihydrolipoamide dehydrogenase	MSMEG_0903	Rv0462	92%	503	41	116	50
Dorm	chaps	1374	28	0,1468	dihydrolipoamide dehydrogenase	MSMEG_0903	Rv0462	75%	253	25	116	50
Dorm	chaps	1375	20,2	0,1059	dihydrolipoamide dehydrogenase	MSMEG_0903	Rv0462	53%	97	17	116	50
Dorm	chaps	1376	19,5	0,1022	dihydrolipoamide dehydrogenase	MSMEG_0903	Rv0462	58%	130	20	116	50
Dorm	cytoplasm	579	7,5	0,0754	3-hydroxybutyryl-CoA dehydrogenase	MSMEG_0912	Rv0468	72%	183	16	N/D	120
Act	sds	1598	94,3	0,6116	methoxy mycolic acid synthase 1	MSMEG_0913	Rv0469	85%	257	33	20	N/D
Act	chaps	1716	30,2	0,1669	methoxy mycolic acid synthase 1	MSMEG_0913	Rv0469	25%	87	8	70	N/D
Dorm	sds	1653	23,8	0,8914	heparin-binding hemagglutinin	MSMEG_0919	Rv0475	46%	176	18	N/D	24
Act	chaps	1498	18,7	0,1033	conserved hypothetical protein	MSMEG_0923	Rv0479c	66%	201	18	98	N/D
Act	chaps	1300	66	0,3647	ErfK/YbiS/YcfS/YnhG family protein	MSMEG_0929	Rv0483	58%	164	17	37	119
Act	sds	1571	14,2	0,0921	ErfK/YbiS/YcfS/YnhG family protein	MSMEG_0929	Rv0483	47%	116	13	79	N/D
Dorm	chaps	1525	12,8	0,0671	ErfK/YbiS/YcfS/YnhG family protein	MSMEG_0929	Rv0483	45%	76	14	37	119
Act	cytoplasm	330	29,9	0,1929	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	MSMEG_0935	Rv0489	69%	106	14	77	75
Dorm	cytoplasm	501	13,6	0,1367	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	MSMEG_0935	Rv0489	47%	59	8	77	75
Dorm	cytoplasm	502	17,8	0,1789	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	MSMEG_0935	Rv0489	63%	160	16	77	75
Dorm	chaps	1735	23,6	0,1237	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	MSMEG_0935	Rv0489	58%	99	11	N/D	92
Act	sds	1594	56,1	0,3638	conserved hypothetical protein	MSMEG_0938	Rv0495c	33%	50	7	30	N/D
Act	chaps	1721	6,2	0,0343	HAD-superfamily protein subfamily protein IB hydrolase, TIGR01490	MSMEG_0949	Rv0505c	46%	82	10	119	N/D
Dorm	cytoplasm	568	13,6	0,1367	porphobilinogen deaminase	MSMEG_0953	Rv0510	55%	86	12	N/D	93

Dorm	cytoplasm	570	4,2	0,0422	delta-aminolevulinic acid dehydratase	MSMEG 0956	Rv0512	53%	120	12	N/D	136
Act	chaps	1473	20,5	0,1133	conserved hypothetical protein		Rv0526	63%	224	12	93	62
Dorm	chaps	1380	44,1	0,2312	conserved hypothetical protein	MSMEG_0971	Rv0526	72%	221	18	93	62
Act	chaps	1711	258,2	1,4268	geranylgeranyl reductase	MSMEG_1028		52%	208	18	13	N/D
Act	cytoplasm	309	182,9	1,1798	alcohol dehydrogenase, zinc-containing	MSMEG_1037		77%	113	17	19	20
Dorm	cytoplasm	490	61,7	0,6201	alcohol dehydrogenase, zinc-containing	MSMEG_1037		55%	67	13	19	20
Dorm	cytoplasm	491	42,8	0,4301	alcohol dehydrogenase, zinc-containing	MSMEG_1037		71%	107	15	19	20
Dorm	cytoplasm	494	20,3	0,204	alcohol dehydrogenase, zinc-containing	MSMEG_1037		43%	64	9	19	20
Act	chaps	1293	73	0,4034	Periplasmic binding protein	MSMEG_1039		81%	197	19	35	99
Act	sds	1576	24,8	0,1608	Periplasmic binding protein	MSMEG_1039		72%	264	19	66	N/D
Dorm	chaps	1530	20,5	0,1075	Periplasmic binding protein	MSMEG_1039		81%	144	18	35	99
Act	sds	1598	94,3	0,6116	ABC-type molybdenum transport system, ATPase component	MSMEG_1046		54%	57	10	20	N/D
Act	cytoplasm	423	20,5	0,1322	probable enoyl-CoA hydratase	MSMEG_1048		86%	191	17	94	N/D
Act	sds	1601	116,5	0,7555	methyltransferase, UbiE/COQ5 family protein	MSMEG_1049		52%	60	12	16	N/D
Act	sds	1602	15,9	0,1031	methyltransferase, UbiE/COQ5 family protein	MSMEG_1049		73%	90	19	16	N/D
Act	chaps	1322	22,3	0,1232	conserved hypothetical protein	MSMEG_1053		67%	281	19	83	84
Act	chaps	1499	23,3	0,1288	conserved hypothetical protein	MSMEG_1053		62%	226	21	83	84
Act	chaps	1500	18,2	0,1006	conserved hypothetical protein	MSMEG_1053		53%	116	16	83	84
Act	sds	1602	15,9	0,1031	conserved hypothetical protein	MSMEG_1053		87%	200	34	77	N/D
Dorm	chaps	1558	30,7	0,161	conserved hypothetical protein	MSMEG_1053		77%	321	24	83	84
Dorm	cytoplasm	573	7,2	0,0724	hydrolase	MSMEG_1078		48%	91	10	N/D	122
Act	cytoplasm	344	21,6	0,1393	amidase	MSMEG_1090		91%	259	35	91	N/D
Act	chaps	1720	29,6	0,1636	hydrolase, alpha/beta fold family protein	MSMEG_1108	Rv0554	40%	93	9	72	N/D
Dorm	chaps	1529	20,6	0,108	ABC-type transport system periplasmic substrate-binding protein	MSMEG_1216		76%	307	33	N/D	98
Act	sds	1592	54,4	0,3528	conserved hypothetical protein	MSMEG_1247		50%	200	24	34	N/D
Act	sds	1618	84,9	0,5506	peptide chain release factor 3	MSMEG_1316		69%	198	34	24	N/D
Act	sds	1619	23,3	0,1511	peptide chain release factor 3	MSMEG_1316		88%	487	60	24	N/D
Act	sds	1619	23,3	0,1511	peptide chain release factor 3	MSMEG_1316		86%	459	58	24	N/D
Dorm	sds	1631	4,8	0,2085	metallo-beta-lactamase family protein	MSMEG_1334	Rv0634c	77%	80	12	N/D	37

1	1	1	1	1		1	1	1	1		1	1
Dorm	sds	1632	5,5	0,2336	metallo-beta-lactamase family protein	MSMEG_1334	Rv0634c	41%	83	6	N/D	37
Dorm	chaps	1541	125,9	0,6602	MaoC family protein	MSMEG_1341	Rv0636	93%	254	13	N/D	25
Act	cytoplasm	361	25,9	0,1671	transcription antitermination protein NusG	MSMEG_1345	Rv0639	67%	255	22	80	N/D
Dorm	chaps	1531	5,8	0,0304	transcription antitermination protein NusG	MSMEG_1345	Rv0639	46%	81	11	N/D	132
Act	chaps	1278	252,9	1,3975	50S ribosomal protein L10	MSMEG_1364	Rv0651	80%	406	25	14	30
Dorm	chaps	1547	107,6	0,5642	50S ribosomal protein L10	MSMEG_1364	Rv0651	56%	211	13	14	30
Dorm	cytoplasm	529	53	0,5326	ribosomal protein L7/L12	MSMEG_1365	Rv0652	92%	211	17	N/D	25
Dorm	chaps	1348	268,1	1,4058	ribosomal protein L7/L12	MSMEG_1365	Rv0652	93%	274	16	N/D	12
Dorm	sds	1661	2,9	0,1402	DNA-directed RNA polymerase, beta subunit	MSMEG_1367	Rv0667	27%	128	24	N/D	51
Dorm	chaps	1727	8,4	0,044	DNA-directed RNA polymerase, beta subunit	MSMEG_1367	Rv0667	24%	246	23	N/D	128
Act	chaps	1291	51,4	0,284	ribose ABC transporter, periplasmic binding protein	MSMEG_1374		35%	95	6	48	N/D
Act	chaps	1292	22,8	0,126	ribose ABC transporter, periplasmic binding protein	MSMEG_1374		67%	147	10	48	N/D
Act	cytoplasm	342	73,3	0,4728	alcohol dehydrogenase, class IV	MSMEG_1392		88%	339	33	48	N/D
Act	chaps	1500	18,2	0,1006	alcohol dehydrogenase, class IV	MSMEG_1392		64%	119	18	100	N/D
Act	sds	1602	15,9	0,1031	alcohol dehydrogenase, class IV	MSMEG_1392		39%	79	9	77	N/D
Act	chaps	1276	138,8	0,767	translation elongation factor Tu	MSMEG_1401	Rv0685	89%	419	40	21	5
Act	chaps	1325	58,4	0,3227	translation elongation factor Tu	MSMEG_1401	Rv0685	76%	376	32	21	5
Act	sds	1398	172,8	1,1207	translation elongation factor Tu	MSMEG_1401	Rv0685	67%	264	22	12	1
Act	sds	1601	116,5	0,7555	translation elongation factor Tu	MSMEG_1401	Rv0685	60%	103	24	12	1
Dorm	cytoplasm	461	20,1	0,202	translation elongation factor Tu	MSMEG_1401	Rv0685	77%	358	33	N/D	70
Dorm	cytoplasm	462	14,3	0,1437	translation elongation factor Tu	MSMEG_1401	Rv0685	63%	107	16	N/D	70
Dorm	chaps	1331	440,3	2,3087	translation elongation factor Tu	MSMEG_1401	Rv0685	84%	415	40	21	5
Dorm	chaps	1339	263,2	1,3801	translation elongation factor Tu	MSMEG_1401	Rv0685	48%	221	22	21	5
Dorm	sds	1428	792,7	5,7764	translation elongation factor Tu	MSMEG_1401	Rv0685	87%	483	44	12	1
Dorm	sds	1453	23	0,8627	translation elongation factor Tu	MSMEG_1401	Rv0685	49%	180	22	12	1
Dorm	chaps	1555	24,8	0,13	translation elongation factor Tu	MSMEG_1401	Rv0685	64%	151	19	21	5
Dorm	chaps	1556	36,2	0,1898	translation elongation factor Tu	MSMEG_1401	Rv0685	47%	64	14	21	5
Dorm	chaps	1559	37,6	0,1972	translation elongation factor Tu	MSMEG_1401	Rv0685	25%	77	7	21	5
Dorm	chaps	1568	39	0,2045	translation elongation factor Tu	MSMEG_1401	Rv0685	48%	120	16	21	5

	1	1	1	1			1	1			1 1	1
Dorm	sds	1639	2,9	0,1402	translation elongation factor Tu	MSMEG_1401	Rv0685	37%	51	11	12	1
Dorm	sds	1643	1,2	0,0791	translation elongation factor Tu	MSMEG_1401	Rv0685	47%	187	16	12	1
Dorm	sds	1650	3,3	0,1546	translation elongation factor Tu	MSMEG_1401	Rv0685	39%	66	10	12	1
Dorm	sds	1660	2,8	0,1366	translation elongation factor Tu	MSMEG_1401	Rv0685	15%	63	6	12	1
Act	chaps	1268	829,3	4,5827	FMN-dependent dehydrogenase	MSMEG_1424	Rv0694	69%	145	22	2	N/D
Act	sds	1397	284,6	1,8457	FMN-dependent dehydrogenase	MSMEG_1424	Rv0694	71%	287	25	5	71
Dorm	sds	1644	1,1	0,0755	FMN-dependent dehydrogenase	MSMEG_1424	Rv0694	42%	78	7	5	71
Act	sds	1405	212,5	1,3781	50S ribosomal protein L5	MSMEG_1467	Rv0716	41%	73	7	8	N/D
Dorm	cytoplasm	569	1,2	0,0121	conserved hypothetical protein	MSMEG_1475		85%	366	24	N/D	151
Act	chaps	1478	13,9	0,0768	signal peptide peptidase SppA, 67K type	MSMEG_1476	Rv0724	42%	181	21	67	N/D
Act	chaps	1479	32,1	0,1774	signal peptide peptidase SppA, 67K type	MSMEG_1476	Rv0724	57%	314	31	67	N/D
Act	cytoplasm	394	34,3	0,2213	adenylate kinase	MSMEG_1484	Rv0733	56%	156	9	68	N/D
Act	chaps	1717	20,9	0,1155	methionine aminopeptidase, type I	MSMEG_1485	Rv0734	57%	98	9	92	N/D
Dorm	cytoplasm	469	16,2	0,1628	methylmalonate-semialdehyde dehydrogenase	MSMEG_1498	Rv0753c	78%	266	30	N/D	80
Dorm	cytoplasm	514	8,1	0,0814	conserved hypothetical protein	MSMEG_1513		65%	106	13	N/D	116
Act	sds	1396	446	2,8924	thioredoxin reductase	MSMEG_1516		47%	100	20	3	N/D
Act	cytoplasm	355	120,1	0,7747	DNA-directed RNA polymerase, alpha subunit	MSMEG_1524	Rv3457c	76%	186	19	28	N/D
Act	chaps	1294	41,8	0,231	DNA-directed RNA polymerase, alpha subunit	MSMEG_1524	Rv3457c	95%	407	27	58	26
Dorm	chaps	1353	118,6	0,6219	DNA-directed RNA polymerase, alpha subunit	MSMEG_1524	Rv3457c	92%	466	33	58	26
Act	chaps	1269	427,4	2,3618	50S ribosomal protein L17	MSMEG_1525	Rv3456c	70%	258	21	6	N/D
Act	sds	1411	54,5	0,3534	50S ribosomal protein L17	MSMEG_1525	Rv3456c	70%	202	14	32	14
Act	chaps	1712	38,4	0,2122	50S ribosomal protein L17	MSMEG_1525	Rv3456c	44%	81	7	6	N/D
Dorm	sds	1439	56,7	2,074	50S ribosomal protein L17	MSMEG_1525	Rv3456c	67%	244	20	32	14
Act	cytoplasm	299	19,8	0,1277	eptc-inducible aldehyde dehydrogenase	MSMEG_1543		64%	187	25	98	N/D
Act	sds	1396	446	2,8924	chaperonin GroL	MSMEG_1583	Rv3417c	59%	146	25	3	N/D
Act	cytoplasm	292	15,2	0,0981	inosine-5'-monophosphate dehydrogenase	MSMEG_1602	Rv3411c	79%	385	44	57	79
Act	cytoplasm	293	57,7	0,3722	inosine-5'-monophosphate dehydrogenase	MSMEG_1602	Rv3411c	79%	396	40	57	79
Dorm	cytoplasm	470	8,8	0,0884	inosine-5'-monophosphate dehydrogenase	MSMEG_1602	Rv3411c	74%	217	29	57	79
Dorm	cytoplasm	471	16,5	0,1658	inosine-5'-monophosphate dehydrogenase	MSMEG_1602	Rv3411c	49%	76	14	57	79

Dorm	chans	1361	76 7	0 4022	inosine-5'-mononhosphate dehydrogenase	MSMEG 1602	By3411c	53%	81	18	N/D	45
Derm	спарз	1301	70,7	0,4022			NV54110	3370	01	10	N/D	45
Dorm	chaps	1362	31,8	0,1667	inosine-5'-monophosphate dehydrogenase	MSMEG_1602	Rv3411c	71%	318	42	N/D	45
Dorm	sds	1457	3,4	0,1582	inosine-5'-monophosphate dehydrogenase	MSMEG_1602	Rv3411c	79%	281	37	N/D	45
Act	cytoplasm	309	182,9	1,1798	IMP dehydrogenase family protein	MSMEG_1603	Rv3410c	68%	79	15	19	33
Dorm	cytoplasm	491	42,8	0,4301	IMP dehydrogenase family protein	MSMEG_1603	Rv3410c	74%	106	15	19	33
Dorm	cytoplasm	473	21,4	0,2151	glutamine-hydrolyzing GMP synthase	MSMEG_1610	Rv3396c	67%	257	23	N/D	62
Act	cytoplasm	314	10,7	0,069	tetrahydrofolate dehydrogenase/cyclohydrolase FolD	MSMEG_1647	Rv3356c	90%	340	24	123	N/D
Act	cytoplasm	301	147,7	0,9528	O-acetylhomoserine sulfhydrylase	MSMEG_1652	Rv3340	97%	247	23	24	85
Dorm	cytoplasm	455	14,3	0,1437	O-acetylhomoserine sulfhydrylase	MSMEG_1652	Rv3340	95%	176	21	24	85
Act	chaps	1311	88,1	0,4868	isocitrate dehydrogenase, NADP-dependent	MSMEG_1654	Rv0066c	68%	345	46	30	N/D
Act	sds	1391	509,8	3,3062	isocitrate dehydrogenase, NADP-dependent	MSMEG_1654	Rv0066c	64%	201	43	1	54
Dorm	cytoplasm	481	20,6	0,207	isocitrate dehydrogenase, NADP-dependent	MSMEG_1654	Rv0066c	73%	484	49	N/D	65
Dorm	sds	1640	2,5	0,1258	isocitrate dehydrogenase, NADP-dependent	MSMEG_1654	Rv0066c	20%	98	11	1	54
Dorm	sds	1641	2,5	0,1258	isocitrate dehydrogenase, NADP-dependent	MSMEG_1654	Rv0066c	49%	170	27	1	54
Act	sds	1614	212,3	1,3768	hydrolase, alpha/beta fold family protein, putative	MSMEG_1655	Rv3338	72%	87	13	9	24
Dorm	sds	1653	23,8	0,8914	hydrolase, alpha/beta fold family protein, putative	MSMEG_1655	Rv3338	63%	96	13	9	24
Act	cytoplasm	422	1,4	0,009	oxidoreductase, 2-nitropropane dioxygenase family protein	MSMEG_1660		47%	73	8	147	N/D
Act	cytoplasm	296	19,9	0,1284	aldehyde dehydrogenase (NAD) family protein	MSMEG_1665		77%	273	24	97	N/D
Act	sds	1618	84,9	0,5506	succinate dehydrogenase, flavoprotein subunit	MSMEG_1670	Rv3318	42%	66	20	24	N/D
Dorm	cytoplasm	559	4,7	0,0472	succinate dehydrogenase, flavoprotein subunit	MSMEG_1670	Rv3318	33%	111	15	N/D	130
Dorm	cytoplasm	560	4,3	0,0432	succinate dehydrogenase, flavoprotein subunit	MSMEG_1670	Rv3318	44%	309	28	N/D	130
Dorm	cytoplasm	562	1,8	0,0181	adenosine deaminase	MSMEG_1676	Rv3313c	80%	353	28	N/D	145
Act	cytoplasm	376	70,2	0,4528	conserved hypothetical protein	MSMEG_1680		83%	172	14	53	N/D
Act	cytoplasm	276	11,3	0,0729	conserved hypothetical protein	MSMEG_1684	Rv3311	74%	320	24	120	N/D
Act	cytoplasm	419	12,7	0,0819	uracil phosphoribosyltransferase	MSMEG_1694	Rv3309c	87%	120	12	117	N/D
Act	cytoplasm	323	14,6	0,0942	dihydrolipoamide dehydrogenase	MSMEG_1735	Rv3303c	73%	333	29	111	N/D
Dorm	cytoplasm	474	16,6	0,1668	piperideine-6-carboxylic acid dehydrogenase	MSMEG_1762	Rv3293	56%	207	24	N/D	77
Act	sds	1423	97,6	0,633	acetyl-/propionyl-coenzyme A carboxylase alpha chain	MSMEG_1807	Rv3285	76%	505	33	19	N/D
Act	chaps	1475	28,2	0,1558	acetyl-/propionyl-coenzyme A carboxylase alpha chain	MSMEG_1807	Rv3285	73%	283	29	75	103
h												

Dorm	cytoplasm	475	1,7	0,0171	acetyl-/propionyl-coenzyme A carboxylase alpha chain	MSMEG_1807	Rv3285	72%	345	27	N/D	146
Dorm	chaps	1518	18,2	0,0954	acetyl-/propionyl-coenzyme A carboxylase alpha chain	MSMEG_1807	Rv3285	86%	595	44	75	103
Dorm	chaps	1519	18,9	0,0991	acetyl-/propionyl-coenzyme A carboxylase alpha chain	MSMEG_1807	Rv3285	83%	525	38	75	103
Dorm	cytoplasm	507	76,8	0,7718	putative thiosulfate sulfurtransferase	MSMEG_1809	Rv3283	84%	212	21	N/D	17
Dorm	cytoplasm	571	29,9	0,3005	putative thiosulfate sulfurtransferase	MSMEG_1809	Rv3283	71%	191	16	N/D	17
Dorm	cytoplasm	484	25,1	0,2523	propionyl-CoA carboxylase beta chain	MSMEG_1813	Rv3280	91%	273	38	N/D	51
Dorm	cytoplasm	456	60,1	0,604	acyl-CoA dehydrogenase	MSMEG_1821	Rv3274c	64%	124	16	N/D	21
Dorm	cytoplasm	497	24,8	0,2492	lppg:fo 2-phospho-l-lactate transferase	MSMEG_1830	Rv3261	83%	200	25	N/D	52
Dorm	cytoplasm	497	24,8	0,2492	lppg:fo 2-phospho-l-lactate transferase	MSMEG_1830	Rv3261	83%	200	25	N/D	52
Act	chaps	1319	42,8	0,2365	DNA-binding response regulator MtrA	MSMEG_1874	Rv3246c	75%	183	19	57	71
Act	sds	1412	54,2	0,3515	DNA-binding response regulator MtrA	MSMEG_1874	Rv3246c	83%	173	19	35	N/D
Act	sds	1597	29,8	0,1933	DNA-binding response regulator MtrA	MSMEG_1874	Rv3246c	88%	188	24	35	N/D
Dorm	chaps	1381	37	0,194	DNA-binding response regulator MtrA	MSMEG_1874	Rv3246c	71%	236	21	57	71
Dorm	chaps	1364	82,4	0,4321	LpqB protein	MSMEG_1876	Rv3244c	39%	82	14	N/D	38
Dorm	chaps	1535	6,3	0,033	LpqB protein	MSMEG_1876	Rv3244c	31%	83	13	N/D	38
Act	sds	1415	84,9	0,5506	S30AE family protein	MSMEG_1878	Rv3241c	76%	159	21	23	19
Act	chaps	1505	55,1	0,3045	S30AE family protein	MSMEG_1878	Rv3241c	61%	126	15	45	N/D
Dorm	sds	1448	31,5	1,1682	S30AE family protein	MSMEG_1878	Rv3241c	73%	351	28	23	19
Act	sds	1621	53,6	0,3476	preprotein translocase, SecA subunit	MSMEG_1881	Rv3240c	73%	608	71	36	N/D
Act	chaps	1711	258,2	1,4268	2Fe-2S iron-sulfur cluster binding domain protein	MSMEG_1885	Rv3230c	39%	98	11	13	N/D
Act	cytoplasm	346	11,4	0,0735	3-phosphoshikimate 1-carboxyvinyltransferase	MSMEG_1890	Rv3227	81%	251	19	119	N/D
Act	sds	1617	34,6	0,2244	diacylglycerol kinase, catalytic region	MSMEG_1920	Rv3218	43%	78	10	54	N/D
Act	chaps	1710	19,8	0,1094	diacylglycerol kinase, catalytic region	MSMEG_1920	Rv3218	35%	64	8	96	N/D
Act	chaps	1703	10,1	0,0558	DEAD/DEAH box helicase	MSMEG_1930	Rv3211	27%	103	8	110	N/D
Dorm	sds	1642	2,5	0,1258	ABC1 family protein	MSMEG_1954	Rv3197	67%	278	27	N/D	56
Act	sds	1571	14,2	0,0921	conserved hypothetical protein	MSMEG_1957	Rv3195	36%	82	9	79	23
Dorm	chaps	1525	12,8	0,0671	conserved hypothetical protein	MSMEG_1957	Rv3195	50%	100	15	N/D	119
Dorm	sds	1625	24,5	0,9166	conserved hypothetical protein	MSMEG_1957	Rv3195	69%	351	36	79	23
Act	cytoplasm	374	80,4	0,5186	short chain dehydrogenase	MSMEG_2026		85%	264	17	44	72

Dorm	cytoplasm	512	19,8	0,199	short chain dehydrogenase	MSMEG_2026		53%	60	7	44	72
Dorm	chaps	1566	16,4	0,086	short chain dehydrogenase	MSMEG_2026		73%	189	13	N/D	42
Dorm	chaps	1567	79	0,4142	short chain dehydrogenase	MSMEG_2026		50%	75	7	N/D	42
Act	cytoplasm	366	113,6	0,7328	oxidoreductase, zinc-binding dehydrogenase family protein	MSMEG_2033	Rv3141	71%	151	20	32	17
Dorm	cytoplasm	507	76,8	0,7718	oxidoreductase, zinc-binding dehydrogenase family protein	MSMEG_2033	Rv3141	71%	115	17	32	17
Act	cytoplasm	413	221,2	1,4269	antigen 85-C	MSMEG_2078	Rv1886c, Rv3804c	59%	125	15	15	97
Dorm	cytoplasm	580	12,2	0,1226	antigen 85-C	MSMEG_2078	Rv1886c, Rv3804c	53%	124	15	15	97
Act	cytoplasm	310	480,5	3,0996	alcohol dehydrogenase	MSMEG_2079		92%	341	26	2	119
Act	chaps	1320	40,6	0,2244	alcohol dehydrogenase	MSMEG_2079		87%	290	21	61	19
Act	sds	1580	19,5	0,1265	alcohol dehydrogenase	MSMEG_2079		90%	164	20	55	17
Act	sds	1581	34,4	0,2231	alcohol dehydrogenase	MSMEG_2079		84%	226	22	55	17
Act	sds	1582	24,2	0,1569	alcohol dehydrogenase	MSMEG_2079		90%	196	23	55	17
Act	sds	1582	24,2	0,1569	alcohol dehydrogenase	MSMEG_2079		76%	190	23	55	17
Act	chaps	1717	20,9	0,1155	alcohol dehydrogenase	MSMEG_2079		67%	142	15	61	19
Dorm	cytoplasm	567	7,7	0,0774	alcohol dehydrogenase	MSMEG_2079		75%	273	21	2	119
Dorm	cytoplasm	567	7,7	0,0774	alcohol dehydrogenase	MSMEG_2079		75%	273	21	2	119
Dorm	chaps	1340	184,8	0,969	alcohol dehydrogenase	MSMEG_2079		93%	362	31	61	19
Dorm	sds	1451	36,5	1,348	alcohol dehydrogenase	MSMEG_2079		93%	413	29	55	17
Dorm	chaps	1564	21,3	0,1117	alcohol dehydrogenase	MSMEG_2079		29%	84	6	61	19
Dorm	chaps	1570	92,7	0,4861	alcohol dehydrogenase	MSMEG_2079		76%	152	16	61	19
Dorm	chaps	1739	36,6	0,1919	alcohol dehydrogenase	MSMEG_2079		92%	222	23	61	19
Dorm	chaps	1739	36,6	0,1919	alcohol dehydrogenase	MSMEG_2079		72%	166	19	61	19
Dorm	chaps	1740	48,9	0,2564	alcohol dehydrogenase	MSMEG_2079		87%	163	24	61	19
Dorm	chaps	1553	50,1	0,2627	putative acyl-CoA dehydrogenase	MSMEG_2080	Rv3140	76%	133	25	N/D	57
Dorm	chaps	1553	50,1	0,2627	putative acyl-CoA dehydrogenase	MSMEG_2080	Rv3140	76%	133	25	N/D	57
Act	chaps	1707	12,5	0,0691	putative acyl-CoA dehydrogenase	MSMEG_2081	Rv3139	42%	153	12	108	109
Dorm	chaps	1520	17,8	0,0933	putative acyl-CoA dehydrogenase	MSMEG_2081	Rv3139	66%	388	31	108	109
Act	sds	1612	104,8	0,6797	cell division ATP-binding protein FtsE	MSMEG_2089	Rv3102c	45%	77	8	17	N/D
Dorm	cytoplasm	514	8,1	0,0814	D-aminopeptidase	MSMEG_2092		42%	83	13	N/D	116
Act	cytoplasm	418	76.2	0.4915	dihvdroxvacetone kinase. L subunit	MSMEG 2122		93%	171	15	46	N/D
------	-----------	------	-------	--------	--	----------------	---------	-----	-----	----	-----	-----
Dorm	cytoplasm	570	4.2	0.0422	dihydroxyacetone kinase. DhaK subunit	MSMEG 2123		52%	126	12	N/D	136
Act	cytoplasm	298	21,8	0,1406	phosphoglucomutase, alpha-D-glucose phosphate-specific	MSMEG 2136	Rv3068c	78%	428	32	90	N/D
Act	cytoplasm	382	30,1	0,1942	ZbpA protein	 MSMEG_2201	Rv0130	90%	161	11	76	50
Dorm	cytoplasm	545	26,3	0,2643	ZbpA protein	MSMEG_2201	Rv0130	91%	229	15	76	50
Act	chaps	1474	25,1	0,1387	hypothetical protein	MSMEG_2261		39%	83	7	81	N/D
Act	chaps	1307	167,1	0,9234	hydrogenase-2, large subunit	MSMEG_2263		58%	198	22	19	10
Act	sds	1396	446	2,8924	hydrogenase-2, large subunit	MSMEG_2263		60%	161	26	3	N/D
Dorm	chaps	1369	271,8	1,4252	hydrogenase-2, large subunit	MSMEG_2263		74%	201	30	19	10
Dorm	chaps	1370	86,2	0,452	hydrogenase-2, large subunit	MSMEG_2263		88%	477	48	19	10
Dorm	chaps	1371	87,5	0,4588	hydrogenase-2, large subunit	MSMEG_2263		48%	97	16	19	10
Dorm	chaps	1728	9,2	0,0482	hydrogenase-2, large subunit	MSMEG_2263		36%	80	14	19	10
Act	sds	1607	37,2	0,2413	conserved hypothetical protein	MSMEG_2350	Rv3030	40%	63	7	48	N/D
Act	cytoplasm	369	294,9	1,9023	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	77%	287	18	12	14
Act	chaps	1287	114	0,63	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	84%	410	23	26	6
Act	sds	1410	54,4	0,3528	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	83%	320	18	33	37
Dorm	cytoplasm	519	92,3	0,9276	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	87%	365	27	12	14
Dorm	chaps	1337	389,3	2,0413	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	96%	523	32	26	6
Dorm	sds	1631	4,8	0,2085	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	97%	449	36	33	37
Dorm	sds	1632	5,5	0,2336	electron transfer flavoprotein, beta subunit	MSMEG_2351	Rv3029c	70%	155	14	33	37
Act	cytoplasm	341	393,5	2,5383	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	92%	336	23	6	18
Act	chaps	1286	116,9	0,646	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	81%	315	21	25	8
Act	sds	1401	60,2	0,3904	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	87%	218	17	29	48
Dorm	cytoplasm	517	73,5	0,7387	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	94%	361	28	6	18
Dorm	chaps	1336	320	1,6779	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	95%	398	24	25	8
Dorm	chaps	1537	40,8	0,2139	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	42%	112	15	25	8
Dorm	sds	1629	3,1	0,1474	electron transfer flavoprotein, alpha subunit	MSMEG_2352	Rv3028c	55%	93	12	29	48
Dorm	cytoplasm	574	4,4	0,0442	secreted protein	MSMEG_2353		56%	150	9	N/D	133
Dorm	chaps	1733	5,1	0,0267	tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase	MSMEG_2358	Rv3024c	59%	92	13	N/D	134

Act	sds	1603	44,2	0,2867	methionine synthase, vitamin-B12 independent	MSMEG_2359	Rv3015c	62%	45	12	41	N/D
Act	cytoplasm	297	37,1	0,2393	glutamyl-tRNA(Gln) amidotransferase subunit A	MSMEG_2365	Rv3011c	62%	243	26	67	N/D
Act	cytoplasm	286	49,4	0,3187	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	59%	155	20	60	44
Act	cytoplasm	288	8,3	0,0535	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	51%	111	15	60	44
Act	sds	1395	123,7	0,8022	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	51%	131	17	15	N/D
Act	sds	1395	123,7	0,8022	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	46%	107	15	15	N/D
Dorm	cytoplasm	438	30,2	0,3035	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	66%	182	23	60	44
Dorm	cytoplasm	439	19,8	0,199	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	52%	107	16	60	44
Dorm	chaps	1364	82,4	0,4321	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	37%	57	11	N/D	38
Dorm	chaps	1535	6,3	0,033	aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B	MSMEG_2367	Rv3009c	34%	91	13	N/D	38
Act	chaps	1495	25,3	0,1398	LppZ protein	MSMEG_2369	Rv3006	52%	241	27	80	N/D
Act	chaps	1496	14,9	0,0823	LppZ protein	MSMEG_2369	Rv3006	37%	100	10	80	N/D
Act	sds	1618	84,9	0,5506	acetolactate synthase, large subunit, biosynthetic type	MSMEG_2372	Rv3003c	48%	97	23	24	64
Act	sds	1619	23,3	0,1511	acetolactate synthase, large subunit, biosynthetic type	MSMEG_2372	Rv3003c	55%	108	22	24	64
Dorm	sds	1458	1,7	0,0971	acetolactate synthase, large subunit, biosynthetic type	MSMEG_2372	Rv3003c	64%	354	32	24	64
Dorm	sds	1651	1,2	0,0791	ketol-acid reductoisomerase	MSMEG_2374	Rv3001c	62%	206	20	N/D	70
Act	cytoplasm	289	80,9	0,5219	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	78%	354	29	43	N/D
Act	chaps	1307	167,1	0,9234	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	53%	115	14	19	10
Act	sds	1396	446	2,8924	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	44%	63	14	3	N/D
Act	sds	1427	83,7	0,5428	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	56%	116	20	3	N/D
Dorm	chaps	1368	91,9	0,4819	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	39%	100	11	19	10
Dorm	chaps	1369	271,8	1,4252	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	93%	359	41	19	10
Dorm	chaps	1370	86,2	0,452	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	52%	131	12	19	10
Dorm	chaps	1728	9,2	0,0482	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	76%	292	29	19	10
Dorm	chaps	1729	18,7	0,0981	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	79%	249	29	19	10
Dorm	chaps	1730	16,5	0,0865	D-3-phosphoglycerate dehydrogenase	MSMEG_2378	Rv2996c	40%	95	14	19	10
Dorm	chaps	1561	54,4	0,2852	3-isopropylmalate dehydrogenase	MSMEG_2379	Rv2995c	41%	64	10	N/D	53
Act	cytoplasm	373	74,7	0,4819	5-carboxymethyl-2-hydroxymuconate delta-isomerase	MSMEG_2382	Rv2993c	67%	90	13	47	N/D
Dorm	cytoplasm	487	8,5	0,0854	polyphosphate kinase	MSMEG_2391	Rv2984	89%	574	64	N/D	111

Dorm	cytoplasm	488	6,8	0,0683	polyphosphate kinase	MSMEG_2391	Rv2984	57%	161	28	N/D	111
Act	cytoplasm	357	43,6	0,2813	D-alanineD-alanine ligase	MSMEG_2395	Rv2981c	50%	100	12	63	N/D
Dorm	sds	1626	2,4	0,1222	D-alanineD-alanine ligase	MSMEG_2395	Rv2981c	56%	105	12	N/D	57
Act	sds	1609	39,2	0,2542	uracil-DNA glycosylase	MSMEG_2399	Rv2976c	60%	146	8	45	N/D
Act	chaps	1718	8,2	0,0453	uracil-DNA glycosylase	MSMEG_2399	Rv2976c	46%	81	6	113	N/D
Act	cytoplasm	415	30,6	0,1974	morphine 6-dehydrogenase	MSMEG_2407	Rv2971	99%	248	22	74	N/D
Act	cytoplasm	370	205,6	1,3263	2,5-diketo-D-gluconic acid reductase A	MSMEG_2408		89%	209	19	17	72
Dorm	cytoplasm	512	19,8	0,199	2,5-diketo-D-gluconic acid reductase A	MSMEG_2408		80%	140	13	17	72
Dorm	cytoplasm	513	15,9	0,1598	2,5-diketo-D-gluconic acid reductase A	MSMEG_2408		85%	138	16	17	72
Dorm	chaps	1567	79	0,4142	2,5-diketo-D-gluconic acid reductase A	MSMEG_2408		54%	95	8	N/D	42
Act	chaps	1500	18,2	0,1006	alpha/beta hydrolase fold family protein	MSMEG_2409	Rv2970c	64%	137	20	100	60
Act	chaps	1501	8,6	0,0475	alpha/beta hydrolase fold family protein	MSMEG_2409	Rv2970c	77%	220	21	100	60
Act	sds	1601	116,5	0,7555	alpha/beta hydrolase fold family protein	MSMEG_2409	Rv2970c	52%	82	15	16	N/D
Dorm	chaps	1557	46,4	0,2433	alpha/beta hydrolase fold family protein	MSMEG_2409	Rv2970c	59%	63	15	100	60
Act	sds	1411	54,5	0,3534	putative serine-threonine protein kinase	MSMEG_2410	Rv2969c	51%	94	8	32	N/D
Act	sds	1609	39,2	0,2542	putative serine-threonine protein kinase	MSMEG_2410	Rv2969c	31%	76	5	32	N/D
Dorm	cytoplasm	477	7,7	0,0774	pyruvate carboxylase	MSMEG_2412	Rv2967c	75%	451	68	N/D	118
Act	sds	1419	20,8	0,1349	signal recognition particle-docking protein FtsY	MSMEG_2424	Rv2921c	53%	165	20	69	N/D
Dorm	chaps	1358	61,3	0,3214	signal recognition particle-docking protein FtsY	MSMEG_2424	Rv2921c	31%	93	12	N/D	49
Act	chaps	1277	406,6	2,2468	30S ribosomal protein S16	MSMEG_2435	Rv2909c	82%	284	20	8	11
Act	sds	1405	212,5	1,3781	30S ribosomal protein S16	MSMEG_2435	Rv2909c	55%	107	6	8	N/D
Dorm	chaps	1388	269,6	1,4136	30S ribosomal protein S16	MSMEG_2435	Rv2909c	80%	172	13	8	11
Act	sds	1611	142,9	0,9267	dienelactone hydrolase family protein	MSMEG_2444	Rv2054	39%	82	6	14	N/D
Act	sds	1612	104,8	0,6797	dienelactone hydrolase family protein	MSMEG_2444	Rv2054	39%	57	6	14	N/D
Dorm	cytoplasm	467	47,3	0,4754	methylmalonate-semialdehyde dehydrogenase	MSMEG_2449		72%	207	25	N/D	29
Dorm	cytoplasm	489	8,1	0,0814	adenosylmethionine8-amino-7-oxononanoate transaminase	MSMEG_2450		84%	334	31	N/D	115
Dorm	cytoplasm	519	92,3	0,9276	HAD-superfamily protein hydrolase, subfamily protein IIA	MSMEG_2451		54%	92	13	N/D	14
Act	chaps	1467	1	0,0055	hypothetical protein	MSMEG_2458		73%	221	22	127	N/D
Dorm	cytoplasm	554	1,1	0,0111	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_2488		57%	273	19	N/D	153

1	1	1	1	1		1			1	1	1	1
Act	cytoplasm	345	9,4	0,0606	amidase family protein	MSMEG_2497		76%	240	22	125	N/D
Dorm	cytoplasm	565	3,6	0,0362	siderophore utilization protein	MSMEG_2511	Rv2895c	55%	209	16	N/D	138
Dorm	cytoplasm	514	8,1	0,0814	putative oxidoreductase	MSMEG_2516	Rv2893	73%	185	22	N/D	116
Act	chaps	1485	154,9	0,856	ribosomal protein S2	MSMEG_2519	Rv2890c	92%	349	28	20	N/D
Act	chaps	1487	60,8	0,336	ribosomal protein S2	MSMEG_2519	Rv2890c	86%	292	23	20	N/D
Act	chaps	1488	57,2	0,3161	ribosomal protein S2	MSMEG_2519	Rv2890c	83%	272	21	20	N/D
Act	sds	1585	35,1	0,2276	ribosomal protein S2	MSMEG_2519	Rv2890c	80%	162	21	49	27
Act	sds	1586	32,2	0,2088	ribosomal protein S2	MSMEG_2519	Rv2890c	85%	180	27	49	27
Act	sds	1587	31	0,201	ribosomal protein S2	MSMEG_2519	Rv2890c	82%	224	32	49	27
Act	sds	1588	37,1	0,2406	ribosomal protein S2	MSMEG_2519	Rv2890c	93%	315	32	49	27
Dorm	sds	1449	18,3	0,6937	ribosomal protein S2	MSMEG_2519	Rv2890c	71%	106	17	49	27
Act	cytoplasm	370	205,6	1,3263	translation elongation factor Ts	MSMEG_2520	Rv2889c	76%	270	23	17	72
Act	chaps	1715	13,8	0,0763	translation elongation factor Ts	MSMEG_2520	Rv2889c	29%	91	5	106	42
Dorm	cytoplasm	512	19,8	0,199	translation elongation factor Ts	MSMEG_2520	Rv2889c	89%	430	31	17	72
Dorm	cytoplasm	513	15,9	0,1598	translation elongation factor Ts	MSMEG_2520	Rv2889c	90%	393	33	17	72
Dorm	chaps	1567	79	0,4142	translation elongation factor Ts	MSMEG_2520	Rv2889c	42%	78	8	106	42
Act	cytoplasm	352	8,2	0,0529	1-deoxy-D-xylulose 5-phosphate reductoisomerase	MSMEG_2578	Rv2870c	83%	200	16	132	N/D
Dorm	cytoplasm	445	21,8	0,2191	gamma-glutamylisopropylamide synthetase	MSMEG_2595	Rv2860c	46%	65	16	N/D	61
Act	cytoplasm	295	26,9	0,1735	aldehyde dehydrogenase	MSMEG_2597	Rv2858c	70%	195	23	79	1
Dorm	cytoplasm	463	357,1	3,5888	aldehyde dehydrogenase	MSMEG_2597	Rv2858c	67%	115	18	79	1
Dorm	chaps	1371	87,5	0,4588	aldehyde dehydrogenase	MSMEG_2597	Rv2858c	63%	124	18	N/D	35
Act	cytoplasm	339	16,4	0,1058	short chain dehydrogenase	MSMEG_2598	Rv2857c	71%	138	15	106	N/D
Act	chaps	1328	270,8	1,4964	malate:quinone-oxidoreductase	MSMEG_2613	Rv2852c	37%	77	14	10	93
Act	chaps	1705	310,3	1,7147	malate:quinone-oxidoreductase	MSMEG_2613	Rv2852c	56%	218	20	10	93
Dorm	chaps	1550	23,4	0,1227	malate:quinone-oxidoreductase	MSMEG_2613	Rv2852c	83%	351	30	10	93
Dorm	cytoplasm	541	11,2	0,1126	ElaA protein	MSMEG_2614	Rv2851c	54%	94	8	N/D	101
Dorm	cytoplasm	485	40,8	0,41	prolyl-tRNA synthetase	MSMEG_2621	Rv2845c	93%	524	59	N/D	35
Act	cytoplasm	336	19,5	0,1258	conserved hypothetical protein	MSMEG_2624	Rv2842c	71%	76	9	100	N/D
Act	cytoplasm	336	19,5	0,1258	conserved hypothetical protein	MSMEG_2624	Rv2842c	65%	65	8	100	N/D
												-

Act	chaps	1314	81,4	0,4498	conserved hypothetical protein	MSMEG_2624	Rv2842c	87%	277	17	31	66
Dorm	chaps	1540	41,2	0,216	conserved hypothetical protein	MSMEG_2624	Rv2842c	73%	118	10	31	66
Dorm	sds	1636	8,4	0,3379	conserved hypothetical protein	MSMEG_2624	Rv2842c	64%	100	7	N/D	35
Dorm	sds	1449	18,3	0,6937	transcription termination factor NusA	MSMEG_2625	Rv2841c	44%	59	10	N/D	27
Act	cytoplasm	333	17,2	0,111	enoyl-CoA hydratase	MSMEG_2641	Rv2831	74%	177	18	105	N/D
Act	cytoplasm	424	18,7	0,1206	Sfp-type phosphopantetheinyl transferase	MSMEG_2648	Rv2794c	66%	82	9	101	N/D
Dorm	chaps	1568	39	0,2045	Sfp-type phosphopantetheinyl transferase	MSMEG_2648	Rv2794c	75%	133	12	N/D	69
Act	chaps	1309	18,6	0,1028	guanosine pentaphosphate synthetase I/polyribonucleotide nucleotidyltransferase	MSMEG_2656	Rv2783c	68%	413	48	99	49
Act	sds	1419	20,8	0,1349	guanosine pentaphosphate synthetase I/polyribonucleotide nucleotidyltransferase	MSMEG_2656	Rv2783c	30%	142	20	69	N/D
Dorm	cytoplasm	429	55,9	0,5618	guanosine pentaphosphate synthetase I/polyribonucleotide nucleotidyltransferase	MSMEG_2656	Rv2783c	74%	345	48	N/D	23
Dorm	chaps	1358	61,3	0,3214	guanosine pentaphosphate synthetase I/polyribonucleotide nucleotidyltransferase	MSMEG_2656	Rv2783c	51%	356	47	99	49
Act	cytoplasm	306	32,7	0,2109	alanine dehydrogenase	MSMEG_2659	Rv2780	84%	248	26	70	3
Dorm	cytoplasm	457	285,6	2,8702	alanine dehydrogenase	MSMEG_2659	Rv2780	95%	474	43	70	3
Dorm	cytoplasm	562	1,8	0,0181	alanine dehydrogenase	MSMEG_2659	Rv2780	30%	79	10	70	3
Dorm	chaps	1356	118,5	0,6213	alanine dehydrogenase	MSMEG_2659	Rv2780	83%	366	37	N/D	27
Dorm	chaps	1551	33,2	0,1741	alanine dehydrogenase	MSMEG_2659	Rv2780	66%	200	27	N/D	27
Dorm	chaps	1553	50,1	0,2627	alanine dehydrogenase	MSMEG_2659	Rv2780	59%	81	19	N/D	27
Act	cytoplasm	414	100,4	0,6477	hydrolase	MSMEG_2669	Rv2765	75%	140	16	36	N/D
Act	cytoplasm	371	65,3	0,4212	dihydrodipicolinate synthase	MSMEG_2684	Rv2753c	70%	275	21	56	N/D
Dorm	cytoplasm	472	7,4	0,0744	metallo-beta-lactamase superfamily protein	MSMEG_2685	Rv2752c	75%	398	33	N/D	121
Act	chaps	1486	81	0,4476	35 kDa protein	MSMEG_2695	Rv2744c	60%	97	14	32	134
Act	chaps	1489	22,7	0,1254	35 kDa protein	MSMEG_2695	Rv2744c	75%	184	25	32	134
Act	sds	1585	35,1	0,2276	35 kDa protein	MSMEG_2695	Rv2744c	92%	315	33	43	5
Act	sds	1586	32,2	0,2088	35 kDa protein	MSMEG_2695	Rv2744c	82%	195	26	43	5
Act	sds	1587	31	0,201	35 kDa protein	MSMEG_2695	Rv2744c	78%	111	18	43	5
Act	sds	1588	37,1	0,2406	35 kDa protein	MSMEG_2695	Rv2744c	64%	139	17	43	5
Act	sds	1589	42,9	0,2782	35 kDa protein	MSMEG_2695	Rv2744c	62%	80	17	43	5
Dorm	sds	1435	75,1	2,7354	35 kDa protein	MSMEG_2695	Rv2744c	79%	363	29	43	5
Dorm	sds	1436	222,1	4,317	35 kDa protein	MSMEG_2695	Rv2744c	97%	410	35	43	5

Dorm	sds	1449	18,3	0,6937	35 kDa protein	MSMEG_2695	Rv2744c	85%	152	18	43	5
Dorm	chaps	1733	5,1	0,0267	35 kDa protein	MSMEG_2695	Rv2744c	68%	134	16	32	134
Act	sds	1416	52,9	0,3431	protein RecA	MSMEG_2723		67%	160	16	22	N/D
Act	sds	1417	91,5	0,5934	protein RecA	MSMEG_2723		86%	222	30	22	N/D
Act	chaps	1490	41,8	0,231	protein RecA	MSMEG_2723		86%	356	31	59	N/D
Act	chaps	1491	19,9	0,11	protein RecA	MSMEG_2723		59%	170	20	59	N/D
Act	sds	1603	44,2	0,2867	protein RecA	MSMEG_2723		56%	38	13	22	N/D
Act	cytoplasm	396	5,9	0,0381	glutamate binding protein	MSMEG_2727		57%	174	11	137	N/D
Act	chaps	1288	118,1	0,6526	glutamate binding protein	MSMEG_2727		70%	352	23	24	9
Act	sds	1407	8,2	0,0532	glutamate binding protein	MSMEG_2727		65%	271	17	84	N/D
Dorm	chaps	1338	284,5	1,4918	glutamate binding protein	MSMEG_2727		84%	543	34	24	9
Act	sds	1615	27	0,1751	glutamate transport ATP-binding protein GluA	MSMEG_2728		36%	47	8	62	N/D
Act	chaps	1460	36,6	0,2022	conserved hypothetical protein	MSMEG_2739	Rv2721c	67%	329	36	65	61
Dorm	sds	1638	3,9	0,1761	conserved hypothetical protein	MSMEG_2739	Rv2721c	33%	123	13	N/D	44
Dorm	sds	1639	2,9	0,1402	conserved hypothetical protein	MSMEG_2739	Rv2721c	46%	128	25	N/D	44
Dorm	chaps	1722	44,9	0,2354	conserved hypothetical protein	MSMEG_2739	Rv2721c	57%	320	35	65	61
Dorm	cytoplasm	521	22,2	0,2231	thymidylate synthase	MSMEG_2744	Rv2716	74%	252	17	N/D	60
Dorm	sds	1632	5,5	0,2336	thymidylate synthase	MSMEG_2744	Rv2716	57%	85	10	N/D	37
Dorm	sds	1644	1,1	0,0755	sigma factor SigB	MSMEG_2752	Rv2710	22%	55	6	5	71
Act	cytoplasm	334	56,8	0,3664	deoxyuridine 5'-triphosphate nucleotidohydrolase	MSMEG_2765	Rv2697c	84%	198	13	58	N/D
Act	sds	1619	23,3	0,1511	1-deoxy-D-xylulose-5-phosphate synthase	MSMEG_2776	Rv2682c	41%	94	22	68	N/D
Dorm	chaps	1521	13,6	0,0713	1-deoxy-D-xylulose-5-phosphate synthase	MSMEG_2776	Rv2682c	81%	570	44	N/D	117
Act	chaps	1506	30,7	0,1696	alpha/beta hydrolase fold	MSMEG_2777	Rv1834	54%	141	12	69	N/D
Dorm	cytoplasm	564	1,3	0,0131	uroporphyrinogen decarboxylase	MSMEG_2780	Rv2678c	60%	155	17	N/D	149
Act	cytoplasm	380	22,9	0,1477	methionine-R-sulfoxide reductase	MSMEG_2784	Rv2674	59%	55	6	85	N/D
Act	chaps	1466	4,8	0,0265	hydrolase, alpha/beta fold family protein	MSMEG_2786	Rv2672	67%	283	23	121	N/D
Act	sds	1597	29,8	0,1933	hydrolase	MSMEG_2913		48%	82	11	61	N/D
Dorm	sds	1644	1,1	0,0755	2-dehydropantoate 2-reductase	MSMEG_2919		47%	122	10	N/D	71
Act	sds	1601	116,5	0,7555	glycine betaine/carnitine/choline transport ATP-binding protein opuCA	MSMEG_2926		56%	70	14	16	N/D

						•						
Dorm	chaps	1557	46,4	0,2433	glycine betaine/carnitine/choline transport ATP-binding protein opuCA	MSMEG_2926		71%	94	19	N/D	60
Act	sds	1584	6,8	0,0441	hydrolase, nudix family protein	MSMEG_2936	Rv2609c	47%	132	13	86	N/D
Act	cytoplasm	372	45,2	0,2916	pyridoxine biosynthesis protein	MSMEG_2937	Rv2606c	86%	236	25	61	N/D
Dorm	cytoplasm	498	12,1	0,1216	acyl-CoA thioesterase II	MSMEG_2938	Rv2605c	46%	79	10	N/D	98
Dorm	cytoplasm	523	4,9	0,0492	conserved hypothetical protein	MSMEG_2940	Rv2603c	78%	82	11	N/D	128
Act	chaps	1306	180,1	0,9952	bacterial extracellular solute-binding protein, family protein 5	MSMEG_2963	Rv2585c	61%	227	25	18	37
Dorm	chaps	1366	53	0,2779	bacterial extracellular solute-binding protein, family protein 5	MSMEG_2963	Rv2585c	80%	384	44	18	37
Dorm	chaps	1367	83,3	0,4368	bacterial extracellular solute-binding protein, family protein 5	MSMEG_2963	Rv2585c	49%	114	21	18	37
Act	sds	1600	77,1	0,5	histidyl-tRNA synthetase	MSMEG_2976	Rv2580c	49%	92	14	26	N/D
Dorm	chaps	1557	46,4	0,2433	histidyl-tRNA synthetase	MSMEG_2976	Rv2580c	53%	68	16	N/D	60
Act	chaps	1296	31,6	0,1746	putative periplasmic binding protein	MSMEG_2982		54%	279	17	68	N/D
Act	sds	1572	47,2	0,3061	putative periplasmic binding protein	MSMEG_2982		47%	56	10	40	N/D
Act	cytoplasm	404	115,9	0,7476	conserved hypothetical protein	MSMEG_2983	Rv2576c	72%	72	5	30	N/D
Act	sds	1412	54,2	0,3515	putative hydrolase	MSMEG_2984		67%	91	9	35	N/D
Dorm	cytoplasm	478	33,1	0,3326	alanyl-tRNA synthetase	MSMEG_3025	Rv2555c	76%	263	52	N/D	40
Dorm	cytoplasm	458	29,1	0,2925	chorismate synthase	MSMEG_3030	Rv2540c	93%	358	43	N/D	47
Act	sds	1417	91,5	0,5934	3-dehydroquinate synthase	MSMEG_3033	Rv2538c	81%	175	24	22	12
Act	sds	1603	44,2	0,2867	3-dehydroquinate synthase	MSMEG_3033	Rv2538c	79%	108	22	22	12
Dorm	sds	1434	65,5	2,3904	3-dehydroquinate synthase	MSMEG_3033	Rv2538c	71%	112	15	22	12
Act	cytoplasm	401	7,6	0,049	thiopurine S-methyltransferase (tpmt) superfamily protein	MSMEG_3041	Rv1377c	81%	145	10	135	N/D
Act	chaps	1483	22,2	0,1227	carbamoyl-phosphate synthase, small subunit	MSMEG_3046	Rv1383	31%	62	8	89	N/D
Act	sds	1591	38,5	0,2497	carbamoyl-phosphate synthase, small subunit	MSMEG_3046	Rv1383	64%	97	14	47	N/D
Act	cytoplasm	302	105,5	0,6805	S-adenosylmethionine synthetase	MSMEG_3055	Rv1392	88%	363	29	34	88
Dorm	cytoplasm	453	14,2	0,1427	S-adenosylmethionine synthetase	MSMEG_3055	Rv1392	90%	419	32	34	88
Dorm	chaps	1559	37,6	0,1972	S-adenosylmethionine synthetase	MSMEG_3055	Rv1392	80%	210	23	N/D	70
Act	sds	1578	19,6	0,1271	ABC transporter ATP-binding protein	MSMEG_3056		54%	238	20	71	N/D
Dorm	chaps	1537	40,8	0,2139	lipoprotein, nlpa family protein	MSMEG_3058		49%	65	10	N/D	67
Act	cytoplasm	365	179,1	1,1553	esterase	MSMEG_3059	Rv1400c	95%	141	20	21	N/D
Dorm	sds	1628	22,4	0,8411	esterase	MSMEG_3059	Rv1400c	43%	118	7	N/D	26

Dorm	sds	1645	1,4	0,0863	methionyl-tRNA formyltransferase	MSMEG_3064	Rv1406	64%	107	13	N/D	66
Act	cytoplasm	397	9,2	0,0593	ribulose-phosphate 3-epimerase	MSMEG_3066	Rv1408	56%	137	10	128	N/D
Act	chaps	1270	411,4	2,2734	LprG protein	MSMEG_3070	Rv1411c	76%	213	17	7	3
Act	sds	1408	7,5	0,0486	LprG protein	MSMEG_3070	Rv1411c	69%	171	10	85	N/D
Dorm	chaps	1334	512,6	2,6878	LprG protein	MSMEG_3070	Rv1411c	50%	156	12	7	3
Act	sds	1582	24,2	0,1569	conserved hypothetical protein	MSMEG_3079	Rv1421	55%	123	16	67	N/D
Dorm	chaps	1740	48,9	0,2564	conserved hypothetical protein	MSMEG_3079	Rv1421	68%	106	16	N/D	58
Act	cytoplasm	308	605,9	3,9085	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	76%	155	18	1	7
Act	sds	1416	52,9	0,3431	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	81%	241	22	37	13
Act	chaps	1492	16,7	0,0923	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	48%	180	11	102	28
Act	sds	1578	19,6	0,1271	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	41%	66	8	37	13
Act	sds	1579	10,6	0,0687	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	62%	202	18	37	13
Dorm	cytoplasm	492	256,6	2,5788	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	80%	180	21	1	7
Dorm	cytoplasm	493	111,2	1,1175	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	65%	110	15	1	7
Dorm	cytoplasm	494	20,3	0,204	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	60%	118	15	1	7
Dorm	cytoplasm	495	15,9	0,1598	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	38%	60	6	1	7
Dorm	cytoplasm	564	1,3	0,0131	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	60%	133	14	1	7
Dorm	chaps	1349	117,9	0,6182	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	76%	279	28	102	28
Dorm	sds	1433	57,2	2,092	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	88%	299	28	37	13
Dorm	chaps	1561	54,4	0,2852	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	70%	144	18	102	28
Dorm	chaps	1562	21,1	0,1106	glyceraldehyde-3-phosphate dehydrogenase, type I	MSMEG_3084	Rv1436	41%	79	8	102	28
Act	cytoplasm	356	88,9	0,5735	phosphoglycerate kinase	MSMEG_3085	Rv1437	92%	377	28	39	2
Act	cytoplasm	357	43,6	0,2813	phosphoglycerate kinase	MSMEG_3085	Rv1437	50%	119	12	39	2
Dorm	cytoplasm	516	312	3,1356	phosphoglycerate kinase	MSMEG_3085	Rv1437	82%	427	30	39	2
Act	cytoplasm	332	14,2	0,0916	triosephosphate isomerase	MSMEG_3086	Rv1438	97%	255	23	113	57
Dorm	cytoplasm	504	23,2	0,2332	triosephosphate isomerase	MSMEG_3086	Rv1438	86%	252	20	113	57
Act	chaps	1283	181,7	1,0041	D-ribose-binding periplasmic protein	MSMEG_3095		75%	149	13	17	N/D
Act	chaps	1284	47,2	0,2608	D-ribose-binding periplasmic protein	MSMEG_3095		62%	88	13	17	N/D
Dorm	cytoplasm	581	12,8	0,1286	6-phosphogluconolactonase	MSMEG_3099	Rv1445c	64%	210	19	N/D	96

Act	cytoplasm	366	113,6	0,7328	OpcA protein	MSMEG 3100	Rv1446c	92%	309	26	32	17
Dorm	cytoplasm	507	76,8	0,7718	OpcA protein	 MSMEG_3100	Rv1446c	53%	81	11	32	17
Dorm	cytoplasm	450	41,7	0,4191	transaldolase	MSMEG_3102	Rv1448c	70%	193	18	N/D	34
Dorm	cytoplasm	451	9,3	0,0935	transaldolase	MSMEG_3102	Rv1448c	59%	194	18	N/D	34
Dorm	cytoplasm	551	8,4	0,0844	transaldolase	MSMEG_3102	Rv1448c	34%	105	9	N/D	34
Dorm	cytoplasm	432	151,3	1,5205	transketolase	MSMEG_3103		68%	366	35	N/D	9
Dorm	cytoplasm	482	151,3	1,5205	transketolase	MSMEG_3103		58%	130	24	N/D	9
Dorm	cytoplasm	486	9	0,0904	transketolase	MSMEG_3103		62%	171	31	N/D	9
Dorm	chaps	1515	17,9	0,0939	transketolase	MSMEG_3103		52%	129	21	N/D	108
Act	cytoplasm	337	96,5	0,6225	quinone oxidoreductase	MSMEG_3106	Rv1454c	88%	298	20	37	15
Act	chaps	1321	49	0,2708	quinone oxidoreductase	MSMEG_3106	Rv1454c	42%	91	8	51	59
Dorm	cytoplasm	505	89,8	0,9025	quinone oxidoreductase	MSMEG_3106	Rv1454c	61%	92	11	37	15
Dorm	cytoplasm	506	24,4	0,2452	quinone oxidoreductase	MSMEG_3106	Rv1454c	89%	157	15	37	15
Dorm	chaps	1563	47,6	0,2496	quinone oxidoreductase	MSMEG_3106	Rv1454c	91%	278	20	51	59
Act	chaps	1321	49	0,2708	conserved hypothetical protein	MSMEG_3107	Rv1455	82%	272	18	51	N/D
Act	sds	1594	56,1	0,3638	FeS assembly ATPase SufC	MSMEG_3124	Rv1463	91%	289	24	30	N/D
Act	chaps	1719	54,1	0,299	FeS assembly ATPase SufC	MSMEG_3124	Rv1463	71%	139	15	46	N/D
Dorm	sds	1650	3,3	0,1546	cysteine desulfurase	MSMEG_3125	Rv1464	47%	99	13	N/D	46
Act	cytoplasm	272	211,4	1,3637	aconitate hydratase 1	MSMEG_3143	Rv1475c	62%	398	46	16	4
Dorm	cytoplasm	426	283,7	2,8511	aconitate hydratase 1	MSMEG_3143	Rv1475c	60%	471	45	16	4
Dorm	cytoplasm	477	7,7	0,0774	aconitate hydratase 1	MSMEG_3143	Rv1475c	43%	94	26	16	4
Dorm	cytoplasm	555	4,8	0,0482	aconitate hydratase 1	MSMEG_3143	Rv1475c	50%	325	33	16	4
Dorm	cytoplasm	556	4,1	0,0412	aconitate hydratase 1	MSMEG_3143	Rv1475c	56%	311	35	16	4
Dorm	chaps	1357	88,9	0,4661	aconitate hydratase 1	MSMEG_3143	Rv1475c	72%	473	55	N/D	34
Act	cytoplasm	320	3,7	0,0239	ATPase, MoxR family protein	MSMEG_3147	Rv1479	89%	481	38	143	N/D
Act	sds	1414	92,2	0,5979	ATPase, MoxR family protein	MSMEG_3147	Rv1479	79%	277	23	21	60
Act	chaps	1482	55,1	0,3045	ATPase, MoxR family protein	MSMEG_3147	Rv1479	86%	387	23	44	133
Act	chaps	1483	22,2	0,1227	ATPase, MoxR family protein	MSMEG_3147	Rv1479	69%	241	20	44	133
Act	sds	1587	31	0,201	ATPase, MoxR family protein	MSMEG_3147	Rv1479	50%	75	12	21	60

Act	sds	1591	38,5	0,2497	ATPase, MoxR family protein	MSMEG_3147	Rv1479	88%	344	35	21	60
Dorm	sds	1646	1,2	0,0791	ATPase, MoxR family protein	MSMEG_3147	Rv1479	66%	323	24	21	60
Dorm	sds	1647	2,2	0,115	ATPase, MoxR family protein	MSMEG_3147	Rv1479	45%	134	11	21	60
Dorm	chaps	1734	5,2	0,0273	ATPase, MoxR family protein	MSMEG_3147	Rv1479	87%	307	27	44	133
Act	cytoplasm	331	88,9	0,5735	[NADH] enoyl-[acyl-carrier-protein] reductase	MSMEG_3151	Rv1484	93%	376	29	38	N/D
Act	cytoplasm	332	14,2	0,0916	[NADH] enoyl-[acyl-carrier-protein] reductase	MSMEG_3151	Rv1484	76%	134	16	38	N/D
Act	sds	1595	32,4	0,2101	[NADH] enoyl-[acyl-carrier-protein] reductase	MSMEG_3151	Rv1484	69%	212	22	56	31
Act	sds	1596	33,6	0,2179	[NADH] enoyl-[acyl-carrier-protein] reductase	MSMEG_3151	Rv1484	43%	95	6	56	31
Act	chaps	1714	19,1	0,1055	[NADH] enoyl-[acyl-carrier-protein] reductase	MSMEG_3151	Rv1484	71%	204	18	97	N/D
Dorm	sds	1452	13,9	0,5356	[NADH] enoyl-[acyl-carrier-protein] reductase	MSMEG_3151	Rv1484	55%	167	15	56	31
Dorm	sds	1628	22,4	0,8411	conserved hypothetical protein	MSMEG_3153	Rv1486c	75%	120	14	N/D	26
Dorm	chaps	1368	91,9	0,4819	methylmalonyl-CoA mutase, small subunit	MSMEG_3158	Rv1492	26%	96	12	N/D	33
Dorm	chaps	1564	21,3	0,1117	L-asparaginase	MSMEG_3173	Rv1538c	37%	90	7	N/D	96
Dorm	cytoplasm	557	9,1	0,0915	glycogen debranching enzyme GlgX	MSMEG_3186	Rv1564c	44%	142	20	N/D	107
Act	cytoplasm	398	17,6	0,1135	bifunctional HisA/TrpF protein	MSMEG_3209	Rv1603	80%	220	15	104	N/D
Dorm	cytoplasm	445	21,8	0,2191	anthranilate synthase component I	MSMEG_3217	Rv1609	58%	177	30	N/D	61
Act	cytoplasm	424	18,7	0,1206	indole-3-glycerol phosphate synthase	MSMEG_3219	Rv1611	87%	276	25	101	N/D
Dorm	chaps	1568	39	0,2045	indole-3-glycerol phosphate synthase	MSMEG_3219	Rv1611	44%	105	11	N/D	69
Dorm	cytoplasm	465	270,3	2,7165	pyruvate kinase	MSMEG_3227	Rv1617	85%	327	40	N/D	6
Dorm	chaps	1376	19,5	0,1022	pyruvate kinase	MSMEG_3227	Rv1617	73%	164	26	N/D	102
Act	chaps	1283	181,7	1,0041	ABC-type amino acid transport system, secreted component	MSMEG_3235		79%	201	18	17	20
Act	chaps	1284	47,2	0,2608	ABC-type amino acid transport system, secreted component	MSMEG_3235		56%	65	11	17	20
Act	chaps	1291	51,4	0,284	ABC-type amino acid transport system, secreted component	MSMEG_3235		37%	89	6	17	20
Act	sds	1605	10,1	0,0655	ABC-type amino acid transport system, secreted component	MSMEG_3235		75%	311	22	82	N/D
Dorm	chaps	1346	175	0,9176	ABC-type amino acid transport system, secreted component	MSMEG_3235		58%	122	14	17	20
Act	chaps	1275	480,7	2,6563	branched-chain amino acid ABC transporter substrate-binding protein	MSMEG_3247		62%	239	21	5	16
Act	sds	1573	68,7	0,4455	branched-chain amino acid ABC transporter substrate-binding protein	MSMEG_3247		65%	266	19	28	N/D
Dorm	chaps	1345	192,3	1,0083	branched-chain amino acid ABC transporter substrate-binding protein	MSMEG_3247		71%	393	26	5	16
Act	sds	1415	84,9	0,5506	ABC transporter, ATP-binding protein	MSMEG_3250		45%	64	10	23	N/D

1		1	1	1				1	1			1
Act	sds	1612	104,8	0,6797	branched-chain amino acid ABC transporter ATP-binding protein	MSMEG_3251		53%	92	11	17	N/D
Act	sds	1604	18,4	0,1193	transcriptional regulator	MSMEG_3264		66%	73	12	75	N/D
Dorm	cytoplasm	563	5,1	0,0513	arabitol-phosphate dehydrogenase	MSMEG_3265		72%	153	18	N/D	127
Dorm	chaps	1731	12,7	0,0666	maltose/maltodextrin-binding protein	MSMEG_3266		68%	222	27	N/D	120
Act	chaps	1293	73	0,4034	polyamine-binding lipoprotein	MSMEG_3280		67%	169	22	35	99
Dorm	chaps	1530	20,5	0,1075	polyamine-binding lipoprotein	MSMEG_3280		66%	147	23	35	99
Dorm	chaps	1738	35,4	0,1856	transcriptional regulator, IcIR family protein, putative	MSMEG_3335		56%	111	13	N/D	76
Act	cytoplasm	384	39,6	0,2554	conserved hypothetical protein TIGR00026	MSMEG_3356		83%	105	8	64	N/D
Act	chaps	1717	20,9	0,1155	hypothetical protein	MSMEG_3419		43%	99	10	92	N/D
Dorm	cytoplasm	566	5,3	0,0533	hypothetical protein	MSMEG_3419		57%	121	13	N/D	125
Dorm	sds	1652	1,3	0,0827	hypothetical protein	MSMEG_3419		40%	63	7	N/D	67
Dorm	cytoplasm	482	151,3	1,5205	catalase/peroxidase HPI	MSMEG_3461		73%	363	44	N/D	10
Act	cytoplasm	378	335,5	2,1642	thiol peroxidase	MSMEG_3479	Rv1932	97%	164	10	7	38
Dorm	cytoplasm	527	40,1	0,403	thiol peroxidase	MSMEG_3479	Rv1932	85%	120	7	7	38
Act	cytoplasm	340	295,2	1,9042	fructose-bisphosphate aldolase class-l	MSMEG_3507		93%	374	31	11	45
Dorm	cytoplasm	571	29,9	0,3005	fructose-bisphosphate aldolase class-I	MSMEG_3507		87%	302	24	11	45
Dorm	cytoplasm	544	12,9	0,1296	hypothetical protein	MSMEG_3545		42%	118	7	N/D	95
Act	cytoplasm	353	13,6	0,0877	anthranilate dioxygenase reductase	MSMEG_3594	Rv1869c	90%	375	26	116	93
Dorm	cytoplasm	568	13,6	0,1367	anthranilate dioxygenase reductase	MSMEG_3594	Rv1869c	97%	310	30	116	93
Act	chaps	1290	120,2	0,6642	periplasmic sugar-binding proteins	MSMEG_3598		80%	186	28	22	75
Act	chaps	1291	51,4	0,284	periplasmic sugar-binding proteins	MSMEG_3598		24%	80	6	22	75
Dorm	chaps	1532	36	0,1888	periplasmic sugar-binding proteins	MSMEG_3598		98%	311	41	22	75
Act	cytoplasm	362	1,1	0,0071	sugar-binding transcriptional regulator, Lacl family protein	MSMEG_3599		72%	167	16	150	N/D
Dorm	chaps	1532	36	0,1888	sugar-binding transcriptional regulator, Lacl family protein	MSMEG_3599		29%	101	6	N/D	68
Dorm	chaps	1533	40,6	0,2129	sugar-binding transcriptional regulator, Lacl family protein	MSMEG_3599		62%	269	26	N/D	68
Dorm	cytoplasm	524	11,2	0,1126	sorbitol dehydrogenase	MSMEG_3605		73%	105	14	N/D	100
Act	chaps	1301	1	0,0055	alanine and proline-rich secreted protein apa	MSMEG_3618	Rv1860	59%	178	13	126	N/D
Dorm	cytoplasm	547	1,1	0,0111	alanine and proline-rich secreted protein apa	MSMEG_3618	Rv1860	47%	145	12	N/D	152
Dorm	sds	1624	2,2	0,115	alanine and proline-rich secreted protein apa	MSMEG_3618	Rv1860	46%	123	12	N/D	59

Act	autoplasm	225	21.2	0.2010	short shain dahudraganasa	MEMEC 2610	Du19E6c	070/	167	12	72	
Act	cytopiasiii	555	51,5	0,2019		WISINEG_3019	KV1050C	0170	107	15	75	N/D
Act	cytoplasm	338	53,9	0,3477	conserved hypothetical protein	MSMEG_3620	Rv1855c	91%	262	21	59	15
Dorm	cytoplasm	505	89,8	0,9025	conserved hypothetical protein	MSMEG_3620	Rv1855c	52%	144	15	59	15
Dorm	cytoplasm	506	24,4	0,2452	conserved hypothetical protein	MSMEG_3620	Rv1855c	44%	74	9	59	15
Dorm	cytoplasm	464	214,7	2,1577	6-phosphogluconate dehydrogenase, decarboxylating	MSMEG_3632	Rv1844c	72%	195	30	N/D	8
Dorm	chaps	1372	16,6	0,087	6-phosphogluconate dehydrogenase, decarboxylating	MSMEG_3632	Rv1844c	75%	463	38	N/D	110
Act	cytoplasm	324	3,5	0,0226	IMP dehydrogenase family protein	MSMEG_3634	Rv1843c	83%	391	33	144	39
Dorm	cytoplasm	466	37,1	0,3728	IMP dehydrogenase family protein	MSMEG_3634	Rv1843c	84%	263	34	144	39
Act	chaps	1292	22,8	0,126	ferric iron-binding periplasmic protein of ABC transporter	MSMEG_3636		51%	167	13	85	N/D
Act	cytoplasm	278	8,9	0,0574	malate synthase G	MSMEG_3640	Rv1837c	69%	369	36	130	11
Dorm	cytoplasm	429	55,9	0,5618	malate synthase G	MSMEG_3640	Rv1837c	67%	147	27	130	11
Dorm	cytoplasm	430	140,3	1,41	malate synthase G	MSMEG_3640	Rv1837c	71%	256	34	130	11
Dorm	chaps	1358	61,3	0,3214	malate synthase G	MSMEG_3640	Rv1837c	25%	109	14	N/D	49
Dorm	chaps	1359	31,3	0,1641	malate synthase G	MSMEG_3640	Rv1837c	52%	501	39	N/D	49
Act	chaps	1462	4,2	0,0232	conserved hypothetical protein	MSMEG_3641	Rv1836c	74%	546	40	123	104
Dorm	chaps	1723	18,9	0,0991	conserved hypothetical protein	MSMEG_3641	Rv1836c	65%	453	33	123	104
Dorm	cytoplasm	478	33,1	0,3326	glycine dehydrogenase	MSMEG_3642	Rv1832	45%	97	31	N/D	40
Dorm	cytoplasm	479	28,6	0,2874	glycine dehydrogenase	MSMEG_3642	Rv1832	79%	405	58	N/D	40
Act	chaps	1472	10,9	0,0602	conserved hypothetical protein	MSMEG_3645	Rv1829	65%	94	6	109	63
Dorm	chaps	1379	42,1	0,2207	conserved hypothetical protein	MSMEG_3645	Rv1829	58%	179	9	109	63
Act	cytoplasm	390	172,4	1,1121	forkhead-associated protein	MSMEG_3647	Rv1827	61%	80	5	22	N/D
Act	cytoplasm	417	1,2	0,0077	forkhead-associated protein	MSMEG_3647	Rv1827	86%	166	10	22	N/D
Dorm	sds	1635	7,3	0,2983	forkhead-associated protein	MSMEG_3647	Rv1827	56%	128	9	N/D	36
Act	chaps	1285	198,3	1,0958	mannose-binding lectin	MSMEG_3662		96%	202	14	16	23
Act	sds	1400	151,2	0,9806	mannose-binding lectin	MSMEG_3662		89%	198	10	13	52
Act	sds	1605	10,1	0,0655	mannose-binding lectin	MSMEG_3662		57%	71	6	13	52
Dorm	chaps	1355	129,9	0,6811	mannose-binding lectin	MSMEG_3662		96%	249	18	16	23
Dorm	sds	1630	2,8	0,1366	mannose-binding lectin	MSMEG_3662		73%	159	9	13	52
Act	chaps	1708	22,6	0,1249	oxidoreductase	MSMEG_3663		46%	120	16	87	N/D

Act	chaps	1720	29,6	0,1636	conserved hypothetical protein	MSMEG_3682		45%	80	8	72	N/D
Dorm	chaps	1738	35,4	0,1856	SpoOJ regulator protein	MSMEG_3743	Rv1708	36%	56	9	N/D	76
Dorm	cytoplasm	572	1,1	0,0111	MutT/nudix family protein	MSMEG_3745	Rv1700	90%	332	17	N/D	154
Dorm	sds	1459	4,5	0,1977	CTP synthase	MSMEG_3746	Rv1699	86%	401	37	N/D	41
Act	cytoplasm	364	16	0,1032	hydrolase	MSMEG_3753	Rv1692	73%	161	18	108	N/D
Act	sds	1584	6,8	0,0441	TPR-repeat-containing protein	MSMEG_3754	Rv1691	42%	87	9	86	N/D
Act	sds	1618	84,9	0,5506	macrolide-transport ATP-binding protein abc transporter	MSMEG_3768	Rv1668c	46%	94	22	24	N/D
Dorm	chaps	1371	87,5	0,4588	argininosuccinate lyase	MSMEG_3769	Rv1659	43%	63	11	N/D	35
Dorm	cytoplasm	462	14,3	0,1437	argininosuccinate synthase	MSMEG_3770	Rv1658	82%	376	36	N/D	86
Dorm	chaps	1558	30,7	0,161	acetylornithine aminotransferase	MSMEG_3773	Rv1655	31%	66	8	N/D	84
Dorm	chaps	1567	79	0,4142	acetylglutamate kinase	MSMEG_3774	Rv1654	61%	107	11	N/D	42
Dorm	cytoplasm	427	20,1	0,202	phenylalanyl-tRNA synthetase, beta subunit	MSMEG_3777	Rv1650	68%	430	39	N/D	69
Dorm	cytoplasm	580	12,2	0,1226	hydrolase	MSMEG_3810	Rv1637c	73%	90	8	N/D	97
Act	sds	1394	55,6	0,3606	30S ribosomal protein S1	MSMEG_3833	Rv1630	59%	220	23	31	N/D
Act	sds	1415	84,9	0,5506	glycosyl transferase, group 2 family protein	MSMEG_3859		55%	118	14	23	N/D
Dorm	cytoplasm	561	1,3	0,0131	amidohydrolase 3	MSMEG_3861	Rv2052c	50%	199	16	N/D	148
Act	cytoplasm	350	20,9	0,1348	proline dipeptidase	MSMEG_3881	Rv2089c	92%	244	22	92	N/D
Act	sds	1598	94,3	0,6116	proteasome alpha subunit	MSMEG_3894	Rv2109c	69%	107	14	20	N/D
Act	chaps	1716	30,2	0,1669	proteasome alpha subunit	MSMEG_3894	Rv2109c	42%	168	13	70	N/D
Dorm	cytoplasm	508	58,5	0,5879	proteasome alpha subunit	MSMEG_3894	Rv2109c	91%	157	19	N/D	22
Dorm	cytoplasm	509	31,4	0,3156	proteasome alpha subunit	MSMEG_3894	Rv2109c	89%	153	19	N/D	22
Dorm	cytoplasm	520	20,2	0,203	proteasome beta subunit	MSMEG_3895	Rv2110c	73%	255	16	N/D	68
Act	chaps	1308	27,2	0,1503	ATPase, AAA family protein	MSMEG_3902	Rv2115c	59%	218	25	76	74
Act	sds	1392	19,9	0,1291	ATPase, AAA family protein	MSMEG_3902	Rv2115c	72%	360	34	70	65
Dorm	cytoplasm	433	55,1	0,5537	ATPase, AAA family protein	MSMEG_3902	Rv2115c	53%	171	24	N/D	24
Dorm	chaps	1516	36,1	0,1893	ATPase, AAA family protein	MSMEG_3902	Rv2115c	71%	416	40	76	74
Dorm	sds	1656	1,5	0,0899	ATPase, AAA family protein	MSMEG_3902	Rv2115c	60%	346	32	70	65
Act	cytoplasm	385	126,9	0,8186	14 kDa antigen	MSMEG_3932	Rv2031c	84%	289	19	26	N/D
Act	cytoplasm	410	15,2	0,0981	14 kDa antigen	MSMEG_3932	Rv2031c	70%	84	7	26	N/D

Act	chaps	1474	25,1	0,1387	14 kDa antigen	MSMEG_3932	Rv2031c	84%	264	19	81	N/D
Dorm	sds	1444	633,4	5,4062	14 kDa antigen	MSMEG_3932	Rv2031c	82%	329	26	N/D	2
Dorm	sds	1445	128,6	3,652	14 kDa antigen	MSMEG_3932	Rv2031c	44%	76	7	N/D	2
Act	sds	1614	212,3	1,3768	universal stress protein family protein	MSMEG_3945	Rv1996, Rv2005c, Rv2623	93%	357	32	9	N/D
Act	cytoplasm	313	113,4	0,7315	universal stress protein family protein	MSMEG_3950	Rv2026c	82%	283	24	33	98
Dorm	cytoplasm	498	12,1	0,1216	universal stress protein family protein	MSMEG_3950	Rv2026c	90%	249	25	33	98
Dorm	chaps	1342	108,1	0,5668	universal stress protein family protein	MSMEG_3950	Rv2026c	95%	513	35	N/D	29
Act	cytoplasm	316	5,1	0,0329	conserved hypothetical protein	MSMEG_3952		88%	429	33	140	114
Dorm	cytoplasm	499	8,3	0,0834	conserved hypothetical protein	MSMEG_3952		72%	342	27	140	114
Dorm	sds	1449	18,3	0,6937	conserved hypothetical protein	MSMEG_3952		57%	130	16	N/D	27
Dorm	sds	1450	16,3	0,6219	conserved hypothetical protein	MSMEG_3952		74%	477	32	N/D	27
Dorm	sds	1645	1,4	0,0863	conserved hypothetical protein	MSMEG_3955	Rv3131	72%	198	23	N/D	66
Act	sds	1591	38,5	0,2497	oxidoreductase, aldo/keto reductase family protein	MSMEG_4093		49%	107	14	47	N/D
Act	chaps	1299	44,8	0,2476	conserved hypothetical protein	MSMEG_4187		78%	433	31	55	51
Act	sds	1425	15,8	0,1025	conserved hypothetical protein	MSMEG_4187		72%	274	28	78	N/D
Dorm	chaps	1354	58,5	0,3067	conserved hypothetical protein	MSMEG_4187		86%	538	44	55	51
Act	chaps	1510	21	0,116	short chain dehydrogenase	MSMEG_4188	Rv2129c	52%	119	10	91	24
Dorm	chaps	1386	128,6	0,6743	short chain dehydrogenase	MSMEG_4188	Rv2129c	94%	463	34	91	24
Act	cytoplasm	393	71,3	0,4599	conserved hypothetical protein	MSMEG_4199	Rv2140c	99%	158	9	46	N/D
Act	cytoplasm	418	76,2	0,4915	conserved hypothetical protein	MSMEG_4199	Rv2140c	99%	97	8	46	N/D
Dorm	cytoplasm	443	29,3	0,2945	peptidase M20	MSMEG_4200	Rv2141c	56%	84	14	N/D	46
Act	cytoplasm	363	85,6	0,5522	DivIVA protein	MSMEG_4217	Rv2145c	59%	103	9	41	131
Act	chaps	1495	25,3	0,1398	DivIVA protein	MSMEG_4217	Rv2145c	74%	139	14	80	N/D
Dorm	cytoplasm	525	4,6	0,0462	DivIVA protein	MSMEG_4217	Rv2145c	54%	131	9	41	131
Dorm	sds	1627	14,4	0,5536	DivIVA protein	MSMEG_4217	Rv2145c	97%	380	32	N/D	30
Act	cytoplasm	349	7,8	0,0503	cell division protein FtsZ	MSMEG_4222	Rv2150c	74%	130	21	133	N/D
Act	sds	1572	47,2	0,3061	cell division protein FtsZ	MSMEG_4222	Rv2150c	35%	70	13	40	N/D
Dorm	chaps	1730	16,5	0,0865	UDP-N-acetylmuramoylalanineD-glutamate ligase	MSMEG_4229	Rv2155c	33%	50	8	N/D	112

Dorm	chaps	1371	87,5	0,4588	UDP-N-acetylmuramoyl-tripeptideD-alanyl-D- alanine ligase	MSMEG_4231	Rv2157c	48%	81	15	N/D	35
Dorm	cytoplasm	465	270,3	2,7165	3-deoxy-7-phosphoheptulonate synthase	MSMEG_4244	Rv2178c	63%	110	19	N/D	6
Dorm	chaps	1376	19,5	0,1022	3-deoxy-7-phosphoheptulonate synthase	MSMEG_4244	Rv2178c	50%	112	19	N/D	102
Act	chaps	1475	28,2	0,1558	AMP-binding enzyme	MSMEG_4254	Rv2187	45%	141	19	75	N/D
Act	chaps	1476	3,3	0,0182	AMP-binding enzyme	MSMEG_4254	Rv2187	58%	363	29	75	N/D
Act	chaps	1477	7,7	0,0425	AMP-binding enzyme	MSMEG_4254	Rv2187	64%	360	28	75	N/D
Dorm	cytoplasm	522	9,3	0,0935	adenosine kinase	MSMEG_4270	Rv2202c	93%	255	28	N/D	105
Dorm	cytoplasm	523	4,9	0,0492	adenosine kinase	MSMEG_4270	Rv2202c	72%	120	15	N/D	105
Act	cytoplasm	360	18,3	0,118	nicotinate-nucleotidedimethylbenzimidazole phosphoribosyltransferase	MSMEG_4275	Rv2207	81%	114	17	102	N/D
Act	cytoplasm	339	16,4	0,1058	branched-chain amino acid aminotransferase	MSMEG_4276	Rv2210c	78%	246	27	106	N/D
Dorm	cytoplasm	494	20,3	0,204	glycine cleavage system T protein	MSMEG_4278	Rv2211c	76%	190	23	N/D	67
Act	cytoplasm	321	1,3	0,0084	cytosol aminopeptidase	MSMEG_4281	Rv2213	77%	399	33	148	N/D
Act	chaps	1328	270,8	1,4964	cytosol aminopeptidase	MSMEG_4281	Rv2213	50%	134	18	12	N/D
Dorm	sds	1455	12,5	0,4853	cytosol aminopeptidase	MSMEG_4281	Rv2213	65%	402	33	N/D	33
Dorm	sds	1456	3,2	0,151	cytosol aminopeptidase	MSMEG_4281	Rv2213	71%	203	28	N/D	33
Act	cytoplasm	273	193,4	1,2476	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	45%	170	17	18	92
Act	chaps	1310	29,9	0,1652	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	33%	157	13	71	14
Act	sds	1418	25,6	0,166	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	54%	212	21	64	16
Dorm	cytoplasm	546	13,6	0,1367	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	48%	203	16	18	92
Dorm	chaps	1351	91,9	0,4819	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	46%	313	26	71	14
Dorm	chaps	1352	239	1,2532	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	51%	366	29	71	14
Dorm	sds	1622	37,7	1,3911	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	MSMEG_4283	Rv2215	52%	317	34	64	16
Dorm	sds	1653	23,8	0,8914	conserved hypothetical protein	MSMEG_4284	Rv2216	69%	99	15	N/D	24
Act	sds	1396	446	2,8924	glutamine synthetase, type I	MSMEG_4290	Rv2220	38%	59	14	3	N/D
Dorm	cytoplasm	463	357,1	3,5888	glutamine synthetase, type I	MSMEG_4290	Rv2220	84%	241	33	N/D	1
Dorm	cytoplasm	473	21,4	0,2151	glutamine synthetase, type I	MSMEG_4290	Rv2220	55%	135	15	N/D	1

1												
Dorm	cytoplasm	474	16,6	0,1668	glutamine synthetase, type I	MSMEG_4290	Rv2220	49%	99	15	N/D	1
Dorm	chaps	1370	86,2	0,452	glutamine synthetase, type I	MSMEG_4290	Rv2220	38%	93	11	N/D	35
Dorm	chaps	1371	87,5	0,4588	glutamine synthetase, type I	MSMEG_4290	Rv2220	59%	117	21	N/D	35
Dorm	chaps	1728	9,2	0,0482	glutamine synthetase, type I	MSMEG_4290	Rv2220	36%	66	12	N/D	35
Act	chaps	1302	119,8	0,662	protease	MSMEG_4296	Rv2224c	70%	274	25	23	127
Act	sds	1424	36,7	0,238	protease	MSMEG_4296	Rv2224c	70%	393	28	50	N/D
Dorm	chaps	1523	8,5	0,0446	protease	MSMEG_4296	Rv2224c	64%	273	29	23	127
Dorm	chaps	1565	65,2	0,3419	3-methyl-2-oxobutanoate hydroxymethyltransferase	MSMEG_4298	Rv2225	60%	113	9	N/D	46
Act	cytoplasm	423	20,5	0,1322	enoyl-CoA hydratase/isomerase	MSMEG_4299		55%	126	13	94	N/D
Dorm	chaps	1383	15,2	0,0797	transcription regulator AmtR	MSMEG_4300		73%	100	10	N/D	115
Act	cytoplasm	388	104,5	0,6741	glyoxalase/bleomycin resistance protein/dioxygenase	MSMEG_4313		99%	196	12	35	25
Dorm	cytoplasm	529	53	0,5326	glyoxalase/bleomycin resistance protein/dioxygenase	MSMEG_4313		90%	97	8	35	25
Dorm	cytoplasm	529	53	0,5326	glyoxalase/bleomycin resistance protein/dioxygenase	MSMEG_4313		99%	103	8	35	25
Dorm	cytoplasm	531	44,4	0,4462	glyoxalase/bleomycin resistance protein/dioxygenase	MSMEG_4313		99%	248	16	35	25
Act	cytoplasm	367	438,2	2,8267	malonyl CoA-acyl carrier protein transacylase	MSMEG_4325	Rv2243	92%	225	19	3	74
Dorm	cytoplasm	578	18,4	0,1849	malonyl CoA-acyl carrier protein transacylase	MSMEG_4325	Rv2243	45%	105	10	3	74
Act	chaps	1502	26,8	0,1481	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	81%	403	34	78	60
Act	sds	1599	19,6	0,1271	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	93%	403	49	16	3
Act	sds	1600	77,1	0,5	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	95%	388	44	16	3
Act	sds	1601	116,5	0,7555	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	88%	204	34	16	3
Act	sds	1602	15,9	0,1031	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	67%	83	20	16	3
Dorm	sds	1431	553,2	5,0395	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	89%	448	46	16	3
Dorm	chaps	1555	24,8	0,13	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	47%	92	13	78	60
Dorm	chaps	1556	36,2	0,1898	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	66%	189	29	78	60
Dorm	chaps	1557	46,4	0,2433	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	82%	122	24	78	60
Dorm	chaps	1559	37,6	0,1972	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	34%	129	10	78	60
Dorm	sds	1649	2,9	0,1402	3-oxoacyl-[acyl-carrier-protein] synthase 1	MSMEG_4327	Rv2245	70%	182	23	16	3
Act	cytoplasm	305	38,8	0,2503	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	80%	328	33	65	N/D
Dorm	sds	1429	113,8	3,2638	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	91%	446	42	N/D	7
												-

Dorm	sds	1430	110,3	3,2099	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	91%	423	35	N/D	7
Dorm	chaps	1551	33,2	0,1741	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	66%	99	16	N/D	57
Dorm	chaps	1552	31,4	0,1646	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	66%	150	24	N/D	57
Dorm	chaps	1553	50,1	0,2627	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	77%	122	25	N/D	57
Dorm	sds	1650	3,3	0,1546	3-oxoacyl-[acyl-carrier-protein] synthase 2	MSMEG_4328	Rv2246	37%	60	10	N/D	7
Dorm	cytoplasm	450	41,7	0,4191	NAD/mycothiol-dependent formaldehyde dehydrogenase	MSMEG_4340	Rv2259	85%	251	24	N/D	34
Dorm	cytoplasm	451	9,3	0,0935	NAD/mycothiol-dependent formaldehyde dehydrogenase	MSMEG_4340	Rv2259	56%	69	10	N/D	34
Act	cytoplasm	425	20,9	0,1348	metallo-beta-lactamase family protein	MSMEG_4342	Rv2260	74%	81	8	93	N/D
Dorm	chaps	1538	13	0,0682	metallo-beta-lactamase family protein	MSMEG_4342	Rv2260	55%	137	8	N/D	118
Dorm	sds	1633	11,5	0,4493	metallo-beta-lactamase family protein	MSMEG_4342	Rv2260	79%	85	9	N/D	34
Act	chaps	1461	4,3	0,0238	conserved hypothetical proline rich protein	MSMEG_4349	Rv2264c	28%	118	9	122	N/D
Act	cytoplasm	421	1,1	0,0071	D-beta-hydroxybutyrate dehydrogenase	MSMEG_4358		91%	155	16	151	N/D
Act	chaps	1505	55,1	0,3045	universal stress protein family protein	MSMEG_4362		49%	75	10	45	N/D
Act	cytoplasm	347	4,4	0,0284	formamidase	MSMEG_4367		75%	362	27	141	141
Dorm	cytoplasm	550	3,2	0,0322	formamidase	MSMEG_4367		91%	370	21	141	141
Act	cytoplasm	364	16	0,1032	amidase	MSMEG_4381		94%	163	21	108	N/D
Dorm	chaps	1522	6,8	0,0357	ABC transporter oligopeptide binding protein	MSMEG_4385		80%	355	34	N/D	130
Act	cytoplasm	375	70,5	0,4548	phosphonoacetaldehyde hydrolase	MSMEG_4401		85%	92	12	52	N/D
Dorm	cytoplasm	446	13,6	0,1367	modulator of DNA gyrase	MSMEG_4464	Rv2315c	82%	343	38	N/D	76
Dorm	cytoplasm	446	13,6	0,1367	modulator of DNA gyrase	MSMEG_4464	Rv2315c	48%	187	27	N/D	76
Dorm	cytoplasm	447	17,1	0,1719	modulator of DNA gyrase	MSMEG_4464	Rv2315c	67%	158	24	N/D	76
Act	sds	1421	51,3	0,3327	putative conserved transmembrane protein	MSMEG_4484	Rv2345	47%	138	22	38	N/D
Dorm	cytoplasm	468	8,4	0,0844	glycyl-tRNA synthetase	MSMEG_4485	Rv2357c	91%	384	43	N/D	112
Dorm	sds	1645	1,4	0,0863	GTP-binding protein Era	MSMEG_4493	Rv2364c	45%	109	13	N/D	66
Act	chaps	1484	41,4	0,2288	PhoH family protein	MSMEG_4497	Rv2368c	80%	277	23	32	N/D
Act	chaps	1486	81	0,4476	PhoH family protein	MSMEG_4497	Rv2368c	76%	168	24	32	N/D
Act	chaps	1489	22,7	0,1254	PhoH family protein	MSMEG_4497	Rv2368c	76%	170	26	32	N/D
Act	sds	1589	42,9	0,2782	PhoH family protein	MSMEG_4497	Rv2368c	87%	194	32	43	N/D
Act	sds	1590	31,1	0,2017	PhoH family protein	MSMEG_4497	Rv2368c	91%	353	38	43	N/D

Act	chaps	1721	6,2	0,0343	PhoH family protein	MSMEG_4497	Rv2368c	46%	74	9	32	N/D
Act	sds	1584	6,8	0,0441	heat-inducible transcription repressor HrcA	MSMEG_4505	Rv2374c	32%	67	8	86	N/D
Act	sds	1590	31,1	0,2017	sulfate ABC transporter, ATP-binding protein	MSMEG_4530	Rv2397c	54%	102	14	59	N/D
Act	chaps	1721	6,2	0,0343	sulfate ABC transporter, ATP-binding protein	MSMEG_4530	Rv2397c	39%	86	9	119	N/D
Act	cytoplasm	365	179,1	1,1553	sulfate-binding protein	MSMEG_4533	Rv2400c	71%	152	20	21	105
Act	chaps	1281	647,5	3,578	sulfate-binding protein	MSMEG_4533	Rv2400c	77%	363	24	3	4
Act	sds	1402	48,9	0,3171	sulfate-binding protein	MSMEG_4533	Rv2400c	72%	349	21	39	26
Act	sds	1607	37,2	0,2413	sulfate-binding protein	MSMEG_4533	Rv2400c	41%	82	9	39	26
Dorm	cytoplasm	522	9,3	0,0935	sulfate-binding protein	MSMEG_4533	Rv2400c	63%	126	15	21	105
Dorm	cytoplasm	523	4,9	0,0492	sulfate-binding protein	MSMEG_4533	Rv2400c	61%	102	14	21	105
Dorm	chaps	1335	466,5	2,4461	sulfate-binding protein	MSMEG_4533	Rv2400c	75%	254	20	3	4
Dorm	chaps	1563	47,6	0,2496	sulfate-binding protein	MSMEG_4533	Rv2400c	40%	87	9	3	4
Dorm	sds	1628	22,4	0,8411	sulfate-binding protein	MSMEG_4533	Rv2400c	75%	173	18	39	26
Act	chaps	1494	7,5	0,0414	major membrane protein I	MSMEG_4537		61%	221	15	115	N/D
Act	chaps	1478	13,9	0,0768	cysteine desulphurase, SufS	MSMEG_4538		30%	58	9	67	N/D
Act	chaps	1479	32,1	0,1774	cysteine desulphurase, SufS	MSMEG_4538		36%	79	11	67	N/D
Act	chaps	1497	23,2	0,1282	ABC Fe3+-siderophores transporter, periplasmic binding protein	MSMEG_4561		71%	150	17	84	N/D
Act	chaps	1503	62,9	0,3476	conserved hypothetical protein	MSMEG_4578	Rv2418c	57%	127	12	39	N/D
Act	sds	1608	25,5	0,1654	conserved hypothetical protein	MSMEG_4578	Rv2418c	74%	127	15	65	N/D
Act	chaps	1324	49,3	0,2724	GTP-binding protein Obg/CgtA	MSMEG_4623	Rv2440c	51%	273	22	49	45
Act	chaps	1326	50,6	0,2796	GTP-binding protein Obg/CgtA	MSMEG_4623	Rv2440c	42%	195	15	49	45
Dorm	chaps	1361	76,7	0,4022	GTP-binding protein Obg/CgtA	MSMEG_4623	Rv2440c	51%	68	15	49	45
Dorm	chaps	1362	31,8	0,1667	GTP-binding protein Obg/CgtA	MSMEG_4623	Rv2440c	59%	89	16	49	45
Dorm	chaps	1363	55	0,2884	GTP-binding protein Obg/CgtA	MSMEG_4623	Rv2440c	81%	588	44	49	45
Dorm	sds	1457	3,4	0,1582	GTP-binding protein Obg/CgtA	MSMEG_4623	Rv2440c	41%	76	14	N/D	45
Act	cytoplasm	381	31,4	0,2026	nucleoside diphosphate kinase	MSMEG_4627	Rv2445c	79%	142	8	72	106
Dorm	cytoplasm	542	9,3	0,0935	nucleoside diphosphate kinase	MSMEG_4627	Rv2445c	90%	218	12	72	106
Dorm	cytoplasm	478	33,1	0,3326	valyl-tRNA synthetase	MSMEG_4630	Rv2448c	64%	279	57	N/D	40
Dorm	chaps	1344	596,5	3,1277	saccharopine dehydrogenase	MSMEG_4632	Rv2449c	55%	122	18	N/D	2
												· · · · · · · · · · · · · · · · · · ·

Dorm	chaps	1515	17,9	0,0939	peptidase S9, prolyl oligopeptidase	MSMEG_4633		81%	274	31	N/D	108
Act	cytoplasm	309	182,9	1,1798	alpha oxoglutarate ferredoxin oxidoreductase, beta subunit	MSMEG_4645	Rv2454c	93%	281	32	19	N/D
Dorm	sds	1648	4,5	0,1977	alpha oxoglutarate ferredoxin oxidoreductase, beta subunit	MSMEG_4645	Rv2454c	90%	325	33	N/D	42
Dorm	sds	1649	2,9	0,1402	alpha oxoglutarate ferredoxin oxidoreductase, beta subunit	MSMEG_4645	Rv2454c	31%	74	5	N/D	42
Dorm	chaps	1517	34,5	0,1809	pyruvate synthase	MSMEG_4646	Rv2455c	89%	454	42	N/D	77
Act	sds	1401	60,2	0,3904	carbohydrate kinase, PfkB, putative	MSMEG_4647		47%	72	8	29	N/D
Dorm	cytoplasm	495	15,9	0,1598	putative oxidoreductase YisS	MSMEG_4650		77%	265	20	N/D	82
Dorm	sds	1648	4,5	0,1977	D-oliose 4-ketoreductase	MSMEG_4652		44%	80	11	N/D	42
Dorm	cytoplasm	535	28,6	0,2874	Clp protease	MSMEG_4672	Rv2460c	58%	193	13	N/D	49
Dorm	cytoplasm	530	15,1	0,1518	Clp protease	MSMEG_4673	Rv2461c	55%	125	9	N/D	84
Act	cytoplasm	275	87,8	0,5664	trigger factor	MSMEG_4674	Rv2462c	88%	370	27	40	126
Act	chaps	1463	3,2	0,0177	trigger factor	MSMEG_4674	Rv2462c	62%	185	20	125	54
Act	chaps	1463	3,2	0,0177	trigger factor	MSMEG_4674	Rv2462c	58%	171	19	125	54
Dorm	cytoplasm	436	5,2	0,0523	trigger factor	MSMEG_4674	Rv2462c	76%	291	27	40	126
Dorm	chaps	1725	53,5	0,2805	trigger factor	MSMEG_4674	Rv2462c	58%	207	20	125	54
Dorm	chaps	1536	27,9	0,1463	conserved hypothetical protein	MSMEG_4681		40%	109	15	N/D	86
Dorm	cytoplasm	540	8,7	0,0874	ribose 5-phosphate isomerase	MSMEG_4684	Rv2465c	74%	212	12	N/D	110
Act	sds	1401	60,2	0,3904	putative oxidoreductase YdbC	MSMEG_4686		53%	87	9	29	48
Dorm	sds	1629	3,1	0,1474	putative oxidoreductase YdbC	MSMEG_4686		68%	113	15	29	48
Dorm	cytoplasm	428	14,2	0,1427	aminopeptidase N	MSMEG_4690	Rv2467	61%	283	30	N/D	48
Dorm	cytoplasm	479	28,6	0,2874	aminopeptidase N	MSMEG_4690	Rv2467	55%	160	31	N/D	48
Act	chaps	1317	46,1	0,2547	conserved hypothetical protein	MSMEG_4692	Rv2468c	87%	176	9	54	N/D
Act	sds	1403	366,7	2,3782	conserved hypothetical protein	MSMEG_4692	Rv2468c	91%	240	13	4	6
Dorm	sds	1445	128,6	3,6161	conserved hypothetical protein	MSMEG_4692	Rv2468c	87%	133	10	4	6
Dorm	cytoplasm	548	2,5	0,0251	alpha-amylase family protein	MSMEG_4696	Rv2471	63%	364	25	N/D	142
Act	sds	1422	34,9	0,2263	ABC-transporter protein, ATP binding component	MSMEG_4700	Rv2477c	56%	296	26	53	N/D
Act	cytoplasm	328	7,6	0,049	enoyl-CoA hydratase	MSMEG_4709	Rv2486	95%	313	26	134	N/D
Act	sds	1608	25,5	0,1654	short-chain dehydrogenase	MSMEG_4722	Rv2509	41%	81	10	45	N/D
Act	sds	1609	39,2	0,2542	short-chain dehydrogenase	MSMEG_4722	Rv2509	95%	357	24	45	N/D

Act	chanc	1712	201	0 21 22	short chain debudrogenase	MSMEG 4722	Pv2500	50%	152	10	62	115
		1/12	36,4	0,2122			RV2303	30%	152	10	03	115
Act	chaps	1718	8,2	0,0453	short-chain dehydrogenase	MSMEG_4722	Rv2509	44%	113	8	63	115
Dorm	chaps	1382	3,2	0,0168	short-chain dehydrogenase	MSMEG_4722	Rv2509	91%	492	28	63	115
Dorm	chaps	1383	15,2	0,0797	short-chain dehydrogenase	MSMEG_4722	Rv2509	95%	427	31	63	115
Act	chaps	1298	26,5	0,1464	ErfK/YbiS/YcfS/YnhG family protein	MSMEG_4745	Rv2518c	26%	74	6	79	N/D
Dorm	chaps	1546	33,8	0,1772	antioxidant, AhpC/TSA family protein	MSMEG_4753	Rv2521	59%	153	9	N/D	79
Act	cytoplasm	343	22,7	0,1464	peptidase M20	MSMEG_4755	Rv2522c	87%	310	23	86	76
Dorm	cytoplasm	446	13,6	0,1367	peptidase M20	MSMEG_4755	Rv2522c	53%	103	15	86	76
Dorm	cytoplasm	447	17,1	0,1719	peptidase M20	MSMEG_4755	Rv2522c	66%	123	17	86	76
Dorm	cytoplasm	537	16,2	0,1628	alkylhydroperoxidase, AhpD family protein	MSMEG_4890	Rv2429	61%	66	8	N/D	81
Act	cytoplasm	377	242,5	1,5643	alkylhydroperoxide reductase	MSMEG_4891	Rv2428	67%	224	15	13	32
Act	chaps	1472	10,9	0,0602	alkylhydroperoxide reductase	MSMEG_4891	Rv2428	67%	134	9	109	94
Dorm	cytoplasm	526	43,3	0,4352	alkylhydroperoxide reductase	MSMEG_4891	Rv2428	85%	306	20	13	32
Dorm	chaps	1378	23,3	0,1222	alkylhydroperoxide reductase	MSMEG_4891	Rv2428	91%	372	21	109	94
Act	chaps	1464	28,4	0,1569	Putative neutral zinc metallopeptidase	MSMEG_4893	Rv0419	27%	79	11	74	N/D
Dorm	sds	1632	5,5	0,2336	metal-dependent hydrolase of the beta-lactamase superfamily protein III	MSMEG_4902	Rv1339	65%	107	13	N/D	37
Dorm	cytoplasm	480	20,4	0,205	alpha-glucan phosphorylase family protein	MSMEG_4915	Rv1328	83%	662	67	N/D	66
Act	cytoplasm	416	33,4	0,2155	tetratricopeptide repeat domain protein	MSMEG_4917	Rv1324	90%	231	21	69	N/D
Dorm	cytoplasm	486	9	0,0904	1,4-alpha-glucan branching enzyme	MSMEG_4918	Rv1326c	94%	369	52	N/D	108
Act	cytoplasm	304	299,5	1,932	acetyl-CoA acetyltransferase	MSMEG_4920	Rv1323	84%	271	27	9	21
Dorm	cytoplasm	456	60,1	0,604	acetyl-CoA acetyltransferase	MSMEG_4920	Rv1323	86%	227	26	9	21
Act	cytoplasm	384	39,6	0,2554	methylmalonyl-CoA epimerase	MSMEG_4921	Rv1322A	73%	124	10	64	N/D
Act	sds	1600	77,1	0,5	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	MSMEG_4932	Rv1315	27%	45	9	26	N/D
Act	chaps	1295	43,2	0,2387	ATP synthase F1, beta subunit	MSMEG_4936	Rv1310	70%	314	29	56	120
Act	sds	1610	208,9	1,3548	ATP synthase F1, beta subunit	MSMEG_4936	Rv1310	94%	476	52	10	N/D
Dorm	chaps	1731	12,7	0,0666	ATP synthase F1, beta subunit	MSMEG_4936	Rv1310	85%	305	35	56	120
Dorm	chaps	1732	10,9	0,0572	ATP synthase F1, beta subunit	MSMEG_4936	Rv1310	80%	412	35	56	120
Act	chaps	1506	30,7	0,1696	ATP synthase F1, gamma subunit	MSMEG_4937	Rv1309	30%	71	6	69	N/D
Act	cytoplasm	286	49,4	0,3187	ATP synthase F1, alpha subunit	MSMEG_4938	Rv1308	65%	206	23	60	44

Act		4202	40.4	0.004.0		1461456 4030	D 1300	500/	222	20	6	20
Act	chaps	1303	40,1	0,2216	ATP synthase F1, alpha subunit	MSMEG_4938	Rv1308	50%	233	20	62	38
Act	sds	1395	123,7	0,8022	ATP synthase F1, alpha subunit	MSMEG_4938	Rv1308	64%	243	27	15	N/D
Dorm	cytoplasm	438	30,2	0,3035	ATP synthase F1, alpha subunit	MSMEG_4938	Rv1308	59%	109	18	60	44
Dorm	chaps	1364	82,4	0,4321	ATP synthase F1, alpha subunit	MSMEG_4938	Rv1308	71%	410	40	62	38
Dorm	chaps	1535	6,3	0,033	ATP synthase F1, alpha subunit	MSMEG_4938	Rv1308	27%	120	15	62	38
Act	cytoplasm	315	30,4	0,1961	threonine synthase	MSMEG_4956	Rv1295	96%	387	30	75	N/D
Dorm	chaps	1733	5,1	0,0267	threonine synthase	MSMEG_4956	Rv1295	54%	70	11	N/D	134
Act	sds	1427	83,7	0,5428	homoserine dehydrogenase	MSMEG_4957	Rv1294	61%	123	21	25	N/D
Dorm	chaps	1729	18,7	0,0981	homoserine dehydrogenase	MSMEG_4957	Rv1294	60%	149	20	N/D	105
Dorm	cytoplasm	523	4,9	0,0492	oxidoreductase	MSMEG_4971	Rv2781c	70%	101	13	N/D	128
Act	cytoplasm	419	12,7	0,0819	isochorismatase hydrolase	MSMEG_4976		71%	78	10	117	N/D
Dorm	sds	1634	4,6	0,2013	isochorismatase hydrolase	MSMEG_4976		96%	198	20	N/D	40
Act	cytoplasm	386	84,2	0,5431	carbonic anhydrase	MSMEG_4985	Rv1284	87%	216	13	42	81
Dorm	cytoplasm	537	16,2	0,1628	carbonic anhydrase	MSMEG_4985	Rv1284	89%	194	17	42	81
Act	chaps	1305	94	0,5194	bacterial extracellular solute-binding protein, family protein 5	MSMEG_4999	Rv1280c	49%	106	14	18	37
Act	chaps	1306	180,1	0,9952	bacterial extracellular solute-binding protein, family protein 5	MSMEG_4999	Rv1280c	54%	133	18	18	37
Dorm	chaps	1365	15,4	0,0807	bacterial extracellular solute-binding protein, family protein 5	MSMEG_4999	Rv1280c	34%	139	11	18	37
Dorm	chaps	1366	53	0,2779	bacterial extracellular solute-binding protein, family protein 5	MSMEG_4999	Rv1280c	45%	99	19	18	37
Dorm	chaps	1367	83,3	0,4368	bacterial extracellular solute-binding protein, family protein 5	MSMEG_4999	Rv1280c	62%	182	35	18	37
Act	cytoplasm	344	21,6	0,1393	oxidoreductase, FAD-binding	MSMEG_5037	Rv1257c	79%	174	28	91	N/D
Act	chaps	1471	10	0,0553	LprE protein	MSMEG_5043	Rv1252c	51%	75	6	111	N/D
Dorm	chaps	1537	40,8	0,2139	ABC transporter, quaternary amine uptake transporter (QAT) family protein, substrate-binding protein	MSMEG_5054	Rv1244	86%	163	18	N/D	67
Act	cytoplasm	360	18,3	0,118	NAD-dependent malic enzyme	MSMEG_5055		94%	279	29	102	N/D
Act	chaps	1500	18,2	0,1006	ABC transporter, ATP-binding protein SugC	MSMEG_5058	Rv1238	58%	131	18	100	N/D
Act	sds	1601	116,5	0,7555	ABC transporter, ATP-binding protein SugC	MSMEG_5058	Rv1238	53%	88	16	16	N/D
Act	chaps	1486	81	0,4476	Mrp protein	MSMEG_5068	Rv1229c	44%	74	14	32	134
Act	sds	1589	42,9	0,2782	Mrp protein	MSMEG_5068	Rv1229c	64%	76	21	43	N/D
Act	sds	1590	31,1	0,2017	Mrp protein	MSMEG_5068	Rv1229c	35%	62	12	43	N/D

Dorm	chaps	1733	5,1	0,0267	Mrp protein	MSMEG_5068	Rv1229c	75%	164	25	32	134
Act	chaps	1305	94	0,5194	Trypsin	MSMEG_5070	Rv1223	60%	277	24	29	37
Dorm	chaps	1366	53	0,2779	Trypsin	MSMEG_5070	Rv1223	23%	106	8	29	37
Dorm	chaps	1367	83,3	0,4368	Trypsin	MSMEG_5070	Rv1223	61%	130	21	29	37
Dorm	sds	1658	1,8	0,1006	Trypsin	MSMEG_5070	Rv1223	43%	110	16	N/D	63
Act	cytoplasm	420	14,6	0,0942	O-methyltransferase, family protein 3	MSMEG_5073	Rv1220c	79%	188	16	112	N/D
Act	cytoplasm	274	11,2	0,0722	conserved hypothetical protein	MSMEG_5089		77%	352	34	121	N/D
Act	chaps	1468	6,2	0,0343	conserved hypothetical protein	MSMEG_5090		61%	105	8	117	N/D
Act	chaps	1469	6,4	0,0354	conserved hypothetical protein	MSMEG_5090		90%	255	16	117	N/D
Act	cytoplasm	317	20,2	0,1303	tetrahydropicolinate succinylase	MSMEG_5104	Rv1201c	76%	309	24	95	132
Dorm	cytoplasm	582	4,6	0,0462	tetrahydropicolinate succinylase	MSMEG_5104	Rv1201c	88%	202	19	95	132
Dorm	cytoplasm	559	4,7	0,0472	1-pyrroline-5-carboxylate dehydrogenase	MSMEG_5119	Rv1187	61%	344	28	N/D	130
Act	cytoplasm	395	27,6	0,178	ferredoxin	MSMEG_5122	Rv1177	46%	101	6	78	N/D
Dorm	cytoplasm	509	31,4	0,3156	N-Acetyl-1-D-myo-Inosityl-2-Amino-2-Deoxy-alpha- D-Glucopyranoside Deacetylase MshB	MSMEG_5129	Rv1170	81%	72	11	N/D	43
Act	chaps	1271	107,5	0,594	bacterial extracellular solute-binding protein, family protein 5	MSMEG_5130	Rv1166	63%	465	39	27	89
Act	sds	1420	6,6	0,0428	bacterial extracellular solute-binding protein, family protein 5	MSMEG_5130	Rv1166	70%	479	34	87	N/D
Dorm	chaps	1724	26,9	0,141	bacterial extracellular solute-binding protein, family protein 5	MSMEG_5130	Rv1166	62%	394	31	27	89
Act	sds	1421	51,3	0,3327	GTP-binding protein TypA/BipA	MSMEG_5132	Rv1165	85%	390	50	38	N/D
Dorm	chaps	1513	9,2	0,0482	GTP-binding protein TypA/BipA	MSMEG_5132	Rv1165	71%	411	42	N/D	124
Dorm	cytoplasm	544	12,9	0,1296	helix-turn-helix motif	MSMEG_5136	Rv0080	45%	73	5	N/D	95
Dorm	chaps	1542	41,4	0,2171	helix-turn-helix motif	MSMEG_5136	Rv0080	60%	193	12	N/D	39
Dorm	chaps	1543	82	0,43	helix-turn-helix motif	MSMEG_5136	Rv0080	72%	377	21	N/D	39
Act	cytoplasm	330	29,9	0,1929	3-Hydroxyacyl-CoA dehydrogenase	MSMEG_5183	Rv1144	89%	230	23	77	75
Dorm	cytoplasm	502	17,8	0,1789	3-Hydroxyacyl-CoA dehydrogenase	MSMEG_5183	Rv1144	63%	144	12	77	75
Dorm	chaps	1735	23,6	0,1237	3-Hydroxyacyl-CoA dehydrogenase	MSMEG_5183	Rv1144	77%	159	15	N/D	92
Dorm	cytoplasm	563	5,1	0,0513	alpha-methylacyl-CoA racemase, putative	MSMEG_5184	Rv1143	45%	71	11	N/D	127
Act	cytoplasm	402	5,6	0,0361	fasciclin domain protein	MSMEG_5196	Rv2873	52%	91	6	139	N/D
Act	cytoplasm	333	17,2	0,111	carnitinyl-CoA dehydratase	MSMEG_5198		54%	110	11	105	N/D
Act	cytoplasm	308	605,9	3,9085	putative acyl-CoA dehydrogenase	MSMEG_5199		54%	90	17	1	N/D

Act	sds	1580	19.5	0.1265	hydrolase, alpha/beta fold family protein	MSMEG 5209	Rv1123c	62%	62	9	55	N/D
Act	sds	1581	34.4	0.2231	hydrolase, alpha/beta fold family protein	MSMEG 5209	Rv1123c	62%	76	10	55	N/D
Dorm	sds	1632	5,5	0,2336	conserved hypothetical protein	MSMEG 5225	Rv1109c	47%	92	7	N/D	37
Act	chaps	1720	29,6	0,1636	dienelactone hydrolase family protein	 MSMEG_5236		43%	122	11	72	N/D
Dorm	cytoplasm	452	18,7	0,1879	fructose-1,6-bisphosphatase, class II	MSMEG_5239	Rv1099c	57%	131	16	N/D	73
Act	cytoplasm	299	19,8	0,1277	fumarate hydratase class II	MSMEG_5240	Rv1098c	47%	136	19	98	36
Act	cytoplasm	300	16,1	0,1039	fumarate hydratase class II	MSMEG_5240	Rv1098c	69%	370	32	98	36
Dorm	cytoplasm	459	40,7	0,409	fumarate hydratase class II	MSMEG_5240	Rv1098c	78%	491	43	98	36
Dorm	cytoplasm	541	11,2	0,1126	helix-turn-helix motif	MSMEG_5243		90%	160	11	N/D	101
Act	cytoplasm	312	119,7	0,7721	universal stress protein family protein	MSMEG_5245	Rv2028c, Rv3134c	93%	366	25	29	N/D
Act	chaps	1507	18,1	0,1	universal stress protein family protein	MSMEG_5245	Rv2028c, Rv3134c	88%	266	19	82	76
Act	chaps	1508	24,2	0,1337	universal stress protein family protein	MSMEG_5245	Rv2028c, Rv3134c	81%	162	15	82	76
Act	sds	1593	43,8	0,2841	universal stress protein family protein	MSMEG_5245	Rv2028c, Rv3134c	59%	66	10	42	39
Dorm	sds	1654	4,8	0,2085	universal stress protein family protein	MSMEG_5245	Rv2028c, Rv3134c	30%	71	5	42	39
Dorm	chaps	1738	35,4	0,1856	universal stress protein family protein	MSMEG_5245	Rv2028c, Rv3134c	70%	174	17	82	76
Act	chaps	1491	19,9	0,11	conserved hypothetical protein	MSMEG_5246	Rv2032	80%	209	21	95	22
Act	sds	1578	19,6	0,1271	conserved hypothetical protein	MSMEG_5246	Rv2032	48%	78	9	41	12
Act	sds	1579	10,6	0,0687	conserved hypothetical protein	MSMEG_5246	Rv2032	55%	72	9	41	12
Act	sds	1603	44,2	0,2867	conserved hypothetical protein	MSMEG_5246	Rv2032	78%	92	19	41	12
Act	sds	1604	18,4	0,1193	conserved hypothetical protein	MSMEG_5246	Rv2032	57%	57	10	41	12
Dorm	cytoplasm	492	256,6	2,5788	conserved hypothetical protein	MSMEG_5246	Rv2032	79%	160	18	N/D	7
Dorm	cytoplasm	493	111,2	1,1175	conserved hypothetical protein	MSMEG_5246	Rv2032	88%	299	30	N/D	7
Dorm	cytoplasm	564	1,3	0,0131	conserved hypothetical protein	MSMEG_5246	Rv2032	59%	127	13	N/D	7
Dorm	chaps	1349	117,9	0,6182	conserved hypothetical protein	MSMEG_5246	Rv2032	90%	237	26	95	22
Dorm	chaps	1350	141,7	0,743	conserved hypothetical protein	MSMEG_5246	Rv2032	89%	422	34	95	22
Dorm	sds	1433	57,2	2,092	conserved hypothetical protein	MSMEG_5246	Rv2032	68%	170	19	41	12
Dorm	sds	1434	65,5	2,3904	conserved hypothetical protein	MSMEG_5246	Rv2032	89%	314	32	41	12

chanc	1561	F4 4	0.2052	concerned hymothetical protain		0,0000	750/	107	21	05	22
cnaps	1561	54,4	0,2852	conserved hypothetical protein	IVISIVIEG_5246	KV2U32	/5%	181	21	95	22
chaps	1562	21,1	0,1106	conserved hypothetical protein	MSMEG_5246	Rv2032	49%	97	10	95	22
sds	1648	4,5	0,1977	conserved hypothetical protein	MSMEG_5246	Rv2032	57%	88	11	41	12
sds	1651	1,2	0,0791	conserved hypothetical protein	MSMEG_5246	Rv2032	52%	81	9	41	12
cytoplasm	325	3,1	0,02	serine hydroxymethyltransferase	MSMEG_5249		91%	364	34	145	6
cytoplasm	465	270,3	2,7165	serine hydroxymethyltransferase	MSMEG_5249		48%	75	15	145	6
chaps	1375	20,2	0,1059	serine hydroxymethyltransferase	MSMEG_5249		85%	205	28	N/D	100
chaps	1376	19,5	0,1022	serine hydroxymethyltransferase	MSMEG_5249		80%	169	22	N/D	100
sds	1581	34,4	0,2231	mycothiol conjugate amidase Mca	MSMEG_5261	Rv1082	36%	51	7	55	N/D
chaps	1340	184,8	0,969	mycothiol conjugate amidase Mca	MSMEG_5261	Rv1082	39%	57	8	N/D	19
chaps	1739	36,6	0,1919	mycothiol conjugate amidase Mca	MSMEG_5261	Rv1082	35%	79	10	N/D	19
chaps	1740	48,9	0,2564	mycothiol conjugate amidase Mca	MSMEG_5261	Rv1082	67%	85	15	N/D	19
cytoplasm	387	126,3	0,8147	transcription elongation factor GreA	MSMEG_5263	Rv1080c	68%	109	9	27	N/D
cytoplasm	294	32,1	0,2071	cystathionine beta-synthase	MSMEG_5270	Rv1077	84%	275	27	71	N/D
cytoplasm	295	26,9	0,1735	cystathionine beta-synthase	MSMEG_5270	Rv1077	75%	117	20	71	N/D
cytoplasm	303	405,5	2,6158	beta-ketoadipyl CoA thiolase	MSMEG_5273	Rv1074c	89%	320	33	5	26
cytoplasm	454	51,3	0,5156	beta-ketoadipyl CoA thiolase	MSMEG_5273	Rv1074c	84%	333	35	5	26
chaps	1557	46,4	0,2433	beta-ketoadipyl CoA thiolase	MSMEG_5273	Rv1074c	75%	99	23	N/D	60
cytoplasm	363	85,6	0,5522	enoyl-CoA hydratase	MSMEG_5276	Rv1071c	59%	96	10	41	131
cytoplasm	525	4,6	0,0462	enoyl-CoA hydratase	MSMEG_5276	Rv1071c	56%	127	9	41	131
chaps	1562	21,1	0,1106	dehydrogenase	MSMEG_5287		40%	86	7	N/D	97
chaps	1284	47,2	0,2608	ectoine/hydroxyectoine ABC transporter solute-binding protein	MSMEG_5368		65%	87	13	16	23
chaps	1285	198,3	1,0958	ectoine/hydroxyectoine ABC transporter solute-binding protein	MSMEG_5368		83%	247	20	16	23
chaps	1355	129,9	0,6811	ectoine/hydroxyectoine ABC transporter solute-binding protein	MSMEG_5368		49%	90	9	16	23
chaps	1536	27,9	0,1463	ectoine/hydroxyectoine ABC transporter solute-binding protein	MSMEG_5368		67%	189	25	16	23
cytoplasm	283	5,6	0,0361	immunogenic protein MPT63	MSMEG_5412		51%	86	7	138	N/D
cytoplasm	351	134,1	0,865	enolase	MSMEG_5415	Rv1023	76%	311	23	25	58
sds	1574	18,5	0,12	enolase	MSMEG_5415	Rv1023	63%	325	22	74	N/D
cytoplasm	448	22,7	0,2281	enolase	MSMEG_5415	Rv1023	90%	409	30	25	58
chaps	1527	33,9	0,1778	enolase	MSMEG_5415	Rv1023	66%	311	21	N/D	78
	chapschapssdssdscytoplasmchapschapschapschapschapschapschapschapschapschapschapschapschapschapschapschapschapschapscytoplasmcytoplasmcytoplasmcytoplasmchapschapschapschapschapschapschapschapschapschapschapschapscytoplasmsdscytoplasmcytoplasm	chaps1561chaps1562sds1648sds1651cytoplasm325cytoplasm1375chaps1376chaps1376chaps1581chaps1740chaps1740chaps387chaps387cytoplasm294cytoplasm294cytoplasm303cytoplasm303cytoplasm1557cytoplasm1552chaps15157cytoplasm1284chaps1284chaps1284chaps1351chaps1351chaps1351chaps351cytoplasm351sds1574sds1574cytoplasm283cytoplasm351cytoplasm351cytoplasm351cytoplasm1574cytoplasm351cytoplasm351cytoplasm555chaps1574cytoplasm351cytoplasm351cytoplasm555chaps1574cytoplasm351cytoplasm555cytoplasm555cytoplasm351cytoplasm555cytoplasm555cytoplasm555cytoplasm351cytoplasm555cytoplasm555cytoplasm555 <tr< td=""><td>chaps156154,4chaps156221,1sds16484,5sds16511,2cytoplasm3253,1cytoplasm137520,2chaps137520,2chaps137619,5sds137534,4chaps158134,4chaps173036,6chaps173436,6chaps174048,9chaps174032,1cytoplasm29432,1cytoplasm29432,1cytoplasm303405,5cytoplasm155746,4cytoplasm36385,6cytoplasm5254,6chaps128447,2chaps1284128,9chaps1355129,9chaps1355129,9chaps135435,6cytoplasm2835,6cytoplasm351134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1</td><td>chaps156154,40,2852chaps156221,10,1106sds16484,50,1977sds16511,20,0791cytoplasm3253,10,02cytoplasm465270,32,7165chaps137520,20,1029chaps137619,50,1022sds137619,50,1021chaps137634,40,2231chaps1340184,80,969chaps173936,60,1919chaps174048,90,2564cytoplasm387126,30,8147cytoplasm29432,10,2071cytoplasm29526,90,1735cytoplasm36385,60,5126cytoplasm155746,40,2433cytoplasm156221,10,1106cytoplasm156221,10,2608cytoplasm156211,40,2608cytoplasm128447,20,2608chaps1285129,90,1463chaps1285129,90,1463chaps153627,90,3661cytoplasm351134,10,8651cytoplasm351134,10,8651cytoplasm351134,10,8651cytoplasm351134,10,2281cytoplasm351134,10,2281cytoplasm351134,10,2281</td></tr<> <td>chaps15654,40,2852conserved hypothetical proteinchaps156221,10.110conserved hypothetical proteinsds16484,50.1977Conserved hypothetical proteinsds16511,20,791conserved hypothetical proteincytoplasm3253,10,021Serine hydroxymethyltransferasecytoplasm137520,20,102Serine hydroxymethyltransferasechaps137520,20,102Serine hydroxymethyltransferasechaps137614,40,221Mycothiol conjugate amidase Mcachaps137936,60,191Mycothiol conjugate amidase Mcachaps137936,60,191Cytoplasechaps137012,630,512Cytoplasecytoplasm13812,630,513Cytoplasecytoplasm13914,50,214Cytoplasecytoplasm15314,40,215Cytoplasecytoplasm15415,30,515Cytoplasecytoplasm15514,40,216Cytoplasecytoplasm15514,40,216Cytoplasecytoplasm155</td> <td>chaps156154.40.2852conserved hypothetical proteinMSME6_5246Ghaps156221.10.106Conserved hypothetical proteinMSME6_5246Sds16811.20.079Conserved hypothetical proteinMSME6_5246Sds155121.00.709Conserved hypothetical proteinMSME6_5246Cytoplasn145520.02.7165Serrine hydroxymethyltransferaseMSME6_5249Cytoplasn13750.020.059Serrine hydroxymethyltransferaseMSME6_5246Cytoplasn13760.02Serrine hydroxymethyltransferaseMSME6_5246Cytoplasn13760.02Serrine hydroxymethyltransferaseMSME6_5246Cytoplasn13840.440.221Mmyothiol conjugate amidase McaMSME6_5261Cytoplasn134014.80.969Mmyothiol conjugate amidase McaMSME6_5261Cytoplasn13400.540.914Mmyothiol conjugate amidase McaMSME6_5261Cytoplasn13400.540.914Motofic Conjugate amidase McaMSME6_52761Cytoplasn13400.5410.914Conserved hydroxymethylicange Conserved hydroxymethylicange Conserved hydroxymethylicangeMSME6_52761Cytoplasn13410.512Conserved hydroxymethylicange Conserved hydroxymethylicange Conse</td> <td>chapsISGISGViscNSMEG.224NSMEG.234<th< td=""><td>chaps156154.40.283conserved hypothetical proteinMSME6_5246M203274chaps15621.100.107conserved hypothetical proteinMSME6_5246M2032478rded1581.00.107conserved hypothetical proteinMSME6_5246M2032578rdyoplasm1253.10.02Conserved hypothetical proteinMSME6_5249M2023578rdyoplasm1352.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13752.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13762.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13760.1020.102Conserved hypothetical proteinMSME6_52491.0488chaps13760.1020.102Conserved hypothetical proteinMSME6_52491.0488chaps13781360.102Conserved hypothetical proteinMSME6_52491.0488chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.0488chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.04.0chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.04.0chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.01.0</td><td>head154115410.2820.00000.000017401750175017501750head15621.110.1000.000</td><td>Indep<IndepIndep<IndepIndep<IndepIndep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<I</td><td>Index</td></th<></td>	chaps156154,4chaps156221,1sds16484,5sds16511,2cytoplasm3253,1cytoplasm137520,2chaps137520,2chaps137619,5sds137534,4chaps158134,4chaps173036,6chaps173436,6chaps174048,9chaps174032,1cytoplasm29432,1cytoplasm29432,1cytoplasm303405,5cytoplasm155746,4cytoplasm36385,6cytoplasm5254,6chaps128447,2chaps1284128,9chaps1355129,9chaps1355129,9chaps135435,6cytoplasm2835,6cytoplasm351134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1sds1574134,1	chaps156154,40,2852chaps156221,10,1106sds16484,50,1977sds16511,20,0791cytoplasm3253,10,02cytoplasm465270,32,7165chaps137520,20,1029chaps137619,50,1022sds137619,50,1021chaps137634,40,2231chaps1340184,80,969chaps173936,60,1919chaps174048,90,2564cytoplasm387126,30,8147cytoplasm29432,10,2071cytoplasm29526,90,1735cytoplasm36385,60,5126cytoplasm155746,40,2433cytoplasm156221,10,1106cytoplasm156221,10,2608cytoplasm156211,40,2608cytoplasm128447,20,2608chaps1285129,90,1463chaps1285129,90,1463chaps153627,90,3661cytoplasm351134,10,8651cytoplasm351134,10,8651cytoplasm351134,10,8651cytoplasm351134,10,2281cytoplasm351134,10,2281cytoplasm351134,10,2281	chaps15654,40,2852conserved hypothetical proteinchaps156221,10.110conserved hypothetical proteinsds16484,50.1977Conserved hypothetical proteinsds16511,20,791conserved hypothetical proteincytoplasm3253,10,021Serine hydroxymethyltransferasecytoplasm137520,20,102Serine hydroxymethyltransferasechaps137520,20,102Serine hydroxymethyltransferasechaps137614,40,221Mycothiol conjugate amidase Mcachaps137936,60,191Mycothiol conjugate amidase Mcachaps137936,60,191Cytoplasechaps137012,630,512Cytoplasecytoplasm13812,630,513Cytoplasecytoplasm13914,50,214Cytoplasecytoplasm15314,40,215Cytoplasecytoplasm15415,30,515Cytoplasecytoplasm15514,40,216Cytoplasecytoplasm15514,40,216Cytoplasecytoplasm155	chaps156154.40.2852conserved hypothetical proteinMSME6_5246Ghaps156221.10.106Conserved hypothetical proteinMSME6_5246Sds16811.20.079Conserved hypothetical proteinMSME6_5246Sds155121.00.709Conserved hypothetical proteinMSME6_5246Cytoplasn145520.02.7165Serrine hydroxymethyltransferaseMSME6_5249Cytoplasn13750.020.059Serrine hydroxymethyltransferaseMSME6_5246Cytoplasn13760.02Serrine hydroxymethyltransferaseMSME6_5246Cytoplasn13760.02Serrine hydroxymethyltransferaseMSME6_5246Cytoplasn13840.440.221Mmyothiol conjugate amidase McaMSME6_5261Cytoplasn134014.80.969Mmyothiol conjugate amidase McaMSME6_5261Cytoplasn13400.540.914Mmyothiol conjugate amidase McaMSME6_5261Cytoplasn13400.540.914Motofic Conjugate amidase McaMSME6_52761Cytoplasn13400.5410.914Conserved hydroxymethylicange Conserved hydroxymethylicange Conserved hydroxymethylicangeMSME6_52761Cytoplasn13410.512Conserved hydroxymethylicange Conserved hydroxymethylicange Conse	chapsISGISGViscNSMEG.224NSMEG.234 <th< td=""><td>chaps156154.40.283conserved hypothetical proteinMSME6_5246M203274chaps15621.100.107conserved hypothetical proteinMSME6_5246M2032478rded1581.00.107conserved hypothetical proteinMSME6_5246M2032578rdyoplasm1253.10.02Conserved hypothetical proteinMSME6_5249M2023578rdyoplasm1352.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13752.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13762.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13760.1020.102Conserved hypothetical proteinMSME6_52491.0488chaps13760.1020.102Conserved hypothetical proteinMSME6_52491.0488chaps13781360.102Conserved hypothetical proteinMSME6_52491.0488chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.0488chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.04.0chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.04.0chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.01.0</td><td>head154115410.2820.00000.000017401750175017501750head15621.110.1000.000</td><td>Indep<IndepIndep<IndepIndep<IndepIndep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<I</td><td>Index</td></th<>	chaps156154.40.283conserved hypothetical proteinMSME6_5246M203274chaps15621.100.107conserved hypothetical proteinMSME6_5246M2032478rded1581.00.107conserved hypothetical proteinMSME6_5246M2032578rdyoplasm1253.10.02Conserved hypothetical proteinMSME6_5249M2023578rdyoplasm1352.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13752.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13762.020.105Conserved hypothetical proteinMSME6_52491.0488chaps13760.1020.102Conserved hypothetical proteinMSME6_52491.0488chaps13760.1020.102Conserved hypothetical proteinMSME6_52491.0488chaps13781360.102Conserved hypothetical proteinMSME6_52491.0488chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.0488chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.04.0chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.04.0chaps13790.1020.012Conserved hypothetical proteinMSME6_52491.01.0	head154115410.2820.00000.000017401750175017501750head15621.110.1000.000	Indep<IndepIndep<IndepIndep<IndepIndep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<I	Index

1		I	I	1		1		l I			1	1.
Act	sds	1607	37,2	0,2413	ribosomal protein L25, Ctc-form	MSMEG_5431	Rv1015c	35%	136	11	48	N/D
Dorm	chaps	1563	47,6	0,2496	ribosomal protein L25, Ctc-form	MSMEG_5431	Rv1015c	39%	69	7	N/D	59
Act	chaps	1471	10	0,0553	conserved hypothetical protein	MSMEG_5452	Rv0999	64%	165	14	111	N/D
Dorm	cytoplasm	566	5,3	0,0533	choloylglycine hydrolase, putative	MSMEG_5454		63%	112	11	N/D	125
Act	sds	1583	8,6	0,0558	UTP-glucose-1-phosphate uridylyltransferase	MSMEG_5471	Rv0993	46%	173	10	83	N/D
Act	sds	1584	6,8	0,0441	UTP-glucose-1-phosphate uridylyltransferase	MSMEG_5471	Rv0993	64%	182	14	83	N/D
Dorm	chaps	1564	21,3	0,1117	UTP-glucose-1-phosphate uridylyltransferase	MSMEG_5471	Rv0993	64%	145	14	N/D	96
Act	chaps	1316	5,1	0,0282	porin	MSMEG_5483		21%	50	4	120	21
Act	sds	1409	25,7	0,1667	porin	MSMEG_5483		21%	48	4	63	18
Dorm	chaps	1377	160,1	0,8395	porin	MSMEG_5483		24%	88	6	120	21
Dorm	sds	1446	31,7	1,1754	porin	MSMEG_5483		24%	78	6	63	18
Act	cytoplasm	407	13,7	0,0884	molybdopterin biosynthesis protein	MSMEG_5485	Rv0984	100%	159	13	114	N/D
Dorm	chaps	1569	20,2	0,1059	DNA-binding response regulator	MSMEG_5488	Rv0981	59%	102	10	N/D	101
Dorm	chaps	1569	20,2	0,1059	DNA-binding response regulator	MSMEG_5488	Rv0981	62%	104	10	N/D	101
Dorm	chaps	1360	52,9	0,2774	magnesium chelatase	MSMEG_5512	Rv0958	86%	608	42	N/D	56
Dorm	sds	1432	13,6	0,5248	magnesium chelatase	MSMEG_5512	Rv0958	86%	540	39	N/D	32
Act	cytoplasm	311	298,3	1,9242	succinyl-CoA synthetase, alpha subunit	MSMEG_5524	Rv0952	90%	329	25	10	41
Act	cytoplasm	373	74,7	0,4819	succinyl-CoA synthetase, alpha subunit	MSMEG_5524	Rv0952	82%	177	22	10	41
Dorm	cytoplasm	503	31,8	0,3196	succinyl-CoA synthetase, alpha subunit	MSMEG_5524	Rv0952	90%	228	20	10	41
Dorm	chaps	1565	65,2	0,3419	succinyl-CoA synthetase, alpha subunit	MSMEG_5524	Rv0952	67%	236	17	N/D	46
Act	cytoplasm	354	12,5	0,0806	succinyl-CoA synthetase, beta subunit	MSMEG_5525	Rv0951	52%	189	17	118	28
Dorm	cytoplasm	449	50,3	0,5055	succinyl-CoA synthetase, beta subunit	MSMEG_5525	Rv0951	74%	421	33	118	28
Dorm	cytoplasm	568	13,6	0,1367	succinyl-CoA synthetase, beta subunit	MSMEG_5525	Rv0951	51%	130	17	118	28
Act	cytoplasm	288	8,3	0,0535	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_5538		58%	241	25	131	71
Dorm	cytoplasm	439	19,8	0,199	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_5538		57%	227	25	131	71
Dorm	cytoplasm	464	214,7	2,1577	glucose-6-phosphate isomerase	MSMEG_5541	Rv0946c	77%	147	25	N/D	8
Dorm	cytoplasm	469	16,2	0,1628	glucose-6-phosphate isomerase	MSMEG_5541	Rv0946c	62%	140	20	N/D	8
Act	sds	1608	25,5	0,1654	clavaldehyde dehydrogenase	MSMEG_5568		50%	77	9	65	N/D
Act	chaps	1324	49,3	0,2724	Ku protein	MSMEG_5580	Rv0937c	31%	61	8	50	N/D

Act	chaps	1312	26,8	0,1481	metallo-beta-lactamase family protein	MSMEG_5638	Rv0906	82%	359	26	77	N/D
Dorm	chaps	1539	22,2	0,1164	binding protein	MSMEG_5664		44%	96	6	N/D	95
Dorm	cytoplasm	561	1,3	0,0131	phytoene dehydrogenase	MSMEG_5667	Rv0897c	38%	129	12	N/D	148
Dorm	cytoplasm	491	42,8	0,4301	citrate synthase	MSMEG_5676	Rv0889c	59%	103	15	N/D	33
Dorm	sds	1445	128,6	3,3285	glyoxalase family protein	MSMEG_5680	Rv0887c	70%	80	11	N/D	6
Dorm	cytoplasm	551	8,4	0,0844	phosphoserine aminotransferase, putative	MSMEG_5684	Rv0884c	47%	133	11	N/D	113
Act	chaps	1713	61,9	0,3421	conserved hypothetical protein	MSMEG_5690		82%	158	10	40	N/D
Act	cytoplasm	362	1,1	0,0071	conserved hypothetical protein	MSMEG_5691	Rv0877	62%	113	11	150	N/D
Dorm	cytoplasm	582	4,6	0,0462	glutathione S-transferase	MSMEG_5695		63%	145	15	N/D	132
Act	sds	1602	15,9	0,1031	acetyl-CoA acetyltransferase	MSMEG_5721	Rv0859	30%	54	7	77	50
Dorm	sds	1649	2,9	0,1402	acetyl-CoA acetyltransferase	MSMEG_5721	Rv0859	27%	103	7	77	50
Act	chaps	1508	24,2	0,1337	universal stress protein family protein	MSMEG_5733		73%	97	10	36	15
Act	chaps	1509	67,1	0,3708	universal stress protein family protein	MSMEG_5733		54%	85	9	36	15
Act	chaps	1509	67,1	0,3708	universal stress protein family protein	MSMEG_5733		41%	70	8	36	15
Act	sds	1593	43,8	0,2841	universal stress protein family protein	MSMEG_5733		86%	172	19	42	39
Dorm	chaps	1343	193	1,012	universal stress protein family protein	MSMEG_5733		86%	324	22	36	15
Dorm	chaps	1565	65,2	0,3419	universal stress protein family protein	MSMEG_5733		56%	109	9	36	15
Dorm	sds	1654	4,8	0,2085	universal stress protein family protein	MSMEG_5733		40%	140	8	42	39
Dorm	chaps	1738	35,4	0,1856	universal stress protein family protein	MSMEG_5733		55%	74	9	36	15
Dorm	chaps	1741	78,1	0,4095	universal stress protein family protein	MSMEG_5733		65%	86	9	36	15
Dorm	chaps	1741	78,1	0,4095	universal stress protein family protein	MSMEG_5733		44%	70	8	36	15
Dorm	cytoplasm	445	21,8	0,2191	indole-3-pyruvate decarboxylase	MSMEG_5735	Rv0853c	86%	208	32	N/D	61
Dorm	chaps	1729	18,7	0,0981	indole-3-pyruvate decarboxylase	MSMEG_5735	Rv0853c	49%	74	14	N/D	105
Dorm	cytoplasm	566	5,3	0,0533	fatty acid desaturase	MSMEG_5773	Rv0824c	53%	96	12	N/D	125
Dorm	sds	1652	1,3	0,0827	fatty acid desaturase	MSMEG_5773	Rv0824c	53%	140	15	N/D	67
Act	chaps	1291	51,4	0,284	phosphate ABC transporter, phosphate-binding protein PstS	MSMEG_5782		64%	100	13	48	75
Dorm	chaps	1532	36	0,1888	phosphate ABC transporter, phosphate-binding protein PstS	MSMEG_5782		75%	78	15	48	75
Dorm	cytoplasm	508	58,5	0,5879	putative thiosulfate sulfurtransferase	MSMEG_5789	Rv0815c	97%	447	38	N/D	22
Dorm	cytoplasm	509	31,4	0,3156	putative thiosulfate sulfurtransferase	MSMEG_5789	Rv0815c	92%	327	30	N/D	22

Act	cytoplasm	419	12,7	0,0819	conserved hypothetical protein	MSMEG_5792	Rv0813c	50%	72	8	117	N/D
Dorm	sds	1648	4,5	0,1977	Glycine cleavage T-protein (aminomethyl transferase)	MSMEG_5796	Rv0811c	63%	115	15	N/D	42
Dorm	cytoplasm	431	21,3	0,2141	phosphoribosylformylglycinamidine synthase II	MSMEG_5824	Rv0803	72%	348	36	N/D	63
Dorm	chaps	1553	50,1	0,2627	aspartyl aminopeptidase	MSMEG_5828	Rv0800	57%	100	20	N/D	57
Dorm	cytoplasm	575	1,7	0,0171	phosphoribosylformylglycinamidine synthase I	MSMEG_5831	Rv0788	69%	166	9	N/D	147
Act	cytoplasm	389	76,7	0,4948	glutathione peroxidase family protein	MSMEG_5837		63%	104	7	45	N/D
Dorm	cytoplasm	578	18,4	0,1849	phosphoribosylaminoimidazole-succinocarboxamide synthase	MSMEG_5841	Rv0780	83%	261	20	N/D	74
Act	cytoplasm	358	24,8	0,16	phosphoribosylamineglycine ligase	MSMEG_5852	Rv0772	82%	237	18	82	N/D
Act	sds	1413	36,4	0,2361	DNA-binding response regulator PhoP	MSMEG_5872	Rv0757	79%	206	16	51	N/D
Act	sds	1596	33,6	0,2179	DNA-binding response regulator PhoP	MSMEG_5872	Rv0757	70%	178	16	51	N/D
Act	sds	1597	29,8	0,1933	DNA-binding response regulator PhoP	MSMEG_5872	Rv0757	56%	75	10	51	N/D
Act	cytoplasm	425	20,9	0,1348	conserved hypothetical protein	MSMEG_5873	Rv0756c	62%	129	14	93	N/D
Dorm	sds	1633	11,5	0,4493	conserved hypothetical protein	MSMEG_5873	Rv0756c	58%	81	12	N/D	34
Act	chaps	1704	63,3	0,3498	3-ketosteroid dehydrogenase	MSMEG_5941	Rv3537	36%	169	17	38	N/D
Dorm	cytoplasm	494	20,3	0,204	acetyl-CoA acetyltransferase	MSMEG_6008	Rv3556c	54%	136	16	N/D	67
Act	chaps	1297	13,3	0,0735	secreted protein	MSMEG_6049		67%	297	17	107	N/D
Act	sds	1400	151,2	0,9806	lipoprotein	MSMEG_6064		42%	101	7	13	N/D
Act	chaps	1313	34,7	0,1917	metallo-beta-lactamase superfamily protein	MSMEG_6071	Rv3577	65%	221	17	66	N/D
Dorm	cytoplasm	470	8,8	0,0884	cysteinyl-tRNA synthetase	MSMEG_6074	Rv3580c	53%	126	19	N/D	109
Dorm	chaps	1735	23,6	0,1237	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	MSMEG_6076	Rv3582c	79%	107	10	N/D	92
Act	chaps	1289	37,7	0,2083	LpqE protein	MSMEG_6078	Rv3584	26%	115	6	64	N/D
Dorm	cytoplasm	534	50,7	0,5095	antibiotic biosynthesis monooxygenase domain protein	MSMEG_6086	Rv3592	94%	179	9	N/D	27
Act	chaps	1311	88,1	0,4868	negative regulator of genetic competence ClpC/mecB	MSMEG_6091	Rv3596c	46%	130	23	30	N/D
Act	sds	1391	509,8	3,3062	negative regulator of genetic competence ClpC/mecB	MSMEG_6091	Rv3596c	60%	256	44	1	54
Dorm	sds	1640	2,5	0,1258	negative regulator of genetic competence ClpC/mecB	MSMEG_6091	Rv3596c	69%	388	43	1	54
Dorm	sds	1641	2,5	0,1258	negative regulator of genetic competence ClpC/mecB	MSMEG_6091	Rv3596c	35%	84	16	1	54
Dorm	cytoplasm	484	25,1	0,2523	lysyl-tRNA synthetase	MSMEG_6094	Rv3598c	64%	203	28	N/D	51
Act	sds	1589	42,9	0,2782	pantoatebeta-alanine ligase	MSMEG_6097	Rv3602c	96%	203	29	43	N/D
Act	sds	1590	31,1	0,2017	pantoatebeta-alanine ligase	MSMEG_6097	Rv3602c	55%	67	10	43	N/D

Act	chaps	1721	6,2	0,0343	pantoatebeta-alanine ligase	MSMEG_6097	Rv3602c	75%	190	17	119	N/D
Act	sds	1612	104,8	0,6797	GTP cyclohydrolase I	 MSMEG_6104	Rv3609c	52%	96	10	17	N/D
Act	cytoplasm	409	9,8	0,0632	inorganic pyrophosphatase	MSMEG_6114	Rv3628	87%	140	13	124	42
Dorm	cytoplasm	528	31,5	0,3166	inorganic pyrophosphatase	MSMEG_6114	Rv3628	55%	171	12	124	42
Dorm	cytoplasm	570	4,2	0,0422	D-isomer specific 2-hydroxyacid dehydrogenase	MSMEG_6126		63%	121	10	N/D	136
Act	sds	1582	24,2	0,1569	nucleoside-diphosphate-sugar epimerase	MSMEG_6142	Rv3634c	50%	66	10	67	N/D
Act	chaps	1490	41,8	0,231	conserved hypothetical protein	MSMEG_6163	Rv3651	45%	91	11	59	N/D
Act	sds	1603	44,2	0,2867	conserved hypothetical protein	MSMEG_6163	Rv3651	62%	64	15	41	N/D
Dorm	cytoplasm	483	10,4	0,1045	acetyl-coenzyme A synthetase	MSMEG_6179	Rv3667	74%	486	46	N/D	102
Act	cytoplasm	383	159,6	1,0295	translation initiation inhibitor	MSMEG_6191	Rv3678c	94%	158	9	23	89
Dorm	cytoplasm	536	13,7	0,1377	translation initiation inhibitor	MSMEG_6191	Rv3678c	80%	148	8	23	89
Act	sds	1417	91,5	0,5934	anion-transporting ATPase	MSMEG_6193	Rv3679	70%	176	19	22	N/D
Act	sds	1603	44,2	0,2867	anion-transporting ATPase	MSMEG_6193	Rv3679	56%	82	17	22	N/D
Dorm	cytoplasm	466	37,1	0,3728	diaminopimelate decarboxylase	MSMEG_6197		51%	88	15	N/D	39
Dorm	chaps	1384	27,2	0,1426	transcriptional regulator, PadR family protein	MSMEG_6227		69%	212	15	N/D	40
Dorm	sds	1437	333,9	4,7052	transcriptional regulator, PadR family protein	MSMEG_6227		84%	218	20	N/D	4
Dorm	sds	1438	107,7	3,1884	transcriptional regulator, PadR family protein	MSMEG_6227		90%	313	28	N/D	4
Dorm	sds	1440	25,4	0,949	transcriptional regulator, PadR family protein	MSMEG_6227		93%	315	21	N/D	4
Dorm	sds	1441	41,8	1,5385	transcriptional regulator, PadR family protein	MSMEG_6227		81%	194	16	N/D	4
Dorm	sds	1442	85,4	3,1057	transcriptional regulator, PadR family protein	MSMEG_6227		73%	201	14	N/D	4
Dorm	sds	1443	26,9	1,0029	transcriptional regulator, PadR family protein	MSMEG_6227		76%	214	14	N/D	4
Dorm	sds	1452	13,9	0,5356	transcriptional regulator, PadR family protein	MSMEG_6227		44%	114	11	N/D	4
Dorm	sds	1453	23	0,8627	transcriptional regulator, PadR family protein	MSMEG_6227		62%	105	11	N/D	4
Dorm	sds	1454	1,8	0,1006	transcriptional regulator, PadR family protein	MSMEG_6227		87%	340	27	N/D	4
Dorm	sds	1456	3,2	0,151	transcriptional regulator, PadR family protein	MSMEG_6227		64%	55	10	N/D	4
Dorm	chaps	1544	81,1	0,4252	transcriptional regulator, PadR family protein	MSMEG_6227		33%	104	6	N/D	40
Dorm	chaps	1545	27,1	0,1421	transcriptional regulator, PadR family protein	MSMEG_6227		72%	242	17	N/D	40
Dorm	sds	1636	8,4	0,3379	transcriptional regulator, PadR family protein	MSMEG_6227		73%	200	13	N/D	4
Dorm	sds	1637	4,4	0,1941	transcriptional regulator, PadR family protein	MSMEG_6227		73%	214	14	N/D	4

1		1		1		1	1	l I	1		1	Ι.
Act	cytoplasm	375	70,5	0,4548	thiopurine S-methyltransferase (tpmt) superfamily protein	MSMEG_6235	Rv3699	90%	144	14	52	N/D
Act	sds	1604	18,4	0,1193	ATPase associated with various cellular activities, AAA-5	MSMEG_6241		56%	149	22	75	N/D
Act	chaps	1323	48,6	0,2686	alcohol dehydrogenase, iron-containing	MSMEG_6242		52%	170	20	52	N/D
Act	chaps	1480	20,1	0,1111	alcohol dehydrogenase, iron-containing	MSMEG_6242		55%	267	24	52	N/D
Act	chaps	1481	7,3	0,0403	alcohol dehydrogenase, iron-containing	MSMEG_6242		39%	112	16	52	N/D
Dorm	cytoplasm	466	37,1	0,3728	alcohol dehydrogenase, iron-containing	MSMEG_6242		45%	84	15	N/D	39
Act	cytoplasm	308	605,9	3,9085	aspartate-semialdehyde dehydrogenase	MSMEG_6256	Rv3708c	70%	112	14	1	N/D
Act	cytoplasm	319	22,4	0,1445	aspartate-semialdehyde dehydrogenase	MSMEG_6256	Rv3708c	86%	381	28	1	N/D
Dorm	chaps	1561	54,4	0,2852	aspartate-semialdehyde dehydrogenase	MSMEG_6256	Rv3708c	53%	98	14	N/D	53
Dorm	chaps	1737	3,1	0,0163	nitroreductase family protein	MSMEG_6258		44%	78	6	N/D	137
Dorm	cytoplasm	434	40,5	0,407	2-isopropylmalate synthase	MSMEG_6271	Rv3710	48%	88	24	N/D	37
Act	chaps	1319	42,8	0,2365	cobyric acid synthase	MSMEG_6277	Rv3713	67%	88	8	57	N/D
Act	sds	1412	54,2	0,3515	cobyric acid synthase	MSMEG_6277	Rv3713	54%	69	7	35	N/D
Act	chaps	1280	496,6	2,7442	KanY protein	MSMEG_6282	Rv3718c	99%	303	18	4	17
Dorm	chaps	1549	188,7	0,9894	KanY protein	MSMEG_6282	Rv3718c	75%	169	10	4	17
Act	chaps	1708	22,6	0,1249	cyclopropane-fatty-acyl-phospholipid synthase	MSMEG_6284	Rv3720	49%	157	18	87	N/D
Act	chaps	1709	21,7	0,1199	cyclopropane-fatty-acyl-phospholipid synthase	MSMEG_6284	Rv3720	51%	249	19	87	N/D
Dorm	sds	1659	2,4	0,1222	DNA polymerase III gamma/tau subunit	MSMEG_6285	Rv3721c	22%	126	11	N/D	58
Dorm	sds	1659	2,4	0,1222	DNA polymerase III gamma/tau subunit	MSMEG_6285	Rv3721c	22%	126	11	N/D	58
Act	cytoplasm	322	22,3	0,1439	aspartate transaminase	MSMEG_6286	Rv3722c	77%	373	29	89	47
Dorm	cytoplasm	458	29,1	0,2925	aspartate transaminase	MSMEG_6286	Rv3722c	60%	129	20	89	47
Act	chaps	1503	62,9	0,3476	ABC transporter, ATP-binding protein	MSMEG_6309		38%	77	7	39	N/D
Act	sds	1608	25,5	0,1654	ABC transporter, ATP-binding protein	MSMEG_6309		82%	273	24	45	N/D
Act	sds	1609	39,2	0,2542	ABC transporter, ATP-binding protein	MSMEG_6309		57%	161	15	45	N/D
Act	chaps	1718	8,2	0,0453	ABC transporter, ATP-binding protein	MSMEG_6309		41%	81	6	39	N/D
Act	cytoplasm	420	14,6	0,0942	lipolytic enzyme, G-D-S-L	MSMEG_6317		73%	94	11	112	143
Dorm	cytoplasm	576	2,3	0,0231	lipolytic enzyme, G-D-S-L	MSMEG_6317		82%	197	13	112	143
Act	chaps	1464	28,4	0,1569	penicillin-binding protein, transpeptidase	MSMEG_6319		59%	272	24	74	N/D
Dorm	chaps	1736	7,9	0,0414	conserved hypothetical protein	MSMEG_6329	Rv3755c	71%	97	7	N/D	129

Act	cytoplasm	282	20,1	0,1297	conserved hypothetical protein	MSMEG_6381		75%	281	26	96	N/D
Dorm	cytoplasm	470	8,8	0,0884	propionyl-CoA carboxylase beta chain	MSMEG_6391	Rv3799c	46%	104	19	N/D	79
Dorm	cytoplasm	471	16,5	0,1658	propionyl-CoA carboxylase beta chain	MSMEG_6391	Rv3799c	68%	259	30	N/D	79
Dorm	chaps	1361	76,7	0,4022	propionyl-CoA carboxylase beta chain	MSMEG_6391	Rv3799c	76%	395	52	N/D	45
Dorm	chaps	1362	31,8	0,1667	propionyl-CoA carboxylase beta chain	MSMEG_6391	Rv3799c	52%	82	17	N/D	45
Dorm	cytoplasm	487	8,5	0,0854	acyl-CoA synthase	MSMEG_6393	Rv3801c	52%	101	22	N/D	111
Dorm	cytoplasm	488	6,8	0,0683	acyl-CoA synthase	MSMEG_6393	Rv3801c	79%	317	38	N/D	111
Dorm	cytoplasm	460	16,5	0,1658	UDP-galactopyranose mutase	MSMEG_6404	Rv3809c	82%	405	32	N/D	78
Act	cytoplasm	415	30,6	0,1974	conserved hypothetical protein	MSMEG_6412		66%	106	13	74	N/D
Act	cytoplasm	408	9,3	0,06	rhodanese-like domain protein	MSMEG_6425		45%	83	6	127	N/D
Dorm	cytoplasm	500	270,9	2,7225	[Mn] superoxide dismutase	MSMEG_6427	Rv3846	89%	179	11	N/D	5
Act	cytoplasm	391	70,7	0,4561	regulator of ribonuclease activity A	MSMEG_6439	Rv3853	84%	145	9	51	N/D
Act	cytoplasm	291	22,6	0,1458	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_6452		86%	252	31	87	46
Dorm	cytoplasm	442	23,8	0,2392	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_6452		77%	211	27	87	46
Dorm	cytoplasm	443	29,3	0,2945	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_6452		46%	80	13	87	46
Dorm	chaps	1730	16,5	0,0865	[NADP+] succinate-semialdehyde dehydrogenase	MSMEG_6452		54%	126	15	N/D	112
Dorm	cytoplasm	538	4,3	0,0432	methionine-S-sulfoxide reductase	MSMEG_6477	Rv0137c	91%	165	13	N/D	134
Act	chaps	1270	411,4	2,2734	conserved hypothetical protein	MSMEG_6502		59%	96	8	7	3
Act	chaps	1315	78,4	0,4332	conserved hypothetical protein	MSMEG_6502		59%	175	8	7	3
Dorm	chaps	1334	512,6	2,6878	conserved hypothetical protein	MSMEG_6502		59%	114	8	7	3
Dorm	cytoplasm	552	3,3	0,0332	glycogen debranching enzyme GlgX	MSMEG_6507		77%	448	35	N/D	140
Act	sds	1593	43,8	0,2841	ABC-type drug export system, ATP-binding protein	MSMEG_6509		43%	80	12	42	N/D
Dorm	cytoplasm	452	18,7	0,1879	acyl-CoA dehydrogenase domain protein	MSMEG_6511		60%	152	17	N/D	73
Dorm	cytoplasm	549	1,8	0,0181	trehalose synthase-fused probable maltokinase	MSMEG_6514	Rv0127	72%	376	25	N/D	144
Dorm	cytoplasm	434	40,5	0,407	trehalose synthase	MSMEG_6515	Rv0126	50%	98	23	N/D	37
Act	cytoplasm	410	15,2	0,0981	conserved hypothetical protein	MSMEG_6518		65%	164	12	110	N/D
Dorm	cytoplasm	538	4,3	0,0432	orotate phosphoribosyltransferase	MSMEG_6520		46%	112	10	N/D	134
Act	chaps	1291	51,4	0,284	ABC Polyamine/Opine/Phosphonate transporter, periplasmic ligand binding protein	MSMEG_6524		86%	261	28	35	132

Act	chaps	1292	22,8	0,126	ABC Polyamine/Opine/Phosphonate transporter, periplasmic ligand binding protein	MSMEG_6524		46%	77	7	35	132
Act	chaps	1293	73	0,4034	ABC Polyamine/Opine/Phosphonate transporter, periplasmic ligand binding protein	MSMEG_6524		71%	106	12	35	132
Dorm	chaps	1531	5,8	0,0304	ABC Polyamine/Opine/Phosphonate transporter, periplasmic ligand binding protein	MSMEG_6524		86%	212	23	35	132
Act	sds	1592	54,4	0,3528	iron-dependent peroxidase	MSMEG_6567		22%	65	5	34	N/D
Act	cytoplasm	348	5,9	0,0381	acyl-CoA dehydrogenase	MSMEG_6585		73%	258	22	136	N/D
Dorm	cytoplasm	557	9,1	0,0915	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	MSMEG_6638	Rv1133c	31%	93	16	N/D	107
Dorm	cytoplasm	558	6,7	0,0673	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	MSMEG_6638	Rv1133c	41%	159	16	N/D	107
Dorm	cytoplasm	563	5,1	0,0513	glutaryl-CoA dehydrogenase	MSMEG_6686		37%	66	11	N/D	127
Act	chaps	1323	48,6	0,2686	ABC transporter, ATP-binding protein	MSMEG_6725		58%	155	17	52	N/D
Act	chaps	1501	8,6	0,0475	oxidoreductase, aldo/keto reductase family protein	MSMEG_6746		54%	117	12	112	N/D
Dorm	cytoplasm	490	61,7	0,6201	oxidoreductase, aldo/keto reductase family protein	MSMEG_6746		93%	316	36	N/D	20
Dorm	sds	1648	4,5	0,1977	oxidoreductase, aldo/keto reductase family protein	MSMEG_6746		53%	92	13	N/D	42
Act	cytoplasm	425	20,9	0,1348	hypothetical protein	MSMEG_6750		65%	69	9	93	N/D
Dorm	cytoplasm	490	61,7	0,6201	MaoC like domain protein	MSMEG_6754		47%	88	17	N/D	20
Act	cytoplasm	290	321,9	2,0765	glycerol kinase	MSMEG_6759		91%	412	40	8	46
Act	cytoplasm	291	22,6	0,1458	glycerol kinase	MSMEG_6759		69%	192	26	8	46
Act	sds	1426	69,1	0,4481	glycerol kinase	MSMEG_6759		82%	461	36	25	N/D
Act	sds	1427	83,7	0,5428	glycerol kinase	MSMEG_6759		45%	100	19	25	N/D
Dorm	cytoplasm	442	23,8	0,2392	glycerol kinase	MSMEG_6759		52%	125	20	8	46
Dorm	cytoplasm	443	29,3	0,2945	glycerol kinase	MSMEG_6759		78%	261	30	8	46
Dorm	chaps	1729	18,7	0,0981	glycerol kinase	MSMEG_6759		47%	88	15	N/D	105
Dorm	chaps	1730	16,5	0,0865	glycerol kinase	MSMEG_6759		98%	426	42	N/D	105
Act	chaps	1327	270,8	1,4964	glycerol-3-phosphate dehydrogenase 2	MSMEG_6761		62%	260	21	11	N/D
Act	sds	1620	38,9	0,2523	glycerol-3-phosphate dehydrogenase 2	MSMEG_6761		50%	267	21	46	N/D
Act	cytoplasm	365	179,1	1,1553	integral membrane protein	MSMEG_6783		76%	133	18	21	N/D
Act	chaps	1290	120,2	0,6642	sugar ABC transporter substrate-binding protein	MSMEG_6804		90%	178	25	22	68
Dorm	chaps	1533	40,6	0,2129	sugar ABC transporter substrate-binding protein	MSMEG_6804		70%	74	9	22	68
Dorm	chaps	1534	25,5	0,1337	sugar ABC transporter substrate-binding protein	MSMEG_6804		89%	237	27	22	68

Act	cytoplasm	421	1.1	0.0071	beta-lactamase	MSMEG 6822		54%	125	16	147	N/D
A =+		.21	-,-	0,0071				51/0 600(10		
Act	cytoplasm	422	1,4	0,009	beta-lactamase	MSMEG_6822		69%	209	19	147	N/D
Act	chaps	1279	987,2	5,4552	ribosomal protein L9	MSMEG_6894	Rv0056	92%	429	28	1	41
Act	sds	1404	458,3	2,9722	ribosomal protein L9	MSMEG_6894	Rv0056	85%	240	13	2	N/D
Dorm	chaps	1548	79,8	0,4184	ribosomal protein L9	MSMEG_6894	Rv0056	87%	380	22	1	41
Act	cytoplasm	411	17,8	0,1148	single-stranded DNA-binding protein	MSMEG_6896	Rv0054	81%	269	14	103	117
Dorm	cytoplasm	539	7,8	0,0784	single-stranded DNA-binding protein	MSMEG_6896	Rv0054	85%	269	15	103	117
Act	cytoplasm	359	24,1	0,1555	myo-inositol-1-phosphate synthase	MSMEG_6904	Rv0046c	88%	378	29	83	100
Act	chaps	1499	23,3	0,1288	myo-inositol-1-phosphate synthase	MSMEG_6904	Rv0046c	52%	156	16	83	135
Act	sds	1577	16,1	0,1044	myo-inositol-1-phosphate synthase	MSMEG_6904	Rv0046c	78%	377	29	76	N/D
Dorm	cytoplasm	524	11,2	0,1126	myo-inositol-1-phosphate synthase	MSMEG_6904	Rv0046c	82%	379	33	83	100
Dorm	chaps	1560	4,9	0,0257	myo-inositol-1-phosphate synthase	MSMEG_6904	Rv0046c	64%	292	20	83	135
Act	sds	1604	18,4	0,1193	putative hydrolase	MSMEG_6906	Rv0045c	54%	49	9	75	N/D
Dorm	cytoplasm	511	13,1	0,1317	Mmcl protein	MSMEG_6907	Rv0044c	76%	335	22	N/D	94
Dorm	cytoplasm	476	23,6	0,2372	leucyl-tRNA synthetase	MSMEG_6917	Rv0041	75%	599	55	N/D	56
Act	chaps	1273	52,1	0,2879	integral membrane protein MviN, putative	MSMEG_6929	Rv3910	28%	175	24	47	126
Dorm	chaps	1726	8,7	0,0456	integral membrane protein MviN, putative	MSMEG_6929	Rv3910	12%	74	10	47	126
Act	cytoplasm	403	181,7	1,1721	thioredoxin	MSMEG_6934	Rv3914	80%	113	9	20	N/D
Act	chaps	1501	8,6	0,0475	ParB-like partition proteins	MSMEG_6938	Rv3917c	55%	150	16	112	N/D
Act	sds	1602	15,9	0,1031	ParB-like partition proteins	MSMEG_6938	Rv3917c	32%	79	9	77	N/D
Act	chaps	1470	28,7	0,1586	R3H domain-containing protein	MSMEG_6941	Rv3920c	90%	289	20	73	N/D
Dorm	cytoplasm	573	7,2	0,0724	R3H domain-containing protein	MSMEG_6941	Rv3920c	90%	293	22	N/D	122
Dorm	sds	1633	11,5	0,4493	R3H domain-containing protein	MSMEG_6941	Rv3920c	66%	86	12	N/D	34
L												

ПРИЛОЖЕНИЕ 2. Белки обнаруженые в протеомном профиле и покоящихся активных клеток M.tuberculosis.

Белки обнаруженые в протеомном профиле в цитозольных и мембранных фракциях (cyt – цитозоль; sds – sds экстракт из мембран) и покоящихся активных клеток *M.tuberculosis*. Активные клетки (обозначенные как «active»), выращивались на среде Сатона 10 дней; покоящиеся клетки получали после постепенного закисления среды с последующим хранением в течение 4,5 месяцев (обозначенные как «D1») и 13 месяцев (обозначенные как «D2») при комнатной температуре. Более подробно способ получения описан в разделе материалы и методы.

В столбцах, обозначенных как «place», предствленно место, которое белок занимает в протеомном профиле. Все белки были ранжированы в соответствии с «денсити» пятна от самого высокопредставленного (1) до наименее представленного. Белки, которые отсутствовали в конкретном протеоме, обозначены как «N/D». Если одно пятно содержало несколько разных белков, общая плотность пятен распределялась пропорционально между белками. Белки в таблице отсортированны по номеру гена. Электронную версию таблицы, как и данные полученные с прибора, спектры и результаты поиска, можно обнаружить по ссылке: http://www.peptideatlas.org/PASS/PASS01450.

Cell type	Cell fraction	Sample number	Spot density	Density, %	Product	Rv Number	Coverage	Mass Values Matched	Score	place A	place D1	place D2
active	sds	1122	4,1	0,06	Chromosomal replication initiator protein DnaA	Rv0001	61%	20	122	83	N/D	N/D
active	sds	1123	2,1	0,03	Chromosomal replication initiator protein DnaA	Rv0001	87%	50	623	83	N/D	N/D
dormant (D1)	cyt	2128	23,1	1,16	DNA polymerase III (beta chain) DnaN (DNA nucleotidyltransferase)	Rv0002	49%	14	66	67	17	39
dormant (D2)	cyt	1886	31,8	0,19	DNA polymerase III (beta chain) DnaN (DNA nucleotidyltransferase)	Rv0002	43%	12	86	67	17	39
active	sds	1106	8,8	0,13	DNA gyrase (subunit B) GyrB (DNA topoisomerase (ATP-hydrolysing)) (DNA topoisomerase II) (type II DNA topoisomerase)	Rv0005	41%	33	323	64	N/D	N/D
active	cyt	666	37,3	0,45	Probable iron-regulated peptidyl-prolyl cis-trans isomerase A PpiA (PPIase A) (rotamase A)	Rv0009	82%	7	86	38	N/D	N/D
active	cyt	748	21,4	0,26	Conserved protein with FHA domain, FhaA	Rv0020c	95%	26	456	65	37	44
active	sds	1081	2,6	0,04	Conserved protein with FHA domain, FhaA	Rv0020c	78%	20	91	87	N/D	N/D
active	sds	1131	3,6	0,05	Conserved protein with FHA domain, FhaA	Rv0020c	73%	14	122	87	N/D	N/D
dormant (D2)	cyt	1888	23,9	0,14	Conserved protein with FHA domain, FhaA	Rv0020c	54%	17	161	65	37	44
active	cyt	739	1,1	0,01	Conserved protein	Rv0036c	97%	28	393	158	N/D	N/D
dormant (D2)	sds	1238	93,6	1,25	Conserved protein	Rv0036c	76%	20	165	N/D	N/D	12
dormant (D1)	sds	2303	27,6	0,25	Possible hydrolase	Rv0045c	50%	12	72	N/D	58	N/D
active	cyt	723	6,8	0,08	myo-inositol-1-phosphate synthase Ino1 (inositol 1-phosphate synthetase) (D-glucose 6- phosphate cycloaldolase) (glucose 6-phosphate cyclase) (glucocycloaldolase)	Rv0046c	67%	25	139	119	N/D	N/D
active	cyt	794	4,7	0,06	Probable isocitrate dehydrogenase [NADP] Icd2 (oxalosuccinate decarboxylase) (IDH) (NADP+-specific ICDH) (IDP)	Rv0066c	36%	16	90	136	N/D	N/D
active	cyt	795	3	0,04	Probable isocitrate dehydrogenase [NADP] Icd2 (oxalosuccinate decarboxylase) (IDH) (NADP+-specific ICDH) (IDP)	Rv0066c	58%	33	145	136	N/D	N/D
dormant (D1)	cyt	2167	6,5	0,33	Probable aminotransferase	Rv0075	42%	10	80	73	41	N/D
dormant (D1)	sds	2270	111,9	1,00	Hypothetical protein	Rv0078A	29%	4	116	N/D	25	N/D
active	cyt	691	15,6	0,19	Possible oxidoreductase	Rv0097	43%	9	65	89	N/D	N/D
active	cyt	805	6,1	0,07	Probable fatty-acid-CoA ligase FadD7 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase)	Rv0119	74%	30	270	126	N/D	N/D
active	cyt	761	6,3	0,08	Probable elongation factor G FusA2 (EF-G)	Rv0120c	90%	53	545	124	N/D	N/D

active	sds	1095	2,3	0,03	Maltokinase Mak	Rv0127	68%	26	199	97	N/D	N/D
dormant (D2)	cyt	1873	560,7	3,40	Maltokinase Mak	Rv0127	47%	14	77	N/D	N/D	3
active	cyt	663	146,8	1,78	Probable short-chain type dehydrogenase/reductase	Rv0148	86%	19	162	4	34	N/D
dormant (D1)	cyt	2153	10,5	0,53	Probable short-chain type dehydrogenase/reductase	Rv0148	42%	7	84	4	34	N/D
dormant (D1)	sds	2270	111,9	1,00	Probable short-chain type dehydrogenase/reductase	Rv0148	40%	6	186	N/D	25	10
dormant (D1)	sds	2277	92,1	0,82	Probable short-chain type dehydrogenase/reductase	Rv0148	72%	22	246	N/D	25	10
dormant (D2)	sds	1237	102,1	1,36	Probable short-chain type dehydrogenase/reductase	Rv0148	49%	9	108	N/D	25	10
dormant (D2)	sds	1262	32,4	0,43	Probable short-chain type dehydrogenase/reductase	Rv0148	91%	27	265	N/D	25	10
active	sds	1168	70,5	1,03	Phosphotyrosine protein phosphatase PTPB (protein-tyrosine-phosphatase) (PTPase)	Rv0153c	43%	9	56	16	N/D	N/D
active	cyt	784	32,1	0,39	Probable acyl-CoA dehydrogenase FadE2	Rv0154c	46%	16	198	44	N/D	N/D
active	cyt	720	12,9	0,16	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	83%	31	248	94	38	9
active	cyt	720	12,9	0,16	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	83%	31	248	94	38	9
active	sds	1150	15,8	0,23	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	43%	9	72	54	52	57
dormant (D1)	cyt	2130	8,3	0,42	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	37%	7	52	94	38	9
dormant (D1)	sds	2264	31,2	0,28	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	46%	12	167	54	52	57
dormant (D2)	sds	1229	10,2	0,14	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	39%	8	127	54	52	57
dormant (D2)	cyt	1883	186,9	1,13	Probable NAD(P) transhydrogenase (subunit alpha) PntAa [first part; catalytic part] (pyridine nucleotide transhydrogenase subunit alpha) (nicotinamide nucleotide transhydrogenase subunit alpha)	Rv0155	47%	9	49	94	38	9
active	sds	1141	9,5	0,14	Mce-family protein Mce1A	Rv0169	42%	10	56	57	N/D	N/D
active	sds	1142	12,7	0,19	Mce-family protein Mce1A	Rv0169	32%	7	45	57	N/D	N/D
active	sds	1081	2,6	0,04	Mce-family protein Mce1D	Rv0172	46%	14	81	95	N/D	N/D
active	sds	1147	36,2	0,53	Probable alternative RNA polymerase sigma factor SigG (RNA polymerase ECF type sigma factor)	Rv0182c	49%	12	45	29	N/D	N/D
active	cyt	681	29	0,35	Possible lysophospholipase	Rv0183	78%	11	106	48	N/D	N/D

active	cyt	682	10,7	0,13	Possible lysophospholipase	Rv0183	92%	23	199	48	N/D	N/D
dormant (D1)	sds	2274	74,4	0,66	Possible lysophospholipase	Rv0183	66%	16	180	N/D	35	N/D
active	cyt	777	5,8	0,07	Probable iron-regulated phosphoenolpyruvate carboxykinase [GTP] PckA (phosphoenolpyruvate carboxylase) (PEPCK)(pep carboxykinase)	Rv0211	76%	39	346	130	N/D	7
dormant (D2)	cyt	1904	224,7	1,36	Probable iron-regulated phosphoenolpyruvate carboxykinase [GTP] PckA (phosphoenolpyruvate carboxylase) (PEPCK)(pep carboxykinase)	Rv0211	76%	46	369	130	N/D	7
active	cyt	741	8,8	0,11	Probable enoyl-CoA hydratase EchA1 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv0222	94%	28	196	108	N/D	N/D
active	cyt	765	2,5	0,03	Probable aldehyde dehydrogenase	Rv0223c	68%	25	212	152	N/D	N/D
active	cyt	775	2,5	0,03	Succinate-semialdehyde dehydrogenase [NADP+] dependent (SSDH) GabD1	Rv0234c	45%	13	77	131	25	30
active	cyt	776	5,5	0,07	Succinate-semialdehyde dehydrogenase [NADP+] dependent (SSDH) GabD1	Rv0234c	89%	39	481	131	25	30
dormant (D1)	cyt	2125	17,2	0,87	Succinate-semialdehyde dehydrogenase [NADP+] dependent (SSDH) GabD1	Rv0234c	49%	15	48	131	25	30
dormant (D1)	cyt	2126	6,3	0,32	Succinate-semialdehyde dehydrogenase [NADP+] dependent (SSDH) GabD1	Rv0234c	88%	36	232	131	25	30
dormant (D2)	cyt	1891	46,6	0,28	Succinate-semialdehyde dehydrogenase [NADP+] dependent (SSDH) GabD1	Rv0234c	46%	13	72	131	25	30
active	sds	1148	45,9	0,67	Probable conserved lipoprotein LpqI	Rv0237	75%	25	223	24	N/D	N/D
active	cyt	785	3,7	0,04	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	86%	31	332	26	23	55
active	cyt	786	50,6	0,61	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	87%	30	425	26	23	55
active	sds	1132	28,7	0,42	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	65%	21	141	34	76	40
active	sds	1133	19,2	0,28	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	37%	12	64	34	76	40
dormant (D1)	cyt	2165	18,3	0,92	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	57%	22	259	26	23	55
dormant (D1)	cyt	2166	5,5	0,28	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	59%	21	181	26	23	55
dormant (D1)	cyt	2166	5,5	0,28	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	59%	21	181	26	23	55
dormant (D1)	sds	2281	8,5	0,08	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	27%	11	89	34	76	40
dormant (D1)	sds	2282	11,1	0,10	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	27%	8	48	34	76	40
dormant (D1)	sds	2287	4,3	0,04	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	26%	9	142	34	76	40
dormant (D1)	sds	2288	4,9	0,04	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	30%	10	88	34	76	40
dormant (D1)	sds	2289	4,3	0,04	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	23%	8	39	34	76	40
dormant (D1)	sds	2290	5,1	0,05	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	28%	9	123	34	76	40
--	--	--	---	--	---	--	---	--	--	---	--	---
dormant (D2)	sds	1221	22,2	0,30	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	49%	13	67	34	76	40
dormant (D2)	cyt	1900	12,3	0,07	Probable 3-oxoacyl-[acyl-carrier protein] reductase FabG4 (3-ketoacyl-acyl carrier protein reductase)	Rv0242c	54%	16	65	26	23	55
active	cyt	790	20,3	0,25	Probable acetyl-CoA acyltransferase FadA2 (3-ketoacyl-CoA thiolase) (beta-ketothiolase)	Rv0243	58%	23	257	69	N/D	N/D
active	sds	1100	4,2	0,06	Probable acetyl-CoA acyltransferase FadA2 (3-ketoacyl-CoA thiolase) (beta-ketothiolase)	Rv0243	47%	14	93	82	N/D	N/D
active	sds	1169	89,4	1,31	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0247c	79%	31	284	12	16	9
dormant (D1)	sds	2261	140,3	1,25	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0247c	31%	8	157	12	16	9
dormant (D2)	sds	1233	108,8	1,45	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0247c	72%	30	266	12	16	9
active	sds	1108	36,6	0,54	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0248c	71%	50	455	28	20	39
dormant (D1)	sds	2248	126,9	1,13	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0248c	32%	15	138	28	20	39
dormant (D1)	sds	2249	83,4	0,74	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0248c	30%	14	99	28	20	39
dormant (D2)	sds	1193	25,2	0,34	Probable succinate dehydrogenase [iron-sulfur subunit] (succinic dehydrogenase)	Rv0248c	60%	45	475	28	20	39
active	cyt	799	7,3	0,09	Probable fatty-acid-CoA ligase FadD2 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase)	Rv0270	86%	42	536	114	N/D	N/D
	ort	707	2.2	0.02	Probable acyl-CoA debydrogenase FadF6	By0271c	7/0/	10	296	457		N/D
active	Cyt	/9/	2,2	0,05		1102/10	7470	45	380	157	N/D	11,0
active	cyt	797	3,3	0,03	Possible S-adenosylmethionine-dependent methyltransferase	Rv0281	91%	43 31	443	157	4	56
active active	cyt sds	797 724 1156	3,3 16,8	0,03 0,04 0,25	Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase	Rv0281 Rv0281	91% 66%	43 31 14	443 130	157 147 53	4 N/D	56 N/D
active active active dormant (D1)	cyt sds cyt	797 724 1156 2133	2,2 3,3 16,8 46,8	0,03 0,04 0,25 2,36	Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase	Rv0281 Rv0281 Rv0281	91% 66% 37%	43 31 14 9	443 130 78	157 147 53 147	4 N/D 4	56 N/D 56
active active dormant (D1) dormant (D2)	cyt sds cyt cyt	797 724 1156 2133 1898	2,2 3,3 16,8 46,8 11,1	0,03 0,04 0,25 2,36 0,07	Possible S-adenosylmethionine-dependent methyltransferase	Rv0281 Rv0281 Rv0281 Rv0281 Rv0281	91% 66% 37% 88%	43 31 14 9 29	386 443 130 78 277	137 147 53 147 147	4 N/D 4 4	56 N/D 56 56
active active dormant (D1) dormant (D2) active	cyt sds cyt cyt cyt sds	724 1156 2133 1898 1125	2,2 3,3 16,8 46,8 11,1 3,6	0,03 0,04 0,25 2,36 0,07 0,05	Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3)	Rv0281 Rv0281 Rv0281 Rv0281 Rv0281 Rv0281 Rv0281	91% 66% 37% 88% 59%	43 31 14 9 29 15	380 443 130 78 277 164	137 147 53 147 147 86	4 N/D 4 4 4 N/D	56 N/D 56 56 48
active active dormant (D1) dormant (D2) active dormant (D1)	cyt sds cyt cyt cyt sds cyt	797 724 1156 2133 1898 1125 2168	2,2 3,3 16,8 46,8 11,1 3,6 6,5	0,03 0,04 0,25 2,36 0,07 0,05 0,33	Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3)	Rv0281 Rv0281 Rv0281 Rv0281 Rv0281 Rv0281 Rv0291	91% 66% 37% 88% 59% 61%	43 31 14 9 29 15 10	380 443 130 78 277 164 78	137 147 53 147 147 86 31	4 N/D 4 4 N/D 42	56 N/D 56 56 48 N/D
active active dormant (D1) dormant (D2) active dormant (D1) dormant (D2)	cyt sds cyt cyt sds cyt sds cyt sds	797 724 1156 2133 1898 1125 2168 1247	2,2 3,3 16,8 46,8 11,1 3,6 6,5 15,3	0,03 0,04 0,25 2,36 0,07 0,05 0,33 0,20	Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3)	Rv0231 Rv0281 Rv0281 Rv0281 Rv0281 Rv0291 Rv0291 Rv0291	91% 66% 37% 88% 59% 61% 84%	43 31 14 9 29 15 10 13	380 443 130 78 277 164 78 99	137 147 53 147 147 86 31 86	N/D 4 N/D 4 A 4 A 4 N/D 42 N/D	N/D 56 56 56 48 N/D 48
active active dormant (D1) dormant (D2) active dormant (D1) dormant (D2) dormant (D2)	cyt sds cyt cyt sds cyt sds cyt	797 724 1156 2133 1898 1125 2168 1247 1889	2,2 3,3 16,8 46,8 11,1 3,6 6,5 15,3 39	0,03 0,04 0,25 2,36 0,07 0,05 0,33 0,20 0,24	Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3)	Rv0281 Rv0281 Rv0281 Rv0281 Rv0281 Rv0291 Rv0291 Rv0291 Rv0291	91% 66% 37% 88% 59% 61% 84% 72%	43 31 14 9 29 15 10 13 20	380 443 130 78 277 164 78 99 65	137 147 53 147 147 86 31 86 N/D	4 N/D 4 4 N/D 42 N/D N/D	N/D 56 56 56 48 N/D 48 35
active active dormant (D1) dormant (D2) active dormant (D1) dormant (D2) dormant (D2) active	cyt sds cyt cyt sds cyt sds cyt sds cyt	797 724 1156 2133 1898 1125 2168 1247 1889 665	2,2 3,3 16,8 46,8 11,1 3,6 6,5 15,3 39 75,2	0,03 0,04 0,25 2,36 0,07 0,05 0,33 0,20 0,24 0,91	Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable pyrrolidone-carboxylate peptidase Pcp (5-oxoprolyl-peptidase) (pyroglutamyl- peptidase I) (PGP-I) (pyrase)	Rv0281 Rv0281 Rv0281 Rv0281 Rv0281 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291	74% 91% 66% 37% 88% 59% 61% 84% 72% 73%	43 31 14 9 29 15 10 13 20 9	380 443 130 78 277 164 78 99 65 82	137 147 53 147 147 86 31 86 N/D 10	N/D 4 N/D 4 N/D 42 N/D N/D N/D	N/D 56 56 56 48 N/D 48 35 N/D
active active dormant (D1) dormant (D2) active dormant (D1) dormant (D2) active dormant (D2) active	cyt sds cyt cyt sds cyt sds cyt sds cyt cyt cyt	797 724 1156 2133 1898 1125 2168 1247 1889 665 2134	2,2 3,3 16,8 46,8 11,1 3,6 6,5 15,3 39 75,2 4,9	0,03 0,04 0,25 2,36 0,07 0,05 0,33 0,20 0,24 0,91 0,25	Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable pyrrolidone-carboxylate peptidase Pcp (5-oxoprolyl-peptidase) (pyroglutamyl- peptidase I) (PGP-I) (pyrase) Possible dehydrogenase/reductase	Rv0231 Rv0281 Rv0281 Rv0281 Rv0281 Rv0291 Rv0291	74% 91% 66% 37% 88% 59% 61% 84% 72% 73% 41%	43 31 14 9 29 15 10 13 20 9 11	380 443 130 78 277 164 78 99 65 82 60	137 147 53 147 147 86 31 86 N/D 10 N/D	N/D 4 N/D 4 N/D 42 N/D N/D 42 N/D 42 N/D 42 N/D 49	N/D 56 56 56 48 N/D 48 35 N/D 47
active active dormant (D1) dormant (D2) active dormant (D2) dormant (D2) active dormant (D1) dormant (D1)	cyt sds cyt cyt sds cyt sds cyt cyt cyt cyt cyt	724 1156 2133 1898 1125 2168 1247 1889 665 2134 1893	2,2 3,3 16,8 46,8 11,1 3,6 6,5 15,3 39 75,2 4,9 21,7	0,03 0,04 0,25 2,36 0,07 0,05 0,33 0,20 0,24 0,91 0,25 0,13	Possible S-adenosylmethionine-dependent methyltransferase Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable membrane-anchored mycosin MycP3 (serine protease) (subtilisin-like protease) (subtilase-like) (mycosin-3) Probable pyrrolidone-carboxylate peptidase Pcp (5-oxoprolyl-peptidase) (pyroglutamyl- peptidase I) (PGP-I) (pyrase) Possible dehydrogenase/reductase Possible dehydrogenase/reductase	Rv0231 Rv0281 Rv0281 Rv0281 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0291 Rv0319 Rv0331	74% 91% 66% 37% 88% 59% 61% 84% 72% 73% 41% 55%	43 31 14 9 29 15 10 13 20 9 11 20	386 443 130 78 277 164 78 99 65 82 60 77	137 147 53 147 147 86 31 86 N/D 10 N/D N/D	N/D 4 N/D 4 N/D 42 N/D N/D N/D 49 49	N/D 56 56 56 48 N/D 48 35 N/D 47 47

dormant (D1)	sds	2230	42,1	0,38	Isoniazid inductible gene protein IniB	Rv0341	65%	3	71	N/D	2	3
dormant (D1)	sds	2231	22,3	0,20	Isoniazid inductible gene protein IniB	Rv0341	75%	4	93	N/D	2	3
dormant (D1)	sds	2237	493,8	4,40	Isoniazid inductible gene protein IniB	Rv0341	67%	7	96	N/D	2	3
dormant (D1)	sds	2238	488,7	4,36	Isoniazid inductible gene protein IniB	Rv0341	67%	7	86	N/D	2	3
dormant (D1)	sds	2239	461,9	4,12	Isoniazid inductible gene protein IniB	Rv0341	67%	7	80	N/D	2	3
dormant (D1)	sds	2240	122,6	1,09	Isoniazid inductible gene protein IniB	Rv0341	60%	5	86	N/D	2	3
dormant (D1)	sds	2241	130,6	1,16	Isoniazid inductible gene protein IniB	Rv0341	76%	7	106	N/D	2	3
dormant (D2)	sds	1210	168,1	2,24	Isoniazid inductible gene protein IniB	Rv0341	76%	10	102	N/D	2	3
dormant (D2)	sds	1211	308,9	4,12	Isoniazid inductible gene protein IniB	Rv0341	50%	9	68	N/D	2	3
dormant (D2)	sds	1212	158,5	2,11	Isoniazid inductible gene protein IniB	Rv0341	76%	8	80	N/D	2	3
dormant (D2)	sds	1213	80,3	1,07	Isoniazid inductible gene protein IniB	Rv0341	25%	11	89	N/D	2	3
dormant (D2)	sds	1237	102,1	1,36	Isoniazid inductible gene protein IniB	Rv0341	75%	5	56	N/D	2	3
dormant (D2)	sds	1238	93,6	1,25	Isoniazid inductible gene protein IniB	Rv0341	75%	6	46	N/D	2	3
dormant (D2)	sds	1259	54,2	0,72	Isoniazid inductible gene protein IniB	Rv0341	75%	7	88	N/D	2	3
dormant (D2)	sds	1263	27,3	0,36	Isoniazid inductible gene protein IniB	Rv0341	75%	6	77	N/D	2	3
dormant (D2)	cyt	1897	5,9	0,04	Probable conserved membrane protein	Rv0347	68%	13	88	N/D	N/D	67
active	cyt	742	136,9	1,66	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	85%	48	663	5	1	2
active	cyt	765	2,5	0,03	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	48%	17	114	5	1	2
active	cyt	777	5,8	0,07	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	30%	9	50	5	1	2
active	sds	1080	8,2	0,12	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	83%	41	428	68	13	54
dormant (D1)	cyt	2119	91,7	4,62	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	77%	41	406	5	1	2
dormant (D1)	cyt	2120	14,2	0,72	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	83%	39	188	5	1	2
dormant (D1)	cyt	2121	36,9	1,86	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	38%	12	89	5	1	2
dormant (D1)	cyt	2123	2,4	0,12	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	45%	15	76	5	1	2
dormant (D1)	cyt	2124	9	0,45	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	34%	14	84	5	1	2
dormant (D1)	cyt	2130	8,3	0,42	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	77%	23	321	5	1	2

dormant (D1)	cyt	2169	4,5	0,23	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	29%	10	48	5	1	2
dormant (D1)	sds	2209	226,4	2,02	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	59%	25	335	68	13	54
dormant (D1)	sds	2211	42,3	0,38	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	51%	19	264	68	13	54
dormant (D2)	sds	1199	11,7	0,16	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	80%	40	453	68	13	54
dormant (D2)	cyt	1778	367,3	2,23	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	67%	28	328	5	1	2
dormant (D2)	cyt	1779	634,8	3,85	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	58%	22	135	5	1	2
dormant (D2)	cyt	1876	10,1	0,06	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	27%	7	50	5	1	2
dormant (D2)	cyt	1883	186,9	1,13	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	69%	18	171	5	1	2
dormant (D2)	cyt	1891	46,6	0,28	Probable chaperone protein DnaK (heat shock protein 70) (heat shock 70 kDa protein) (HSP70)	Rv0350	36%	11	50	5	1	2
active	cyt	711	46,1	0,56	Probable GrpE protein (HSP-70 cofactor)	Rv0351	98%	19	233	28	N/D	N/D
dormant (D2)	sds	1256	45,8	0,61	Probable chaperone protein DnaJ1	Rv0352	61%	16	118	N/D	N/D	23
active	cyt	698	11,9	0,14	Conserved protein	Rv0356c	69%	11	100	96	N/D	N/D
active	sds	1156	16,8	0,25	Probable conserved membrane protein	Rv0361	44%	7	59	53	N/D	N/D
active	cyt	657	75,3	0,91	Probable fructose-bisphosphate aldolase Fba	Rv0363c	82%	22	276	9	12	13
dormant (D1)	cyt	2155	31,2	1,57	Probable fructose-bisphosphate aldolase Fba	Rv0363c	86%	24	250	9	12	13
dormant (D1)	cyt	2156	12,4	0,62	Probable fructose-bisphosphate aldolase Fba	Rv0363c	86%	24	256	9	12	13
dormant (D1)	cyt	2157	6,4	0,32	Probable fructose-bisphosphate aldolase Fba	Rv0363c	90%	23	265	9	12	13
dormant (D2)	cyt	1753	144	0,87	Probable fructose-bisphosphate aldolase Fba	Rv0363c	86%	24	313	9	12	13
dormant (D2)	cyt	1894	14,9	0,09	Probable fructose-bisphosphate aldolase Fba	Rv0363c	82%	21	165	9	12	13
active	cyt	793	11	0,13	Probable endopeptidase ATP binding protein (chain B) ClpB (ClpB protein) (heat shock protein F84.1)	Rv0384c	70%	52	572	101	N/D	N/D
active	cyt	794	4,7	0,06	Probable endopeptidase ATP binding protein (chain B) ClpB (ClpB protein) (heat shock protein F84.1)	Rv0384c	54%	39	352	101	N/D	N/D
active	cyt	795	3	0,04	Probable endopeptidase ATP binding protein (chain B) ClpB (ClpB protein) (heat shock protein F84.1)	Rv0384c	62%	20	108	101	N/D	N/D
dormant (D2)	sds	1194	11,8	0,16	Probable endopeptidase ATP binding protein (chain B) ClpB (ClpB protein) (heat shock protein F84.1)	Rv0384c	71%	53	499	N/D	N/D	53
active	cyt	673	18,1	0,22	F420-dependent glucose-6-phosphate dehydrogenase Fgd1	Rv0407	79%	23	261	80	N/D	29
active	sds	1182	9,1	0,13	F420-dependent glucose-6-phosphate dehydrogenase Fgd1	Rv0407	75%	21	230	63	N/D	N/D

dormant (D2)	cyt	1772	48,3	0,29	F420-dependent glucose-6-phosphate dehydrogenase Fgd1	Rv0407	71%	16	76	80	N/D	29
active	sds	1150	15,8	0,23	Probable glutamine-binding lipoprotein GlnH (GLNBP)	Rv0411c	76%	14	164	54	N/D	N/D
active	sds	1082	11,3	0,17	Probable lipoprotein aminopeptidase LpqL	Rv0418	86%	32	356	60	N/D	N/D
active	cyt	696	17,9	0,22	Probable exodeoxyribonuclease III protein XthA (exonuclease III) (EXO III) (AP endonuclease VI)	Rv0427c	62%	11	76	81	N/D	N/D
active	sds	1158	25,8	0,38	Probable exodeoxyribonuclease III protein XthA (exonuclease III) (EXO III) (AP endonuclease VI)	Rv0427c	39%	7	49	37	N/D	N/D
active	sds	1165	35,3	0,52	GCN5-related N-acetyltransferase	Rv0428c	70%	15	71	30	N/D	N/D
active	sds	1173	209,8	3,08	Periplasmic superoxide dismutase [Cu-Zn] SodC	Rv0432	84%	9	141	5	11	10
dormant (D1)	cyt	2153	10,5	0,53	Periplasmic superoxide dismutase [Cu-Zn] SodC	Rv0432	48%	6	68	N/D	34	N/D
dormant (D1)	sds	2276	249,2	2,22	Periplasmic superoxide dismutase [Cu-Zn] SodC	Rv0432	70%	5	195	5	11	10
dormant (D2)	sds	1237	102,1	1,36	Periplasmic superoxide dismutase [Cu-Zn] SodC	Rv0432	50%	6	63	5	11	10
active	cyt	812	1,1	0,01	Putative conserved ATPase	Rv0435c	70%	43	428	159	N/D	N/D
active	cyt	710	32,5	0,39	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	75%	6	87	3	9	2
active	cyt	725	8	0,10	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	47%	14	76	3	9	2
active	cyt	730	5,8	0,07	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	59%	5	60	3	9	2
active	cyt	743	258,7	3,14	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	68%	35	413	3	9	2
active	cyt	745	16,7	0,20	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	39%	11	91	3	9	2
active	cyt	762	14,2	0,17	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	45%	13	72	3	9	2
active	cyt	763	11,4	0,14	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	78%	46	462	3	9	2
active	cyt	765	2,5	0,03	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	55%	14	70	3	9	2
active	cyt	766	2,5	0,03	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	55%	17	137	3	9	2
active	cyt	767	2,6	0,03	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	69%	24	163	3	9	2
active	cyt	768	11,4	0,14	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	59%	21	111	3	9	2

active	cyt	769	3,4	0,04	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	62%	19	160	3	9	2
active	cyt	770	6,5	0,08	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	64%	13	78	3	9	2
active	cyt	771	7,1	0,09	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	44%	15	89	3	9	2
active	cyt	809	2,3	0,03	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	30%	8	42	3	9	2
active	sds	1076	173,6	2,55	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	70%	37	416	7	10	11
active	sds	1128	3,8	0,06	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	62%	30	386	7	10	11
dormant (D1)	cyt	2120	14,2	0,72	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	67%	27	104	3	9	2
dormant (D1)	cyt	2121	36,9	1,86	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	71%	35	371	3	9	2
dormant (D1)	cyt	2122	4,9	0,25	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	69%	26	178	3	9	2
dormant (D1)	cyt	2123	2,4	0,12	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	72%	33	274	3	9	2
dormant (D1)	cyt	2123	2,4	0,12	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	65%	33	262	3	9	2
dormant (D1)	cyt	2124	9	0,45	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	51%	10	60	3	9	2
dormant (D1)	cyt	2139	14,7	0,74	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	53%	18	97	3	9	2
dormant (D1)	cyt	2140	10,3	0,52	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	45%	11	78	3	9	2
dormant (D1)	cyt	2142	39,2	1,97	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	51%	13	64	3	9	2
dormant (D1)	sds	2212	249,9	2,23	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	40%	13	177	7	10	11
dormant (D1)	sds	2222	145,7	1,30	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	23%	8	87	7	10	11
dormant (D2)	sds	1201	96,7	1,29	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	80%	50	485	7	10	11
dormant (D2)	sds	1202	28,6	0,38	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	80%	50	509	7	10	11
dormant (D2)	sds	1206	7,4	0,10	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	63%	32	270	7	10	11

dormant (D2)	sds	1206	7,4	0,10	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	63%	32	270	7	10	11
dormant (D2)	sds	1207	9,6	0,13	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	63%	33	255	7	10	11
dormant (D2)	sds	1241	11,1	0,15	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	54%	20	99	7	10	11
dormant (D2)	cyt	1745	96,3	0,58	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	51%	11	80	3	9	2
dormant (D2)	cyt	1746	102,2	0,62	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	32%	9	63	3	9	2
dormant (D2)	cyt	1755	147,3	0,89	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	46%	6	52	3	9	2
dormant (D2)	cyt	1756	127,4	0,77	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	55%	13	89	3	9	2
dormant (D2)	cyt	1757	29,7	0,18	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	40%	24	127	3	9	2
dormant (D2)	cyt	1758	26,9	0,16	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	39%	14	139	3	9	2
dormant (D2)	cyt	1774	24,1	0,15	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	72%	17	49	3	9	2
dormant (D2)	cyt	1775	44,2	0,27	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	34%	10	72	3	9	2
dormant (D2)	cyt	1779	634,8	3,85	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	63%	26	209	3	9	2
dormant (D2)	cyt	1781	217,6	1,32	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	64%	23	172	3	9	2
dormant (D2)	cyt	1883	186,9	1,13	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	44%	14	192	3	9	2
dormant (D2)	cyt	1886	31,8	0,19	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	57%	19	82	3	9	2
dormant (D2)	cyt	1887	4,8	0,03	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	36%	7	80	3	9	2
dormant (D2)	cyt	1887	4,8	0,03	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	36%	7	80	3	9	2
dormant (D2)	cyt	1888	23,9	0,14	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	63%	29	124	3	9	2
dormant (D2)	cyt	1891	46,6	0,28	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	45%	13	68	3	9	2
dormant (D2)	cyt	1892	45,1	0,27	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	62%	27	122	3	9	2

dormant (D2)	cyt	1898	11,1	0,07	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	45%	17	71	3	9	2
dormant (D2)	cyt	1901	16,6	0,10	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	37%	15	90	3	9	2
dormant (D2)	cyt	1902	6,8	0,04	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A)	Rv0440	33%	12	74	3	9	2
active	sds	1185	0,9	0,01	Anti-sigma factor RskA (regulator of sigma K)	Rv0444c	83%	18	126	107	46	N/D
dormant (D1)	sds	2260	42,9	0,38	Anti-sigma factor RskA (regulator of sigma K)	Rv0444c	40%	8	116	107	46	N/D
active	cyt	772	2,5	0,03	Probable aldehyde dehydrogenase	Rv0458	79%	31	406	154	N/D	N/D
dormant (D1)	sds	2239	461,9	4,12	Probable aldehyde dehydrogenase	Rv0458	28%	10	161	N/D	4	N/D
active	cyt	803	11,1	0,13	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	88%	32	276	100	7	63
active	sds	1096	17,7	0,26	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	28%	10	164	49	N/D	70
dormant (D1)	cyt	2158	4,7	0,24	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	65%	18	133	100	7	63
dormant (D1)	cyt	2158	4,7	0,24	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	68%	18	133	100	7	63
dormant (D1)	cyt	2161	42,9	2,16	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	59%	17	114	100	7	63
dormant (D1)	cyt	2162	23,9	1,20	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	47%	13	72	100	7	63
dormant (D2)	sds	1216	6,5	0,09	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	63%	21	136	49	N/D	70
dormant (D2)	cyt	1899	7,2	0,04	Dihydrolipoamide dehydrogenase LpdC (lipoamide reductase (NADH)) (lipoyl dehydrogenase) (dihydrolipoyl dehydrogenase) (diaphorase)	Rv0462	65%	24	129	100	7	63
dormant (D1)	sds	2302	45,1	0,40	3-hydroxybutyryl-CoA dehydrogenase FadB2 (beta-hydroxybutyryl-CoA dehydrogenase) (BHBD)	Rv0468	47%	10	58	N/D	45	N/D
dormant (D2)	cyt	1895	7,9	0,05	3-hydroxybutyryl-CoA dehydrogenase FadB2 (beta-hydroxybutyryl-CoA dehydrogenase) (BHBD)	Rv0468	66%	18	156	46	N/D	62
active	sds	1169	89,4	1,31	Mycolic acid synthase PcaA (cyclopropane synthase)	Rv0470c	50%	10	76	12	N/D	N/D
dormant (D2)	sds	1254	123,8	1,65	Probable short-chain type oxidoreductase	Rv0484c	59%	8	90	N/D	N/D	7
dormant (D1)	cyt	2153	10,5	0,53	Probable phosphoglycerate mutase 1 Gpm1 (phosphoglyceromutase) (PGAM) (BPG- dependent PGAM)	Rv0489	36%	6	70	N/D	34	N/D
dormant (D2)	cyt	1895	7,9	0,05	Cyclopropane-fatty-acyl-phospholipid synthase 2 CmaA2 (cyclopropane fatty acid synthase) (CFA synthase) (cyclopropane mycolic acid synthase 2) (mycolic acid trans- cyclopropane synthetase)	Rv0503c	41%	10	72	N/D	N/D	62
active	cyt	668	23,3	0,28	Conserved protein	Rv0525	64%	8	78	59	N/D	N/D

						-						
active	cyt	677	45	0,55	Possible peroxidase BpoC (non-haem peroxidase)	Rv0554	88%	22	135	30	N/D	N/D
active	cyt	678	34,7	0,42	Possible peroxidase BpoC (non-haem peroxidase)	Rv0554	62%	11	62	30	N/D	N/D
dormant (D2)	sds	1263	27,3	0,36	Possible peroxidase BpoC (non-haem peroxidase)	Rv0554	57%	11	103	N/D	N/D	38
dormant (D2)	sds	1263	27,3	0,36	Possible peroxidase BpoC (non-haem peroxidase)	Rv0554	56%	11	102	N/D	N/D	38
active	cyt	807	4,1	0,05	Probable bifunctional menaquinone biosynthesis protein MenD : 2-succinyl-6-hydroxy- 2,4-cyclohexadiene-1-carboxylate synthase (SHCHC synthase) + 2-oxoglutarate decarboxylase (alpha- ketoglutarate decarboxylase) (KDC)	Rv0555	62%	26	354	140	N/D	N/D
active	sds	1157	22,9	0,34	Probable methyltransferase/methylase	Rv0567	52%	13	95	40	N/D	N/D
active	cyt	803	11,1	0,13	Conserved protein	Rv0571c	69%	14	64	100	N/D	N/D
active	cyt	708	52,5	0,64	Conserved protein TB27.3	Rv0577	51%	12	132	24	26	17
dormant (D1)	cyt	2141	16,9	0,85	Conserved protein TB27.3	Rv0577	70%	10	48	24	26	17
dormant (D2)	cyt	1744	112,7	0,68	Conserved protein TB27.3	Rv0577	70%	13	174	24	26	17
active	cyt	669	50,8	0,62	Probable enoyl-CoA hydratase EchA3 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv0632c	85%	24	190	25	22	66
dormant (D1)	cyt	2147	18,7	0,94	Probable enoyl-CoA hydratase EchA3 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv0632c	87%	22	301	25	22	66
dormant (D2)	cyt	1769	6,1	0,04	Probable enoyl-CoA hydratase EchA3 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv0632c	76%	14	182	25	22	66
active	cyt	703	71,6	0,87	Possible glyoxalase II (hydroxyacylglutathione hydrolase) (GLX II)	Rv0634c	49%	8	62	13	N/D	N/D
active	cyt	736	9,3	0,11	Probable transcription antitermination protein NusG	Rv0639	54%	19	274	105	N/D	N/D
active	sds	1160	29,7	0,44	Methoxy mycolic acid synthase 4 MmaA4 (methyl mycolic acid synthase 4) (MMA4) (hydroxy mycolic acid synthase)	Rv0642c	98%	36	380	32	N/D	N/D
active	cyt	811	2,8	0,03	Probable dioxygenase	Rv0654	33%	13	58	150	N/D	N/D
active	sds	1147	36,2	0,53	Possible ribonucleotide-transport ATP-binding protein ABC transporter Mkl	Rv0655	59%	34	270	29	89	40
dormant (D1)	sds	2288	4,9	0,04	Possible ribonucleotide-transport ATP-binding protein ABC transporter Mkl	Rv0655	44%	12	124	29	89	40
dormant (D2)	sds	1221	22,2	0,30	Possible ribonucleotide-transport ATP-binding protein ABC transporter Mkl	Rv0655	94%	46	349	29	89	40
dormant (D2)	sds	1221	22,2	0,30	Possible ribonucleotide-transport ATP-binding protein ABC transporter Mkl	Rv0655	94%	46	349	29	89	40
active	sds	1101	2,7	0,04	DNA-directed RNA polymerase (beta chain) RpoB (transcriptase beta chain) (RNA polymerase beta subunit)	Rv0667	64%	64	510	94	17	69
dormant (D1)	sds	2204	137,3	1,22	DNA-directed RNA polymerase (beta chain) RpoB (transcriptase beta chain) (RNA polymerase beta subunit)	Rv0667	45%	37	381	94	17	69
dormant (D2)	sds	1190	7,1	0,09	DNA-directed RNA polymerase (beta chain) RpoB (transcriptase beta chain) (RNA polymerase beta subunit)	Rv0667	53%	51	433	94	17	69
dormant (D2)	cyt	1776	9,8	0,06	DNA-directed RNA polymerase (beta chain) RpoB (transcriptase beta chain) (RNA polymerase beta subunit)	Rv0667	57%	51	461	N/D	N/D	60

active	cyt	662	49,2	0,60	Probable endonuclease IV End (endodeoxyribonuclease IV) (apurinase)	Rv0670	91%	25	260	27	N/D	N/D
active	cyt	810	4,2	0,05	Probable acyl-CoA dehydrogenase FadE8	Rv0672	41%	18	121	139	N/D	N/D
active	cyt	760	3,8	0,05	Probable elongation factor G FusA1 (EF-G)	Rv0684	76%	50	532	143	33	N/D
active	sds	1103	9,8	0,14	Probable elongation factor G FusA1 (EF-G)	Rv0684	77%	50	472	61	33	64
dormant (D1)	sds	2207	77,4	0,69	Probable elongation factor G FusA1 (EF-G)	Rv0684	46%	27	332	61	33	64
dormant (D2)	sds	1197	9,5	0,13	Probable elongation factor G FusA1 (EF-G)	Rv0684	62%	45	342	61	33	64
active	cyt	704	23,7	0,29	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	35%	11	67	1	21	10
active	cyt	753	20,4	0,25	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	40%	12	78	1	21	10
active	cyt	754	16,3	0,20	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	71%	26	133	1	21	10
active	cyt	779	395,3	4,80	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	85%	40	399	1	21	10
active	sds	1124	387,8	5,69	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	90%	41	531	2	1	1
active	sds	1133	19,2	0,28	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	45%	11	41	2	1	1
active	sds	1141	9,5	0,14	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	64%	20	151	2	1	1
active	sds	1142	12,7	0,19	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	66%	26	219	2	1	1
active	sds	1163	20,3	0,30	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	82%	25	256	2	1	1
dormant (D1)	cyt	2137	18,8	0,95	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	51%	8	128	1	21	10
dormant (D1)	cyt	2153	10,5	0,53	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	69%	11	89	1	21	10
dormant (D1)	sds	2223	265,5	2,37	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	47%	12	168	2	1	1
dormant (D1)	sds	2224	947,1	4,88	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	64%	25	267	2	1	1
dormant (D2)	sds	1204	434	5,79	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	81%	31	362	2	1	1
dormant (D2)	sds	1217	61,1	0,81	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	78%	33	274	2	1	1
dormant (D2)	sds	1246	6,2	0,08	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	51%	12	84	2	1	1
dormant (D2)	sds	1249	12,4	0,17	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	22%	7	45	2	1	1
dormant (D2)	sds	1250	9,5	0,13	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	67%	24	209	2	1	1
dormant (D2)	sds	1266	10	0,13	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	77%	18	134	2	1	1
dormant (D2)	sds	1267	8,8	0,12	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	67%	31	289	2	1	1
dormant (D2)	sds	1267	8,8	0,12	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	67%	31	289	2	1	1
dormant (D2)	cyt	1758	26,9	0,16	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	43%	7	77	1	21	10

dormant (D2)	cyt	1775	44,2	0,27	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	30%	10	63	1	21	10
dormant (D2)	cyt	1879	168,9	1,02	Probable iron-regulated elongation factor TU Tuf (EF-TU)	Rv0685	79%	29	209	1	21	10
active	cyt	768	11,4	0,14	Putative ferredoxin reductase	Rv0688	76%	27	251	99	N/D	N/D
active	cyt	769	3,4	0,04	Putative ferredoxin reductase	Rv0688	74%	16	133	99	N/D	N/D
active	sds	1127	4,1	0,06	Putative ferredoxin reductase	Rv0688	56%	13	80	84	N/D	N/D
active	cyt	811	2,8	0,03	Possible protease IV SppA (endopeptidase IV) (signal peptide peptidase)	Rv0724	66%	37	285	150	N/D	N/D
dormant (D1)	cyt	2137	18,8	0,95	Possible S-adenosylmethionine-dependent methyltransferase	Rv0731c	69%	17	148	8	21	42
dormant (D2)	cyt	1758	26,9	0,16	Possible S-adenosylmethionine-dependent methyltransferase	Rv0731c	61%	14	86	8	21	42
active	cyt	712	18,8	0,23	Adenylate kinase Adk (ATP-AMP transphosphorylase)	Rv0733	46%	10	94	77	N/D	71
dormant (D2)	cyt	1771	2,9	0,02	Adenylate kinase Adk (ATP-AMP transphosphorylase)	Rv0733	54%	8	102	77	N/D	71
active	cyt	804	16,5	0,20	Probable methylmalonate-semialdehyde dehydrogenase MmsA (methylmalonic acid semialdehyde dehydrogenase) (MMSDH)	Rv0753c	89%	43	525	86	N/D	25
dormant (D2)	cyt	1877	62,1	0,38	Probable methylmalonate-semialdehyde dehydrogenase MmsA (methylmalonic acid semialdehyde dehydrogenase) (MMSDH)	Rv0753c	73%	32	321	86	N/D	25
active	sds	1170	30,5	0,45	Possible two component system response transcriptional positive regulator PhoP	Rv0757	49%	7	83	31	28	15
dormant (D1)	sds	2306	97,6	0,87	Possible two component system response transcriptional positive regulator PhoP	Rv0757	26%	5	202	31	28	15
dormant (D2)	sds	1235	62,4	0,83	Possible two component system response transcriptional positive regulator PhoP	Rv0757	39%	6	46	31	28	15
active	cyt	729	9,7	0,12	Possible zinc-containing alcohol dehydrogenase NAD dependent AdhB	Rv0761c	71%	26	173	104	N/D	N/D
dormant (D2)	cyt	1747	92,9	0,56	29 KDa antigen CFP29	Rv0798c	85%	20	138	N/D	N/D	21
active	sds	1136	23,5	0,34	Conserved protein	Rv0811c	88%	26	190	38	N/D	N/D
active	cyt	733	11,5	0,14	Conserved protein	Rv0813c	68%	9	80	97	N/D	N/D
active	cyt	705	19,1	0,23	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	90%	25	307	74	32	24
active	cyt	705	19,1	0,23	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	93%	26	325	74	32	24
dormant (D1)	cyt	2144	13,2	0,66	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	89%	23	299	74	32	24
dormant (D2)	cyt	1749	71,8	0,44	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	91%	28	469	74	32	24
dormant (D2)	cyt	1750	34	0,21	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	57%	12	104	74	32	24
dormant (D2)	cyt	1752	22,3	0,14	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	53%	9	92	74	32	24

dormant (D2)	cyt	1896	5,6	0,03	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	46%	9	70	74	32	24
dormant (D2)	cyt	1897	5,9	0,04	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	60%	18	142	74	32	24
dormant (D2)	cyt	1897	5,9	0,04	Probable thiosulfate sulfurtransferase CysA2 (rhodanese-like protein) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv0815c	60%	17	132	74	32	24
active	cyt	675	19,4	0,24	Transcriptional regulatory protein	Rv0818	70%	11	85	72	N/D	N/D
dormant (D1)	sds	2259	71,7	0,64	Transcriptional regulatory protein	Rv0818	35%	7	78	N/D	38	N/D
active	cyt	694	27,2	0,33	Probable acyl-[acyl-carrier protein] desaturase DesA1 (acyl-[ACP] desaturase) (stearoyl- ACP desaturase) (protein Des)	Rv0824c	87%	32	250	51	N/D	N/D
active	cyt	704	23,7	0,29	Conserved protein	Rv0831c	55%	10	70	58	N/D	N/D
active	cyt	705	19,1	0,23	Conserved protein	Rv0831c	42%	10	68	58	N/D	N/D
active	sds	1178	79,8	1,17	Conserved protein	Rv0831c	95%	32	435	14	37	35
active	sds	1184	20,4	0,30	Conserved protein	Rv0831c	92%	28	270	14	37	35
dormant (D1)	sds	2305	72,1	0,64	Conserved protein	Rv0831c	78%	15	143	14	37	35
dormant (D2)	sds	1239	29,9	0,40	Conserved protein	Rv0831c	95%	34	394	14	37	35
dormant (D2)	sds	1263	27,3	0,36	Conserved protein	Rv0831c	35%	8	90	14	37	35
dormant (D1)	cyt	2159	1,7	0,09	Probable pyruvate or indole-3-pyruvate decarboxylase Pdc	Rv0853c	45%	12	62	96	56	41
dormant (D1)	cyt	2160	1,5	0,08	Probable pyruvate or indole-3-pyruvate decarboxylase Pdc	Rv0853c	75%	24	277	96	56	41
dormant (D2)	cyt	1875	29,1	0,18	Probable pyruvate or indole-3-pyruvate decarboxylase Pdc	Rv0853c	72%	26	174	96	56	41
active	cyt	752	15,6	0,19	Possible acyl-CoA thiolase FadA	Rv0859	90%	36	443	90	18	18
active	sds	1144	8,1	0,12	Possible acyl-CoA thiolase FadA	Rv0859	57%	22	254	70	30	25
dormant (D1)	cyt	2134	4,9	0,25	Possible acyl-CoA thiolase FadA	Rv0859	84%	29	238	90	18	18
dormant (D1)	cyt	2135	22,7	1,14	Possible acyl-CoA thiolase FadA	Rv0859	84%	32	264	90	18	18
dormant (D1)	sds	2226	87,4	0,04	Possible acyl-CoA thiolase FadA	Rv0859	32%	13	156	70	30	25
dormant (D1)	sds	2301	12,6	0,11	Possible acyl-CoA thiolase FadA	Rv0859	31%	12	73	70	30	25
dormant (D2)	sds	1218	43,2	0,58	Possible acyl-CoA thiolase FadA	Rv0859	72%	27	200	70	30	25
dormant (D2)	sds	1218	43,2	0,58	Possible acyl-CoA thiolase FadA	Rv0859	75%	30	244	70	30	25
dormant (D2)	sds	1218	43,2	0,58	Possible acyl-CoA thiolase FadA	Rv0859	75%	30	244	70	30	25
dormant (D2)	sds	1266	10	0,13	Possible acyl-CoA thiolase FadA	Rv0859	58%	22	156	70	30	25

dormant (D2)	cyt	1880	103,3	0,63	Possible acyl-CoA thiolase FadA	Rv0859	89%	34	241	90	18	18
dormant (D2)	cyt	1893	21,7	0,13	Possible acyl-CoA thiolase FadA	Rv0859	52%	21	99	90	18	18
dormant (D2)	cyt	1893	21,7	0,13	Possible acyl-CoA thiolase FadA	Rv0859	56%	23	100	90	18	18
active	cyt	796	26,8	0,33	Probable fatty oxidation protein FadB	Rv0860	78%	53	464	53	58	N/D
active	cyt	797	2,2	0,03	Probable fatty oxidation protein FadB	Rv0860	51%	23	136	53	58	N/D
active	sds	1110	1,8	0,03	Probable fatty oxidation protein FadB	Rv0860	68%	52	427	102	66	32
dormant (D1)	cyt	2172	0,9	0,05	Probable fatty oxidation protein FadB	Rv0860	66%	40	374	53	58	N/D
dormant (D1)	sds	2245	21,9	0,20	Probable fatty oxidation protein FadB	Rv0860	44%	22	236	102	66	32
dormant (D1)	sds	2246	15,9	0,14	Probable fatty oxidation protein FadB	Rv0860	30%	12	132	102	66	32
dormant (D2)	sds	1192	32,6	0,43	Probable fatty oxidation protein FadB	Rv0860	75%	62	382	102	66	32
active	cyt	763	11,4	0,14	Possible phosphoserine aminotransferase SerC (PSAT)	Rv0884c	68%	17	66	98	17	44
dormant (D1)	cyt	2128	23,1	1,16	Possible phosphoserine aminotransferase SerC (PSAT)	Rv0884c	89%	23	181	98	17	44
dormant (D1)	cyt	2128	23,1	1,16	Possible phosphoserine aminotransferase SerC (PSAT)	Rv0884c	89%	23	181	98	17	44
dormant (D1)	cyt	2169	4,5	0,23	Possible phosphoserine aminotransferase SerC (PSAT)	Rv0884c	48%	12	81	98	17	44
dormant (D2)	cyt	1888	23,9	0,14	Possible phosphoserine aminotransferase SerC (PSAT)	Rv0884c	72%	20	120	98	17	44
active	sds	1179	6,2	0,09	Probable citrate synthase II CitA	Rv0889c	30%	9	76	73	N/D	N/D
dormant (D2)	cyt	1879	168,9	1,02	Probable citrate synthase I GltA2	Rv0896	76%	24	188	N/D	N/D	10
active	cyt	740	18,8	0,23	Two component response transcriptional regulatory protein PrrA	Rv0903c	63%	8	66	76	N/D	N/D
dormant (D1)	sds	2270	111,9	1,00	Two component response transcriptional regulatory protein PrrA	Rv0903c	52%	8	95	N/D	25	N/D
active	cyt	665	75,2	0,91	Possible enoyl-CoA hydratase EchA6 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv0905	92%	30	307	10	N/D	N/D
active	sds	1096	17,7	0,26	Conserved protein	Rv0907	42%	12	62	49	N/D	N/D
dormant (D1)	cyt	2152	8,8	0,44	Conserved protein	Rv0925c	43%	10	89	N/D	37	N/D
active	cyt	671	12,6	0,15	Probable short-chain type dehydrogenase/reductase	Rv0927c	57%	10	105	95	N/D	N/D
active	sds	1157	22,9	0,34	Periplasmic phosphate-binding lipoprotein PstS3 (PBP-3) (PstS3) (PHOS1)	Rv0928	62%	15	167	40	N/D	N/D
active	cyt	692	18,6	0,23	Transmembrane serine/threonine-protein kinase D PknD (protein kinase D) (STPK D)	Rv0931c	64%	15	116	78	N/D	N/D
active	sds	1109	16,8	0,25	Transmembrane serine/threonine-protein kinase D PknD (protein kinase D) (STPK D)	Rv0931c	45%	17	77	16	N/D	N/D
active	sds	1168	70,5	1,03	Transmembrane serine/threonine-protein kinase D PknD (protein kinase D) (STPK D)	Rv0931c	53%	7	62	16	N/D	N/D
dormant (D1)	cyt	2132	16,4	0,83	Periplasmic phosphate-binding lipoprotein PstS2 (PBP-2) (PstS2)	Rv0932c	49%	10	84	N/D	4	N/D

dormant (D1)	out	2122	46.9	2.26	Devinlesmis phase has hinding linearatein DetC2 (DDD 2) (DetC2)	D. 0022-	6 4 9/	11	96		4	
dormant (D1)	Cyt	2133	40,8	2,30	Peripiasmic prosphate-binding lipoprotein PStS2 (PBP-2) (PStS2)	KVU932C	64%	11	80	N/D	4	N/D
active	cyt	735	6,9	0,08	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	98%	20	189	117	4	11
active	sds	1155	484,3	5,79	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	90%	18	275	1	7	20
active	sds	1156	16,8	0,25	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	56%	7	49	1	7	20
active	sds	1157	22,9	0,34	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	69%	9	54	1	7	20
active	sds	1182	9,1	0,13	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	47%	5	61	1	7	20
dormant (D1)	cyt	2132	16,4	0,83	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	75%	13	140	117	4	11
dormant (D1)	cyt	2133	46,8	2,36	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	58%	11	91	117	4	11
dormant (D1)	sds	2218	304,5	2,71	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	65%	11	159	1	7	20
dormant (D2)	sds	1230	54,2	0,72	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	69%	11	157	1	7	20
dormant (D2)	cyt	1755	147,3	0,89	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	86%	17	167	117	4	11
dormant (D2)	cyt	1756	127,4	0,77	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	69%	13	120	117	4	11
dormant (D2)	cyt	1898	11,1	0,07	Periplasmic phosphate-binding lipoprotein PstS1 (PBP-1) (PstS1)	Rv0934	59%	9	57	117	4	11
dormant (D2)	cyt	1877	62,1	0,38	Probable glucose-6-phosphate isomerase Pgi (GPI) (phosphoglucose isomerase) (phosphohexose isomerase) (phi)	Rv0946c	47%	18	125	N/D	N/D	25
active	cyt	723	6,8	0,08	Probable succinyl-CoA synthetase (beta chain) SucC (SCS-beta)	Rv0951	79%	28	163	119	76	9
dormant (D1)	sds	2228	30,6	0,27	Probable succinyl-CoA synthetase (beta chain) SucC (SCS-beta)	Rv0951	18%	3	113	N/D	49	N/D
dormant (D1)	sds	2234	41,1	0,37	Probable succinyl-CoA synthetase (beta chain) SucC (SCS-beta)	Rv0951	21%	8	70	N/D	49	N/D
dormant (D2)	cyt	1883	186,9	1,13	Probable succinyl-CoA synthetase (beta chain) SucC (SCS-beta)	Rv0951	46%	14	58	119	76	9
active	cyt	659	74,7	0,91	Probable succinyl-CoA synthetase (alpha chain) SucD (SCS-alpha)	Rv0952	93%	25	324	11	14	46
dormant (D1)	cyt	2151	27	1,36	Probable succinyl-CoA synthetase (alpha chain) SucD (SCS-alpha)	Rv0952	92%	23	299	11	14	46
dormant (D1)	sds	2260	42,9	0,38	Probable succinyl-CoA synthetase (alpha chain) SucD (SCS-alpha)	Rv0952	26%	7	72	N/D	46	N/D
dormant (D2)	cyt	1752	22,3	0,14	Probable succinyl-CoA synthetase (alpha chain) SucD (SCS-alpha)	Rv0952	74%	23	270	11	14	46
dormant (D2)	cyt	1897	5,9	0,04	Probable succinyl-CoA synthetase (alpha chain) SucD (SCS-alpha)	Rv0952	46%	9	50	11	14	46
active	cyt	688	21,4	0,26	Probable 5'-phosphoribosylglycinamide formyltransferase PurN (GART) (gar transformylase) (5'-phosphoribosylglycinamide transformylase)	Rv0956	87%	14	133	64	N/D	N/D
dormant (D2)	sds	1262	32,4	0,43	Mycobacterial persistence regulator MRPA (two component response transcriptional regulatory protein)	Rv0981	62%	9	54	N/D	N/D	33
active	sds	1134	12,5	0,18	Probable molybdopterin biosynthesis protein MoeA1	Rv0994	70%	21	108	59	N/D	N/D
active	cyt	722	8,7	0,11	Probable arginine deiminase ArcA (adi) (ad) (arginine dihydrolase)	Rv1001	62%	17	71	104	N/D	18

active	cyt	729	9,7	0,12	Probable arginine deiminase ArcA (adi) (ad) (arginine dihydrolase)	Rv1001	62%	16	95	104	N/D	18
dormant (D2)	cyt	1880	103,3	0,63	Probable arginine deiminase ArcA (adi) (ad) (arginine dihydrolase)	Rv1001	51%	9	64	104	N/D	18
dormant (D2)	cyt	1893	21,7	0,13	Probable arginine deiminase ArcA (adi) (ad) (arginine dihydrolase)	Rv1001	62%	16	132	104	N/D	18
active	sds	1089	4,3	0,06	Unknown protein	Rv1006	77%	32	299	80	75	N/D
dormant (D1)	cyt	2159	1,7	0,09	Unknown protein	Rv1006	73%	27	232	N/D	56	41
dormant (D1)	cyt	2160	1,5	0,08	Unknown protein	Rv1006	48%	8	78	N/D	56	41
dormant (D1)	sds	2242	11,2	0,10	Unknown protein	Rv1006	72%	4	178	80	75	N/D
dormant (D1)	sds	2308	8,7	0,08	Unknown protein	Rv1006	36%	10	103	80	75	N/D
dormant (D2)	cyt	1875	29,1	0,18	Unknown protein	Rv1006	55%	13	49	N/D	56	41
active	cyt	686	27	0,33	Probable ribose-phosphate pyrophosphokinase PrsA (phosphoribosyl pyrophosphate synthetase) (PRPP synthetase)	Rv1017c	61%	16	98	52	N/D	N/D
active	sds	1167	135,5	1,99	Probable ribose-phosphate pyrophosphokinase PrsA (phosphoribosyl pyrophosphate synthetase) (PRPP synthetase)	Rv1017c	53%	12	74	9	N/D	14
dormant (D2)	sds	1231	12,9	0,17	Probable ribose-phosphate pyrophosphokinase PrsA (phosphoribosyl pyrophosphate synthetase) (PRPP synthetase)	Rv1017c	49%	15	75	9	N/D	14
dormant (D2)	sds	1232	62,6	0,83	Probable ribose-phosphate pyrophosphokinase PrsA (phosphoribosyl pyrophosphate synthetase) (PRPP synthetase)	Rv1017c	52%	18	62	9	N/D	14
active	sds	1159	38,7	0,57	Conserved protein	Rv1021	76%	19	118	27	N/D	29
dormant (D2)	sds	1226	37,5	0,50	Conserved protein	Rv1021	62%	12	64	27	N/D	29
active	cyt	750	7,5	0,09	Probable enolase Eno	Rv1023	84%	23	306	112	26	48
active	sds	1130	8,1	0,12	Probable enolase Eno	Rv1023	80%	29	422	69	19	22
dormant (D1)	cyt	2138	14	0,71	Probable enolase Eno	Rv1023	81%	28	330	112	26	48
dormant (D1)	cyt	2141	16,9	0,85	Probable enolase Eno	Rv1023	44%	11	69	112	26	48
dormant (D1)	sds	2217	129,5	1,15	Probable enolase Eno	Rv1023	12%	4	115	69	19	22
dormant (D2)	sds	1215	49,8	0,66	Probable enolase Eno	Rv1023	80%	30	400	69	19	22
dormant (D2)	cyt	1761	19,5	0,12	Probable enolase Eno	Rv1023	75%	24	295	112	26	48
dormant (D1)	sds	2227	83,9	0,75	Conserved hypothetical protein	Rv1063c	53%	6	76	N/D	31	N/D
active	cyt	719	22,2	0,27	Possible enoyl-CoA hydratase EchA9 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv1071c	73%	19	141	63	N/D	N/D
dormant (D2)	sds	1228	10,8	0,14	Possible enoyl-CoA hydratase EchA9 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv1071c	57%	8	69	N/D	N/D	56
active	cyt	751	45,1	0,55	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	91%	39	343	29	39	12

dormant (D1)	cyt	2129	7,4	0,37	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	92%	51	273	29	39	12
dormant (D1)	cyt	2134	4,9	0,25	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	60%	13	188	29	39	12
dormant (D1)	sds	2233	28,9	0,26	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	32%	7	66	N/D	56	N/D
dormant (D2)	cyt	1774	24,1	0,15	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	55%	16	96	29	39	12
dormant (D2)	cyt	1884	145,9	0,88	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	93%	41	329	29	39	12
dormant (D2)	cyt	1888	23,9	0,14	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	48%	12	87	29	39	12
dormant (D2)	cyt	1903	17,7	0,11	Probable beta-ketoacyl CoA thiolase FadA3	Rv1074c	57%	13	69	29	39	12
active	cyt	773	10,5	0,13	Probable cystathionine beta-synthase Cbs (serine sulfhydrase) (beta-thionase) (hemoprotein H-450)	Rv1077	85%	41	433	103	52	N/D
dormant (D1)	cyt	2164	4,3	0,22	Probable cystathionine beta-synthase Cbs (serine sulfhydrase) (beta-thionase) (hemoprotein H-450)	Rv1077	83%	27	246	103	52	N/D
active	cyt	787	29,4	0,36	Serine hydroxymethyltransferase 1 GlyA1	Rv1093	79%	29	387	46	N/D	N/D
active	cyt	789	4,3	0,05	Serine hydroxymethyltransferase 1 GlyA1	Rv1093	50%	15	95	46	N/D	N/D
dormant (D1)	sds	2278	10,8	0,10	Serine hydroxymethyltransferase 1 GlyA1	Rv1093	81%	33	377	N/D	78	N/D
dormant (D2)	cyt	1747	92,9	0,56	Possible acyl-[acyl-carrier protein] desaturase DesA2 (acyl-[ACP] desaturase) (stearoyl-ACP desaturase)	Rv1094	68%	13	90	N/D	N/D	21
dormant (D2)	cyt	1748	56	0,34	Possible acyl-[acyl-carrier protein] desaturase DesA2 (acyl-[ACP] desaturase) (stearoyl-ACP desaturase)	Rv1094	54%	13	90	N/D	N/D	21
active	cyt	791	28,8	0,35	Probable fumarase Fum (fumarate hydratase)	Rv1098c	85%	35	470	49	42	35
active	cyt	792	6,3	0,08	Probable fumarase Fum (fumarate hydratase)	Rv1098c	83%	29	407	49	42	35
dormant (D1)	cyt	2168	6,5	0,33	Probable fumarase Fum (fumarate hydratase)	Rv1098c	59%	21	191	49	42	35
dormant (D1)	sds	2230	42,1	0,38	Probable fumarase Fum (fumarate hydratase)	Rv1098c	14%	7	83	N/D	48	65
dormant (D2)	sds	1250	9,5	0,13	Probable fumarase Fum (fumarate hydratase)	Rv1098c	36%	17	117	N/D	48	65
dormant (D2)	cyt	1889	39	0,24	Probable fumarase Fum (fumarate hydratase)	Rv1098c	52%	24	114	49	42	35
dormant (D2)	cyt	1890	22,9	0,14	Probable fumarase Fum (fumarate hydratase)	Rv1098c	47%	23	200	49	42	35
active	sds	1168	70,5	1,03	Conserved protein	Rv1109c	45%	7	81	16	39	N/D
dormant (D1)	sds	2275	68,6	0,61	Conserved protein	Rv1109c	19%	3	120	16	39	N/D
dormant (D2)	sds	1247	15,3	0,20	Probable glucose-6-phosphate 1-dehydrogenase Zwf1 (G6PD)	Rv1121	56%	13	103	N/D	N/D	48
dormant (D1)	cyt	2167	6,5	0,33	Probable 6-phosphogluconate dehydrogenase, decarboxylating Gnd2	Rv1122	82%	11	101	73	41	29
dormant (D2)	cyt	1772	48,3	0,29	Probable 6-phosphogluconate dehydrogenase, decarboxylating Gnd2	Rv1122	75%	19	160	73	41	29
active	cyt	758	16,6	0,20	Probable 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase MetE (methionine synthase, vitamin-B12 independent isozyme)	Rv1133c	78%	50	432	85	54	1

active	sds	1117	1,8	0,03	Probable 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase MetE (methionine synthase, vitamin-B12 independent isozyme)	Rv1133c	56%	40	299	103	N/D	63
dormant (D1)	cyt	2117	3,4	0,17	Probable 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase MetE (methionine synthase, vitamin-B12 independent isozyme)	Rv1133c	52%	42	277	85	54	1
dormant (D2)	sds	1196	9,5	0,13	Probable 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase MetE (methionine synthase, vitamin-B12 independent isozyme)	Rv1133c	64%	35	288	103	N/D	63
dormant (D2)	cyt	1780	900,6	4,85	Probable 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase MetE (methionine synthase, vitamin-B12 independent isozyme)	Rv1133c	38%	22	113	85	54	1
active	cyt	668	23,3	0,28	Probable short-chain type dehydrogenase/reductase	Rv1144	90%	26	331	59	N/D	N/D
active	sds	1113	5,7	0,08	Probable respiratory nitrate reductase (beta chain) NarH	Rv1162	58%	32	216	75	N/D	N/D
dormant (D2)	cyt	1895	7,9	0,05	N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase MshB (GlcNAc-Ins deacetylase)	Rv1170	65%	11	81	46	N/D	62
active	cyt	715	37,8	0,46	Probable ferredoxin FdxC	Rv1177	47%	8	124	37	4	N/D
active	cyt	789	4,3	0,05	Probable fatty-acid-CoA ligase FadD36 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase)	Rv1193	73%	25	234	138	N/D	N/D
dormant (D2)	sds	1252	19,3	0,26	Conserved protein	Rv1194c	40%	9	69	N/D	N/D	43
dormant (D1)	sds	2219	29,4	0,26	PPE family protein PPE18	Rv1196	10%	3	142	N/D	54	N/D
active	cyt	658	63,3	0,77	Tetrahydrodipicolinate N-succinyltransferase DapD	Rv1201c	93%	26	327	17	N/D	N/D
active	cyt	697	29,3	0,36	Tetrahydrodipicolinate N-succinyltransferase DapD	Rv1201c	90%	20	103	17	N/D	N/D
active	sds	1185	0,9	0,01	Tetrahydrodipicolinate N-succinyltransferase DapD	Rv1201c	66%	13	78	107	N/D	N/D
dormant (D1)	cyt	2166	5,5	0,28	Probable succinyl-diaminopimelate desuccinylase DapE	Rv1202	40%	10	70	77	47	N/D
active	cyt	738	14,8	0,18	Probable methyltransferase	Rv1220c	66%	8	97	92	N/D	N/D
active	cyt	692	18,6	0,23	Probable Mrp-related protein Mrp	Rv1229c	76%	31	273	78	N/D	N/D
active	sds	1093	22,7	0,33	Conserved protein	Rv1232c	68%	25	323	41	N/D	3
active	sds	1094	1,4	0,02	Conserved protein	Rv1232c	45%	13	103	41	N/D	3
dormant (D2)	sds	1211	308,9	4,12	Conserved protein	Rv1232c	61%	12	125	41	N/D	3
active	sds	1137	3,4	0,05	Probable sugar-transport ATP-binding protein ABC transporter SugC	Rv1238	71%	29	297	89	84	N/D
dormant (D1)	sds	2279	7,5	0,07	Probable sugar-transport ATP-binding protein ABC transporter SugC	Rv1238	44%	4	89	89	84	N/D
active	cyt	699	61,3	0,74	Probable malate dehydrogenase Mdh	Rv1240	80%	25	297	18	9	23
active	sds	1153	29,1	0,43	Probable malate dehydrogenase Mdh	Rv1240	29%	5	50	33	N/D	N/D
dormant (D1)	cyt	2131	27,4	1,38	Probable malate dehydrogenase Mdh	Rv1240	81%	23	270	18	9	23
dormant (D1)	cyt	2131	27,4	1,38	Probable malate dehydrogenase Mdh	Rv1240	92%	25	299	18	9	23

dormant (D1)	cyt	2142	39,2	1,97	Probable malate dehydrogenase Mdh	Rv1240	67%	10	49	18	9	23
dormant (D2)	cyt	1754	85,3	0,52	Probable malate dehydrogenase Mdh	Rv1240	74%	18	180	18	9	23
dormant (D2)	cyt	1901	16,6	0,10	Probable malate dehydrogenase Mdh	Rv1240	48%	10	61	18	9	23
dormant (D2)	cyt	1902	6,8	0,04	Probable malate dehydrogenase Mdh	Rv1240	66%	19	167	18	9	23
dormant (D2)	cyt	1902	6,8	0,04	Probable malate dehydrogenase Mdh	Rv1240	77%	21	188	18	9	23
active	sds	1150	15,8	0,23	Adenylyl cyclase (ATP pyrophosphate-lyase) (adenylate cyclase)	Rv1264	62%	19	117	54	N/D	N/D
active	cyt	718	57,2	0,69	Possible lipoprotein LprA	Rv1270c	74%	9	64	21	38	N/D
active	sds	1176	113,3	1,66	Possible lipoprotein LprA	Rv1270c	74%	14	241	10	N/D	N/D
active	sds	1091	4,2	0,06	Probable periplasmic oligopeptide-binding lipoprotein OppA	Rv1280c	69%	30	217	81	N/D	N/D
dormant (D2)	cyt	1885	14,7	0,09	Diaminopimelate decarboxylase LysA (DAP decarboxylase)	Rv1293	57%	16	90	49	N/D	53
active	sds	1085	2	0,03	Probable homoserine dehydrogenase ThrA	Rv1294	67%	17	150	100	N/D	N/D
active	cyt	693	16,1	0,20	Threonine synthase ThrC (ts)	Rv1295	96%	32	346	88	N/D	N/D
active	cyt	802	7,1	0,09	Probable transcription termination factor Rho homolog	Rv1297	62%	33	379	116	N/D	N/D
active	sds	1116	2,2	0,03	Probable transcription termination factor Rho homolog	Rv1297	68%	38	374	98	N/D	N/D
active	cyt	718	57,2	0,69	Conserved protein	Rv1301	76%	15	105	21	N/D	N/D
active	cyt	778	4,7	0,06	Probable ATP synthase alpha chain AtpA	Rv1308	74%	39	550	135	N/D	N/D
active	sds	1078	48,6	0,71	Probable ATP synthase alpha chain AtpA	Rv1308	74%	43	503	23	12	47
dormant (D1)	sds	2210	54,9	0,49	Probable ATP synthase alpha chain AtpA	Rv1308	16%	5	140	23	12	47
dormant (D1)	sds	2213	233,0	2,08	Probable ATP synthase alpha chain AtpA	Rv1308	74%	41	545	23	12	47
dormant (D1)	sds	2233	28,9	0,26	Probable ATP synthase alpha chain AtpA	Rv1308	11%	1	102	23	12	47
dormant (D1)	sds	2308	8,7	0,08	Probable ATP synthase alpha chain AtpA	Rv1308	11%	4	94	23	12	47
dormant (D2)	sds	1200	16,5	0,22	Probable ATP synthase alpha chain AtpA	Rv1308	74%	47	479	23	12	47
dormant (D2)	sds	1241	11,1	0,15	Probable ATP synthase alpha chain AtpA	Rv1308	45%	19	88	23	12	47
active	cyt	685	37,8	0,46	Probable ATP synthase gamma chain AtpG	Rv1309	55%	12	110	36	N/D	N/D
active	sds	1160	29,7	0,44	Probable ATP synthase gamma chain AtpG	Rv1309	65%	20	168	32	58	31
dormant (D1)	sds	2303	27,6	0,25	Probable ATP synthase gamma chain AtpG	Rv1309	65%	12	103	32	58	31
dormant (D1)	sds	2307	14,4	0,13	Probable ATP synthase gamma chain AtpG	Rv1309	27%	8	93	32	58	31
dormant (D2)	sds	1225	34,9	0,47	Probable ATP synthase gamma chain AtpG	Rv1309	54%	11	58	32	58	31

active	cyt	770	6,5	0,08	Probable ATP synthase beta chain AtpD	Rv1310	89%	50	510	121	19	16
active	sds	1126	40,3	0,59	Probable ATP synthase beta chain AtpD	Rv1310	93%	54	631	26	22	18
dormant (D1)	cyt	2127	21,2	1,07	Probable ATP synthase beta chain AtpD	Rv1310	86%	47	475	121	19	16
dormant (D1)	sds	2221	124,4	1,11	Probable ATP synthase beta chain AtpD	Rv1310	68%	30	365	26	22	18
dormant (D2)	sds	1205	58,2	0,78	Probable ATP synthase beta chain AtpD	Rv1310	84%	40	449	26	22	18
dormant (D2)	sds	1243	14,2	0,19	Probable ATP synthase beta chain AtpD	Rv1310	91%	49	489	26	22	18
dormant (D2)	sds	1244	6,5	0,09	Probable ATP synthase beta chain AtpD	Rv1310	74%	31	251	26	22	18
dormant (D2)	sds	1246	6,2	0,08	Probable ATP synthase beta chain AtpD	Rv1310	56%	17	118	26	22	18
dormant (D2)	cyt	1881	126,5	0,77	Probable ATP synthase beta chain AtpD	Rv1310	62%	26	151	121	19	16
dormant (D2)	cyt	1892	45,1	0,27	Probable ATP synthase beta chain AtpD	Rv1310	84%	46	327	121	19	16
active	cyt	755	6,9	0,08	Probable acetyl-CoA acetyltransferase FadA4 (acetoacetyl-CoA thiolase)	Rv1323	94%	33	250	118	60	12
dormant (D2)	cyt	1884	145,9	0,88	Probable acetyl-CoA acetyltransferase FadA4 (acetoacetyl-CoA thiolase)	Rv1323	81%	14	108	118	60	12
dormant (D2)	cyt	1888	23,9	0,14	Probable acetyl-CoA acetyltransferase FadA4 (acetoacetyl-CoA thiolase)	Rv1323	72%	13	69	118	60	12
dormant (D2)	cyt	1903	17,7	0,11	Probable acetyl-CoA acetyltransferase FadA4 (acetoacetyl-CoA thiolase)	Rv1323	93%	26	200	118	60	12
dormant (D2)	cyt	1903	17,7	0,11	Probable acetyl-CoA acetyltransferase FadA4 (acetoacetyl-CoA thiolase)	Rv1323	93%	26	200	118	60	12
dormant (D2)	sds	1192	32,6	0,43	Probable glucanase GlgE	Rv1327c	35%	16	94	N/D	N/D	32
active	cyt	697	29,3	0,36	Conserved protein	Rv1339	79%	11	42	47	N/D	N/D
active	sds	1171	217,9	3,20	Probable conserved lipoprotein LprF	Rv1368	58%	15	175	4	N/D	N/D
active	cyt	732	21	0,26	Putative transferase	Rv1377c	83%	17	176	66	N/D	N/D
active	cyt	732	21	0,26	Putative transferase	Rv1377c	83%	17	176	66	N/D	N/D
active	cyt	762	14,2	0,17	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	91%	38	372	93	51	31
active	cyt	771	7,1	0,09	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	36%	12	77	93	51	31
active	sds	1129	6,1	0,09	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	82%	39	609	74	15	50
dormant (D1)	cyt	2169	4,5	0,23	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	74%	19	163	93	51	31
dormant (D1)	sds	2222	145,7	1,30	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	41%	13	167	74	15	50
dormant (D2)	sds	1243	14,2	0,19	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	52%	10	70	74	15	50

dormant (D2)	sds	1244	6,5	0,09	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	52%	12	89	74	15	50
dormant (D2)	sds	1245	9,9	0,13	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	88%	33	374	74	15	50
dormant (D2)	sds	1246	6,2	0,08	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	75%	24	223	74	15	50
dormant (D2)	cyt	1882	45,5	0,28	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	88%	34	261	93	51	31
dormant (D2)	cyt	1882	45,5	0,28	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	87%	34	261	93	51	31
dormant (D2)	cyt	1895	7,9	0,05	Probable S-adenosylmethionine synthetase MetK (mat) (AdoMet synthetase) (methionine adenosyltransferase)	Rv1392	51%	9	82	93	51	31
active	cyt	731	8,9	0,11	Probable ribulose-phosphate 3-epimerase Rpe (PPE) (R5P3E) (pentose-5-phosphate 3- epimerase)	Rv1408	44%	5	57	107	N/D	N/D
active	sds	1177	218,5	3,21	Conserved lipoprotein LprG	Rv1411c	53%	12	177	3	N/D	N/D
dormant (D2)	cyt	1771	2,9	0,02	Probable riboflavin synthase alpha chain RibC (RibE)	Rv1412	58%	6	85	N/D	N/D	71
active	cyt	694	27,2	0,33	Conserved hypothetical protein	Rv1422	68%	19	117	51	N/D	N/D
active	cyt	672	91,3	1,11	Probable glyceraldehyde 3-phosphate dehydrogenase Gap (GAPDH)	Rv1436	81%	24	329	8	N/D	N/D
active	cyt	722	8,7	0,11	Probable glyceraldehyde 3-phosphate dehydrogenase Gap (GAPDH)	Rv1436	73%	18	104	8	N/D	N/D
dormant (D1)	sds	2227	83,9	0,75	Probable glyceraldehyde 3-phosphate dehydrogenase Gap (GAPDH)	Rv1436	53%	11	139	N/D	31	27
dormant (D2)	sds	1222	39,9	0,53	Probable glyceraldehyde 3-phosphate dehydrogenase Gap (GAPDH)	Rv1436	67%	19	181	N/D	31	27
active	cyt	720	12,9	0,16	Probable phosphoglycerate kinase Pgk	Rv1437	68%	20	113	94	N/D	9
dormant (D1)	sds	2264	31,2	0,28	Probable phosphoglycerate kinase Pgk	Rv1437	11%	2	136	N/D	52	N/D
dormant (D2)	cyt	1883	186,9	1,13	Probable phosphoglycerate kinase Pgk	Rv1437	63%	19	147	94	N/D	9
active	cyt	681	29	0,35	Probable triosephosphate isomerase Tpi (TIM)	Rv1438	97%	26	325	48	46	N/D
dormant (D1)	cyt	2154	5,7	0,29	Probable triosephosphate isomerase Tpi (TIM)	Rv1438	79%	20	206	48	46	N/D
dormant (D1)	cyt	2154	5,7	0,29	Probable triosephosphate isomerase Tpi (TIM)	Rv1438	79%	20	206	48	46	N/D
active	cyt	676	19,4	0,24	Probable 6-phosphogluconolactonase DevB (6PGL)	Rv1445c	63%	18	172	73	N/D	N/D
active	sds	1158	25,8	0,38	Putative OXPP cycle protein OpcA	Rv1446c	92%	22	279	37	N/D	N/D
active	cyt	770	6,5	0,08	Probable transaldolase Tal	Rv1448c	44%	9	52	115	43	16
active	cyt	771	7,1	0,09	Probable transaldolase Tal	Rv1448c	35%	10	60	115	43	16
dormant (D2)	cyt	1881	126,5	0,77	Probable transaldolase Tal	Rv1448c	33%	8	78	115	43	16
dormant (D2)	cyt	1780	900,6	4,85	Transketolase Tkt (TK)	Rv1449c	32%	15	60	N/D	N/D	1

dormant (D1)	sds	2302	45,1	0,40	Probable quinone reductase Qor (NADPH:quinone reductase) (zeta-crystallin homolog protein)	Rv1454c	55%	9	57	N/D	45	29
dormant (D2)	sds	1226	37,5	0,50	Probable quinone reductase Qor (NADPH:quinone reductase) (zeta-crystallin homolog protein)	Rv1454c	52%	10	76	N/D	45	29
active	cyt	682	10,7	0,13	Probable conserved ATP-binding protein ABC transporter	Rv1463	85%	23	169	102	N/D	N/D
active	cyt	756	17,7	0,22	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	76%	69	735	82	7	22
dormant (D1)	cyt	2116	13,4	0,67	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	73%	64	621	82	7	22
dormant (D1)	cyt	2124	9	0,45	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	57%	29	242	82	7	22
dormant (D1)	cyt	2161	42,9	2,16	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	71%	26	204	82	7	22
dormant (D1)	cyt	2162	23,9	1,20	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	63%	20	126	82	7	22
dormant (D1)	cyt	2163	19,1	0,96	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	51%	14	96	82	7	22
dormant (D1)	cyt	2169	4,5	0,23	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	44%	15	82	82	7	22
dormant (D2)	cyt	1777	85,5	0,52	Probable iron-regulated aconitate hydratase Acn (citrate hydro-lyase) (aconitase)	Rv1475c	64%	45	503	82	7	22
active	cyt	679	41,8	0,51	Probable transcriptional regulatory protein MoxR1	Rv1479	90%	32	392	33	N/D	N/D
active	sds	1145	138,4	2,03	Probable transcriptional regulatory protein MoxR1	Rv1479	77%	27	122	8	44	17
active	sds	1146	72,3	1,06	Probable transcriptional regulatory protein MoxR1	Rv1479	63%	16	111	8	44	17
dormant (D1)	sds	2257	47,3	0,42	Probable transcriptional regulatory protein MoxR1	Rv1479	78%	24	300	8	44	17
dormant (D1)	sds	2282	11,1	0,10	Probable transcriptional regulatory protein MoxR1	Rv1479	62%	22	213	8	44	17
dormant (D2)	sds	1219	58,6	0,78	Probable transcriptional regulatory protein MoxR1	Rv1479	80%	29	292	8	44	17
dormant (D2)	sds	1220	31,3	0,42	Probable transcriptional regulatory protein MoxR1	Rv1479	86%	32	319	8	44	17
dormant (D2)	sds	1253	55,6	0,74	Probable transcriptional regulatory protein MoxR1	Rv1479	24%	7	61	8	44	17
active	cyt	684	20	0,24	NADH-dependent enoyl-[acyl-carrier-protein] reductase InhA (NADH-dependent enoyl- ACP reductase)	Rv1484	92%	26	256	70	N/D	N/D
active	sds	1170	30,5	0,45	NADH-dependent enoyl-[acyl-carrier-protein] reductase InhA (NADH-dependent enoyl- ACP reductase)	Rv1484	61%	12	139	31	59	15
dormant (D1)	sds	2273	26,7	0,24	NADH-dependent enoyl-[acyl-carrier-protein] reductase InhA (NADH-dependent enoyl- ACP reductase)	Rv1484	51%	11	125	31	59	15
dormant (D2)	sds	1235	62,4	0,83	NADH-dependent enoyl-[acyl-carrier-protein] reductase InhA (NADH-dependent enoyl- ACP reductase)	Rv1484	75%	20	157	31	59	15
dormant (D2)	sds	1235	62,4	0,83	NADH-dependent enoyl-[acyl-carrier-protein] reductase InhA (NADH-dependent enoyl- ACP reductase)	Rv1484	75%	20	157	31	59	15
active	sds	1145	138,4	2,03	Possible exported conserved protein	Rv1488	47%	16	84	8	57	17
active	sds	1147	36,2	0,53	Possible exported conserved protein	Rv1488	40%	14	67	8	57	17

dormant (D1)	sds	2258	28,9	0,26	Possible exported conserved protein	Rv1488	63%	28	417	8	57	17
dormant (D2)	sds	1219	58,6	0,78	Possible exported conserved protein	Rv1488	41%	10	94	8	57	17
dormant (D2)	sds	1257	17,5	0,23	Possible exported conserved protein	Rv1488	55%	22	249	8	57	17
active	cyt	813	4,7	0,06	Probable fatty-acid-AMP ligase FadD25 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase)	Rv1521	40%	16	86	133	N/D	N/D
active	cyt	725	8	0,10	Probable L-aparaginase AnsA	Rv1538c	54%	12	57	111	N/D	N/D
dormant (D2)	sds	1254	123,8	1,65	Possible ketoacyl reductase	Rv1544	44%	8	77	N/D	N/D	7
active	cyt	734	5,9	0,07	Probable nicotinate-nucleotide pyrophosphatase NadC	Rv1596	78%	23	190	128	N/D	N/D
active	cyt	734	5,9	0,07	Probable nicotinate-nucleotide pyrophosphatase NadC	Rv1596	76%	22	175	128	N/D	N/D
active	cyt	766	2,5	0,03	Probable histidinol dehydrogenase HisD (HDH)	Rv1599	41%	8	49	153	N/D	32
dormant (D2)	cyt	1892	45,1	0,27	Probable histidinol dehydrogenase HisD (HDH)	Rv1599	36%	8	67	153	N/D	32
active	cyt	741	8,8	0,11	Probable indole-3-glycerol phosphate synthase TrpC	Rv1611	69%	20	97	108	N/D	N/D
active	cyt	727	3,1	0,04	Probable tryptophan synthase, alpha subunit TrpA	Rv1613	69%	16	129	148	N/D	N/D
active	cyt	803	11,1	0,13	Probable pyruvate kinase PykA	Rv1617	51%	19	82	100	N/D	36
active	sds	1096	17,7	0,26	Probable pyruvate kinase PykA	Rv1617	45%	12	80	49	68	13
dormant (D1)	sds	2304	20,3	0,18	Probable pyruvate kinase PykA	Rv1617	27%	12	118	49	68	13
dormant (D2)	sds	1213	80,3	1,07	Probable pyruvate kinase PykA	Rv1617	54%	18	58	49	68	13
dormant (D2)	sds	1216	6,5	0,09	Probable pyruvate kinase PykA	Rv1617	41%	9	85	49	68	13
dormant (D2)	cyt	1878	37,3	0,23	Probable pyruvate kinase PykA	Rv1617	71%	21	85	100	N/D	36
dormant (D2)	cyt	1899	7,2	0,04	Probable pyruvate kinase PykA	Rv1617	53%	17	73	100	N/D	36
active	cyt	740	18,8	0,23	Probable two-component system transcriptional regulator	Rv1626	90%	26	212	76	N/D	N/D
active	sds	1119	2,9	0,04	Probable DNA polymerase I PolA	Rv1629	77%	67	720	92	N/D	N/D
dormant (D1)	sds	2210	54,9	0,49	30S ribosomal protein S1 RpsA	Rv1630	57%	29	293	N/D	40	55
dormant (D2)	sds	1241	11,1	0,06	30S ribosomal protein S1 RpsA	Rv1630	74%	39	320	N/D	40	55
active	cyt	663	146,8	1,78	Conserved protein	Rv1637c	89%	6	73	4	12	N/D
active	sds	1148	45,9	0,67	Probable phenylalanyl-tRNA synthetase, alpha chain PheS	Rv1649	37%	7	47	24	N/D	N/D
active	cyt	695	18,4	0,22	Probable N-acetyl-gamma-glutamyl-phoshate reductase ArgC	Rv1652	86%	17	161	79	N/D	N/D
active	cyt	667	24,6	0,30	Probable glutamate N-acetyltransferase ArgJ	Rv1653	77%	12	169	56	N/D	N/D
active	sds	1141	9,5	0,14	Probable argininosuccinate synthase ArgG	Rv1658	56%	7	48	39	26	42

active	sds	1143	22,9	0,34	Probable argininosuccinate synthase ArgG	Rv1658	81%	35	359	39	26	42
dormant (D1)	sds	2225	104,1	0,93	Probable argininosuccinate synthase ArgG	Rv1658	39%	12	121	39	26	42
dormant (D2)	sds	1264	20,2	0,27	Probable argininosuccinate synthase ArgG	Rv1658	76%	14	92	39	26	42
dormant (D2)	cyt	1885	14,7	0,09	Probable argininosuccinate synthase ArgG	Rv1658	57%	14	61	N/D	N/D	53
dormant (D2)	sds	1233	108,8	1,45	Probable catechol-O-methyltransferase	Rv1703c	67%	10	94	N/D	N/D	9
active	sds	1185	0,9	0,01	Putative initiation inhibitor protein	Rv1708	65%	19	95	107	N/D	N/D
active	cyt	712	18,8	0,23	Conserved protein	Rv1732c	68%	15	110	66	10	N/D
active	cyt	732	21	0,26	Conserved protein	Rv1732c	51%	5	49	66	10	N/D
active	sds	1114	6,8	0,10	Anchored-membrane serine/threonine-protein kinase PknF (protein kinase F) (STPK F)	Rv1746	52%	27	291	72	N/D	N/D
active	sds	1136	23,5	0,34	Conserved protein	Rv1770	83%	31	197	38	N/D	N/D
active	cyt	724	3,3	0,04	Conserved protein	Rv1794	47%	9	81	111	N/D	N/D
active	cyt	725	8	0,10	Conserved protein	Rv1794	94%	28	268	111	N/D	N/D
active	sds	1156	16,8	0,25	Conserved protein	Rv1794	58%	17	161	53	51	N/D
dormant (D1)	sds	2267	32,5	0,29	Conserved protein	Rv1794	64%	17	212	53	51	N/D
active	cyt	811	2,8	0,03	Probable acetolactate synthase IIvG (acetohydroxy-acid synthase)(ALS)	Rv1820	46%	19	88	150	N/D	N/D
active	sds	1118	1,9	0,03	Possible preprotein translocase ATPase SecA2	Rv1821	69%	45	463	101	N/D	64
dormant (D2)	sds	1197	9,5	0,13	Possible preprotein translocase ATPase SecA2	Rv1821	31%	13	43	101	N/D	64
active	cyt	713	58,8	0,71	Conserved protein with FHA domain, GarA	Rv1827	74%	19	369	12	6	N/D
active	cyt	714	71,7	0,87	Conserved protein with FHA domain, GarA	Rv1827	78%	16	273	12	6	N/D
active	cyt	759	4,7	0,06	Malate synthase G GlcB	Rv1837c	78%	42	332	134	45	1
dormant (D1)	cyt	2118	5,8	0,29	Malate synthase G GlcB	Rv1837c	78%	55	242	134	45	1
dormant (D2)	cyt	1780	900,6	4,85	Malate synthase G GlcB	Rv1837c	59%	29	191	134	45	1
active	cyt	788	23,1	0,28	Probable inosine-5'-monophosphate dehydrogenase GuaB1(imp dehydrogenase) (IMPDH) (IMPD)	Rv1843c	82%	37	446	61	N/D	N/D
active	cyt	789	4,3	0,05	Probable inosine-5'-monophosphate dehydrogenase GuaB1(imp dehydrogenase) (IMPDH) (IMPD)	Rv1843c	39%	9	53	61	N/D	N/D
active	cyt	683	39,2	0,48	Possible oxidoreductase	Rv1856c	67%	5	59	35	N/D	N/D
active	cyt	747	16,6	0,20	Alanine and proline rich secreted protein Apa (fibronectin attachment protein) (immunogenic protein MPT32) (antigen MPT-32) (45-kDa glycoprotein) (45/47 kDa antigen)	Rv1860	60%	11	132	84	7	N/D
active	cyt	691	15,6	0,19	Probable alcohol dehydrogenase AdhA	Rv1862	58%	11	129	89	N/D	N/D

active	cyt	810	4,2	0,05	Conserved protein	Rv1867	66%	29	271	139	N/D	N/D
dormant (D1)	sds	2233	28,9	0,26	Probable reductase	Rv1869c	50%	11	149	N/D	56	N/D
dormant (D2)	sds	1252	19,3	0,26	Possible L-lactate dehydrogenase (cytochrome) LldD2	Rv1872c	31%	9	58	N/D	N/D	41
dormant (D2)	sds	1255	21,1	0,28	Possible L-lactate dehydrogenase (cytochrome) LldD2	Rv1872c	75%	37	404	N/D	N/D	41
dormant (D2)	sds	1261	38,4	0,51	Probable bacterioferritin BfrA	Rv1876	64%	5	93	N/D	N/D	28
active	cyt	703	71,6	0,87	Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) (mycolyl transferase 85B) (fibronectin-binding protein B) (extracellular alpha-antigen)	Rv1886c	54%	13	101	13	8	21
active	cyt	704	23,7	0,29	Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) (mycolyl transferase 85B) (fibronectin-binding protein B) (extracellular alpha-antigen)	Rv1886c	36%	7	40	13	8	21
dormant (D1)	cyt	2143	41,7	2,10	Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) (mycolyl transferase 85B) (fibronectin-binding protein B) (extracellular alpha-antigen)	Rv1886c	56%	19	150	13	8	21
dormant (D2)	cyt	1747	92,9	0,56	Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) (mycolyl transferase 85B) (fibronectin-binding protein B) (extracellular alpha-antigen)	Rv1886c	62%	20	178	13	8	21
dormant (D2)	cyt	1748	56	0,34	Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) (mycolyl transferase 85B) (fibronectin-binding protein B) (extracellular alpha-antigen)	Rv1886c	40%	12	87	13	8	21
active	cyt	758	16,6	0,20	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	45%	19	64	85	45	1
active	cyt	759	4,7	0,06	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	38%	15	58	85	45	1
active	sds	1117	1,8	0,03	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	35%	16	63	103	N/D	63
dormant (D1)	cyt	2117	3,4	0,17	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	29%	18	56	85	45	1
dormant (D1)	cyt	2118	5,8	0,29	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	60%	30	89	85	45	1
dormant (D2)	sds	1196	9,5	0,13	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	37%	10	58	103	N/D	63
dormant (D2)	cyt	1780	900,6	4,85	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	62%	32	218	85	45	1
dormant (D2)	cyt	1903	17,7	0,11	Catalase-peroxidase-peroxynitritase T KatG	Rv1908c	43%	12	65	85	45	1
active	sds	1152	21,5	0,32	Probable conserved lipoprotein	Rv1922	42%	9	95	42	N/D	N/D
active	cyt	796	26,8	0,33	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	52%	18	113	53	N/D	N/D
active	sds	1108	36,6	0,54	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	47%	16	79	28	66	32
active	sds	1109	16,8	0,25	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	85%	40	383	28	66	32
active	sds	1110	1,8	0,03	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	43%	15	56	28	66	32
dormant (D1)	sds	2245	21,9	0,20	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	18%	7	162	28	66	32
dormant (D1)	sds	2246	15,9	0,14	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	11%	5	100	28	66	32
dormant (D2)	sds	1192	32,6	0,43	Probable acyl-CoA ligase FadD31 (acyl-CoA synthetase) (acyl-CoA synthase)	Rv1925	45%	11	100	28	66	32

active	cyt	689	44,2	0,54	Conserved protein	Rv1978	56%	11	99	31	N/D	N/D
active	sds	1165	35,3	0,52	Conserved protein	Rv1978	85%	31	339	30	N/D	N/D
active	cyt	709	71,3	0,87	Immunogenic protein Mpt64 (antigen Mpt64/MPB64)	Rv1980c	94%	14	223	14	13	N/D
active	cyt	690	27,6	0,34	Universal stress protein family protein	Rv1996	93%	28	383	50	N/D	N/D
active	sds	1097	14,1	0,21	Conserved protein	Rv2004c	39%	14	104	56	N/D	N/D
dormant (D1)	cyt	2148	46	2,32	Conserved protein	Rv2018	74%	11	100	N/D	5	N/D
dormant (D2)	sds	1259	54,2	0,72	Conserved protein	Rv2018	48%	9	135	N/D	N/D	21
dormant (D2)	cyt	1764	5,7	0,03	Heat shock protein HspX (alpha-crystallin homolog) (14 kDa antigen) (HSP16.3)	Rv2031c	64%	7	105	N/D	N/D	68
active	cyt	673	18,1	0,22	Conserved protein Acg	Rv2032	66%	12	80	80	N/D	N/D
active	sds	1183	20,3	0,30	Class a beta-lactamase BlaC	Rv2068c	69%	25	356	45	N/D	N/D
active	sds	1138	17,4	0,26	Probable 5'-3' exonuclease	Rv2090	59%	19	103	51	N/D	N/D
dormant (D1)	sds	2284	6,2	0,06	Proteasome accessory factor B PafB	Rv2096c	42%	8	73	N/D	85	N/D
active	cyt	660	36	0,44	Proteasome alpha subunit PrcA; assembles with beta subunit PrcB.	Rv2109c	91%	21	245	39	37	N/D
active	cyt	660	36	0,44	Proteasome alpha subunit PrcA; assembles with beta subunit PrcB.	Rv2109c	91%	21	245	39	37	N/D
dormant (D1)	cyt	2152	8,8	0,44	Proteasome alpha subunit PrcA; assembles with beta subunit PrcB.	Rv2109c	89%	21	275	39	37	N/D
active	cyt	737	8,1	0,10	Proteasome beta subunit PrcB; assembles with alpha subunit PrcA.	Rv2110c	83%	11	96	110	24	N/D
dormant (D1)	cyt	2173	17,5	0,88	Proteasome beta subunit PrcB; assembles with alpha subunit PrcA.	Rv2110c	57%	7	94	110	24	N/D
active	sds	1090	64,5	0,95	Deamidase of pup Dop	Rv2112c	80%	34	135	17	N/D	N/D
active	sds	1091	4,2	0,06	Deamidase of pup Dop	Rv2112c	43%	18	53	17	N/D	N/D
active	sds	1092	5,5	0,08	Deamidase of pup Dop	Rv2112c	49%	20	160	17	N/D	N/D
active	cyt	733	11,5	0,14	Conserved protein	Rv2114	68%	8	66	97	N/D	N/D
active	sds	1084	3,2	0,05	Mycobacterial proteasome ATPase Mpa	Rv2115c	66%	37	448	90	N/D	N/D
active	cyt	703	71,6	0,87	Monophosphatase CysQ	Rv2131c	52%	8	72	13	N/D	N/D
active	cyt	682	10,7	0,13	Conserved protein	Rv2135c	82%	15	83	102	N/D	N/D
dormant (D2)	cyt	1765	6,1	0,04	Conserved protein TB18.6	Rv2140c	89%	8	112	N/D	N/D	61
dormant (D2)	cyt	1766	9,2	0,06	Conserved protein TB18.6	Rv2140c	73%	7	116	N/D	N/D	61
active	cyt	701	41,2	0,50	Diviva family protein Wag31	Rv2145c	88%	24	360	34	21	19
active	sds	1163	20,3	0,30	Diviva family protein Wag31	Rv2145c	46%	9	85	44	62	N/D

active	sha	1164	83	0.12	Diviva family protein Wag31	By2145c	95%	35	494	44	62	N/D
active	303	1104	د,ه	0,12	Diviva family protein wagst	11751430	33/0	35	434	44	02	N/D
dormant (D1)	cyt	2137	18,8	0,95	Diviva family protein Wag31	Rv2145c	73%	16	141	34	21	19
dormant (D1)	sds	2268	24,9	0,22	Diviva family protein Wag31	Rv2145c	63%	15	169	44	62	N/D
dormant (D2)	cyt	1746	102,2	0,62	Diviva family protein Wag31	Rv2145c	50%	8	114	34	21	19
dormant (D2)	cyt	1757	29,7	0,18	Diviva family protein Wag31	Rv2145c	59%	13	54	34	21	19
dormant (D2)	cyt	1758	26,9	0,16	Diviva family protein Wag31	Rv2145c	83%	17	163	34	21	19
active	cyt	684	20	0,24	Conserved protein YfiH	Rv2149c	85%	20	163	70	N/D	N/D
active	sds	1096	17,7	0,26	Probable UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanyl ligase MurF	Rv2157c	67%	8	61	49	68	N/D
dormant (D1)	sds	2304	20,3	0,18	Probable UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanyl ligase MurF	Rv2157c	36%	11	116	49	68	N/D
dormant (D1)	sds	2298	5,2	0,05	Probable UDP-N-acetylmuramoylalanyl-D-glutamate-2,6-diaminopimelate ligase MurE	Rv2158c	60%	21	246	N/D	80	N/D
dormant (D1)	sds	2300	9,5	0,08	Probable UDP-N-acetylmuramoylalanyl-D-glutamate-2,6-diaminopimelate ligase MurE	Rv2158c	31%	6	97	N/D	80	N/D
dormant (D2)	sds	1235	62,4	0,83	Conserved protein	Rv2161c	64%	10	95	N/D	N/D	15
active	sds	1096	17,7	0,26	3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroG (DAHP synthetase, phenylalanine-repressible)	Rv2178c	86%	36	318	49	N/D	13
dormant (D2)	sds	1213	80,3	1,07	3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroG (DAHP synthetase, phenylalanine-repressible)	Rv2178c	51%	12	89	49	N/D	13
dormant (D2)	cyt	1878	37,3	0,23	3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroG (DAHP synthetase, phenylalanine-repressible)	Rv2178c	84%	31	150	N/D	N/D	36
dormant (D2)	cyt	1878	37,3	0,23	3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroG (DAHP synthetase, phenylalanine-repressible)	Rv2178c	85%	31	150	N/D	N/D	36
dormant (D2)	cyt	1899	7,2	0,04	3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroG (DAHP synthetase, phenylalanine-repressible)	Rv2178c	77%	23	88	N/D	N/D	36
dormant (D1)	sds	2220	21,1	0,19	Adenosine kinase	Rv2202c	25%	3	237	N/D	67	N/D
dormant (D2)	cyt	1901	16,6	0,10	Adenosine kinase	Rv2202c	81%	28	188	N/D	N/D	51
active	cyt	728	4	0,05	Probable nicotinate-nucleotide-dimethylbenzimidazol phosphoribosyltransferase CobT	Rv2207	52%	15	113	141	N/D	N/D
active	cyt	674	23,8	0,29	Probable aminomethyltransferase GcvT (glycine cleavage system T protein)	Rv2211c	58%	16	124	57	41	29
dormant (D1)	cyt	2167	6,5	0,33	Probable aminomethyltransferase GcvT (glycine cleavage system T protein)	Rv2211c	51%	10	81	57	41	29
dormant (D2)	cyt	1772	48,3	0,29	Probable aminomethyltransferase GcvT (glycine cleavage system T protein)	Rv2211c	40%	9	57	57	41	29
active	sds	1099	63,8	0,94	Probable aminopeptidase PepB	Rv2213	71%	31	398	19	N/D	N/D
active	sds	1100	4,2	0,06	Probable aminopeptidase PepB	Rv2213	50%	18	144	19	N/D	N/D
active	cyt	757	19,8	0,24	DlaT, dihydrolipoamide acyltransferase, E2 component of pyruvate dehydrogenase	Rv2215	77%	37	485	71	N/D	N/D

active	cyt	767	2,6	0,03	DlaT, dihydrolipoamide acyltransferase, E2 component of pyruvate dehydrogenase	Rv2215	65%	10	68	71	N/D	N/D
dormant (D1)	sds	2206	73,4	0,65	DlaT, dihydrolipoamide acyltransferase, E2 component of pyruvate dehydrogenase	Rv2215	7%	2	128	N/D	36	74
dormant (D2)	sds	1241	4,2	0,15	DlaT, dihydrolipoamide acyltransferase, E2 component of pyruvate dehydrogenase	Rv2215	68%	31	402	N/D	36	74
active	cyt	774	6,5	0,08	Glutamine synthetase GlnA1 (glutamine synthase) (GS-I)	Rv2220	40%	12	76	122	25	3
active	cyt	775	2,5	0,03	Glutamine synthetase GlnA1 (glutamine synthase) (GS-I)	Rv2220	65%	25	204	122	25	3
active	sds	1086	18,3	0,27	Glutamine synthetase GInA1 (glutamine synthase) (GS-I)	Rv2220	60%	23	117	48	N/D	6
active	sds	1087	12,5	0,18	Glutamine synthetase GInA1 (glutamine synthase) (GS-I)	Rv2220	71%	29	171	48	N/D	6
dormant (D1)	cyt	2125	17,2	0,87	Glutamine synthetase GlnA1 (glutamine synthase) (GS-I)	Rv2220	88%	35	277	122	25	3
dormant (D1)	cyt	2125	17,2	0,87	Glutamine synthetase GInA1 (glutamine synthase) (GS-I)	Rv2220	82%	34	263	122	25	3
dormant (D2)	sds	1208	17,2	0,23	Glutamine synthetase GInA1 (glutamine synthase) (GS-I)	Rv2220	51%	19	84	48	N/D	6
dormant (D2)	sds	1209	125,3	1,67	Glutamine synthetase GlnA1 (glutamine synthase) (GS-I)	Rv2220	80%	34	279	48	N/D	6
dormant (D2)	cyt	1873	560,7	3,40	Glutamine synthetase GInA1 (glutamine synthase) (GS-I)	Rv2220	36%	11	42	122	25	3
dormant (D2)	cyt	1874	447,5	2,71	Glutamine synthetase GlnA1 (glutamine synthase) (GS-I)	Rv2220	93%	44	408	122	25	3
dormant (D2)	cyt	1889	39	0,24	Probable glutamine synthetase GInA2 (glutamine synthase) (GS-II)	Rv2222c	69%	30	208	N/D	N/D	35
dormant (D2)	cyt	1890	22,9	0,14	Probable glutamine synthetase GInA2 (glutamine synthase) (GS-II)	Rv2222c	56%	21	154	N/D	N/D	35
active	sds	1090	64,5	0,95	Probable carboxylesterase CaeA	Rv2224c	79%	36	169	17	N/D	N/D
active	sds	1091	4,2	0,06	Probable carboxylesterase CaeA	Rv2224c	46%	15	61	17	N/D	N/D
active	sds	1092	5,5	0,08	Probable carboxylesterase CaeA	Rv2224c	52%	27	244	17	N/D	N/D
active	sds	1112	4,9	0,07	Conserved protein	Rv2226	45%	16	84	77	N/D	N/D
active	cyt	677	45	0,55	Conserved protein	Rv2229c	62%	11	42	30	N/D	N/D
active	cyt	678	34,7	0,42	Conserved protein	Rv2229c	63%	12	74	30	N/D	N/D
active	cyt	755	6,9	0,08	Conserved protein	Rv2230c	41%	11	66	118	N/D	N/D
dormant (D1)	cyt	2140	10,3	0,52	Pyruvate dehydrogenase E1 component AceE (pyruvate decarboxylase) (pyruvate dehydrogenase) (pyruvic dehydrogenase)	Rv2241	42%	14	85	71	35	N/D
active	cyt	753	20,4	0,25	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-ketoacyl-ACP synthase) (KAS I)	Rv2245	94%	36	369	68	N/D	N/D
active	cyt	754	16,3	0,20	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-ketoacyl-ACP synthase) (KAS I)	Rv2245	91%	39	306	68	N/D	N/D
active	cyt	755	6,9	0,08	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-ketoacyl-ACP synthase) (KAS I)	Rv2245	80%	24	202	68	N/D	N/D
active	sds	1141	9,5	0,14	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-ketoacyl-ACP synthase) (KAS I)	Rv2245	83%	20	137	57	N/D	16
active	sds	1142	12,7	0,19	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-ketoacyl-ACP synthase) (KAS I)	Rv2245	44%	11	61	57	N/D	16

dormant (D2)	sds	1217	61,1	0,81	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-ketoacyl-ACP synthase) (KAS I)	Rv2245	57%	10	72	57	N/D	16
active	cyt	780	23,2	0,28	3-oxoacyl-[acyl-carrier protein] synthase 2 KasB (beta-ketoacyl-ACP synthase) (KAS I)	Rv2246	82%	34	396	60	26	42
dormant (D1)	sds	2225	104,1	0,93	3-oxoacyl-[acyl-carrier protein] synthase 2 KasB (beta-ketoacyl-ACP synthase) (KAS I)	Rv2246	32%	7	62	60	26	42
dormant (D2)	sds	1264	20,2	0,27	3-oxoacyl-[acyl-carrier protein] synthase 2 KasB (beta-ketoacyl-ACP synthase) (KAS I)	Rv2246	48%	13	70	60	26	42
dormant (D2)	sds	1265	18,2	0,24	3-oxoacyl-[acyl-carrier protein] synthase 2 KasB (beta-ketoacyl-ACP synthase) (KAS I)	Rv2246	71%	19	148	60	26	42
dormant (D2)	sds	1266	10	0,13	3-oxoacyl-[acyl-carrier protein] synthase 2 KasB (beta-ketoacyl-ACP synthase) (KAS I)	Rv2246	40%	10	66	60	26	42
active	cyt	809	2,3	0,03	Possible flavoprotein	Rv2250A	64%	25	209	156	N/D	N/D
active	sds	1153	29,1	0,43	Possible transcriptional regulatory protein	Rv2258c	35%	8	69	33	N/D	N/D
dormant (D2)	cyt	1901	16,6	0,10	Possible transcriptional regulatory protein	Rv2258c	32%	7	95	N/D	N/D	51
dormant (D2)	cyt	1774	24,1	0,15	S-nitrosomycothiol reductase MscR	Rv2259	87%	16	151	N/D	N/D	43
active	cyt	678	34,7	0,42	Conserved hypothetical protein	Rv2260	90%	9	88	40	N/D	N/D
active	cyt	767	2,6	0,03	Probable dehydrogenase	Rv2280	59%	20	115	115	N/D	16
active	cyt	771	7,1	0,09	Probable dehydrogenase	Rv2280	65%	20	136	115	N/D	16
dormant (D2)	cyt	1881	126,5	0,77	Probable dehydrogenase	Rv2280	62%	23	130	115	N/D	16
dormant (D2)	cyt	1892	45,1	0,27	Probable dehydrogenase	Rv2280	42%	10	91	115	N/D	16
dormant (D1)	sds	2281	8,5	0,08	Probable aminotransferase	Rv2294	41%	11	93	N/D	82	N/D
active	cyt	689	44,2	0,54	Probable haloalkane dehalogenase	Rv2296	83%	21	229	31	N/D	N/D
active	sds	1165	35,3	0,52	Probable haloalkane dehalogenase	Rv2296	45%	9	77	22	79	36
active	sds	1166	49,6	0,73	Probable haloalkane dehalogenase	Rv2296	96%	28	333	22	79	36
dormant (D1)	sds	2262	9,6	0,09	Probable haloalkane dehalogenase	Rv2296	69%	24	351	22	79	36
dormant (D2)	sds	1234	29,1	0,39	Probable haloalkane dehalogenase	Rv2296	69%	21	293	22	79	36
active	sds	1083	4,4	0,06	Probable chaperone protein HtpG (heat shock protein) (HSP90 family protein) (high temperature protein G)	Rv2299c	82%	51	450	79	61	75
dormant (D1)	sds	2208	26,2	0,23	Probable chaperone protein HtpG (heat shock protein) (HSP90 family protein) (high temperature protein G)	Rv2299c	44%	27	253	79	61	75
dormant (D2)	sds	1198	0,8	0,01	Probable chaperone protein HtpG (heat shock protein) (HSP90 family protein) (high temperature protein G)	Rv2299c	65%	39	367	79	61	75
active	sds	1137	3,4	0,05	Unknown protein	Rv2305	44%	13	82	89	N/D	N/D
dormant (D1)	cyt	2171	3,8	0,19	Conserved protein	Rv2314c	63%	28	210	N/D	53	16
dormant (D2)	cyt	1881	126,5	0,77	Conserved protein	Rv2314c	55%	16	65	N/D	53	16

dormant (D2)	cyt	1892	45,1	0,27	Conserved protein	Rv2314c	42%	10	91	N/D	53	16
dormant (D2)	cyt	1895	7,9	0,05	Cysteine synthase a CysK1 (O-acetylserine sulfhydrylase A) (O-acetylserine (thiol)-lyase A) (CSASE A)	Rv2334	41%	9	78	46	N/D	62
active	sds	1139	8,4	0,12	PPE family protein PPE38	Rv2352c	39%	7	78	66	N/D	N/D
active	sds	1132	28,7	0,42	Probable chaperone protein DnaJ2	Rv2373c	57%	19	98	34	N/D	N/D
active	sds	1133	19,2	0,28	Probable chaperone protein DnaJ2	Rv2373c	50%	20	128	34	N/D	N/D
active	sds	1159	38,7	0,57	Probable heat shock protein transcriptional repressor HrcA	Rv2374c	68%	17	130	27	N/D	N/D
active	cyt	678	34,7	0,42	Probable 3'-phosphoadenosine 5'-phosphosulfate reductase CysH (PAPS reductase, thioredoxin DEP.) (padops reductase) (3'- phosphoadenylylsulfate reductase) (PAPS sulfotransferase)	Rv2392	67%	12	90	40	N/D	N/D
active	cyt	813	4,7	0,06	Conserved hypothetical protein	Rv2411c	52%	19	119	133	N/D	N/D
active	cyt	687	20,8	0,25	Conserved protein	Rv2417c	56%	10	79	67	N/D	N/D
dormant (D1)	sds	2250	51,9	0,46	Probable oxidoreductase (alpha subunit)	Rv2455c	32%	6	105	N/D	41	N/D
active	sds	1175	89,4	1,31	Probable ATP-dependent CLP protease proteolytic subunit 2 ClpP2 (endopeptidase CLP 2)	Rv2460c	75%	16	236	13	N/D	30
dormant (D2)	sds	1258	35,1	0,47	Probable ATP-dependent CLP protease proteolytic subunit 2 ClpP2 (endopeptidase CLP 2)	Rv2460c	60%	13	215	13	N/D	30
active	cyt	746	32,3	0,39	Probable trigger factor (TF) protein Tig	Rv2462c	87%	34	436	42	N/D	N/D
active	sds	1088	1,6	0,02	Probable trigger factor (TF) protein Tig	Rv2462c	74%	28	346	104	N/D	N/D
dormant (D1)	cyt	2153	10,5	0,53	Conserved protein	Rv2466c	82%	14	112	N/D	34	N/D
active	sds	1079	26,2	0,38	Probable macrolide-transport ATP-binding protein ABC transporter	Rv2477c	82%	56	582	35	63	60
dormant (D1)	sds	2243	24,4	0,22	Probable macrolide-transport ATP-binding protein ABC transporter	Rv2477c	28%	13	168	35	63	60
dormant (D2)	sds	1251	9,8	0,13	Probable macrolide-transport ATP-binding protein ABC transporter	Rv2477c	47%	18	190	35	63	60
active	cyt	665	75,2	0,91	Probable enoyl-CoA hydratase EchA14 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv2486	45%	8	47	10	N/D	N/D
active	cyt	660	36	0,44	Probable citrate (pro-3S)-lyase (beta subunit) CitE (citrase) (citratase) (citritase) (citridesmolase) (citrase aldolase)	Rv2498c	59%	9	70	39	N/D	N/D
active	sds	1147	36,2	0,53	Possible acyl-CoA dehydrogenase FadE19 (MMGC)	Rv2500c	39%	10	52	29	N/D	N/D
dormant (D1)	sds	2250	51,9	0,46	Probable acetyl-/propionyl-coenzyme A carboxylase alpha chain (alpha subunit) AccA1: biotin carboxylase + biotin carboxyl carrier protein (BCCP)	Rv2501c	28%	12	83	N/D	41	N/D
active	cyt	805	6,1	0,07	Probable acetyl-/propionyl-CoA carboxylase (beta subunit) AccD1	Rv2502c	61%	21	166	126	N/D	N/D
dormant (D2)	cyt	1771	2,9	0,02	Probable succinyl-CoA:3-ketoacid-coenzyme A transferase (beta subunit) ScoB (3-oxo- acid:CoA transferase) (OXCT B) (succinyl CoA:3-oxoacid CoA-transferase)	Rv2503c	48%	7	94	N/D	N/D	71
active	cyt	664	100	1,21	Probable elongation factor P Efp	Rv2534c	81%	10	92	7	N/D	N/D
active	cyt	674	23,8	0,29	Probable cytic peptidase PepQ	Rv2535c	84%	22	92	57	41	29

dormant (D1)	cyt	2167	6,5	0,33	Probable cytic peptidase PepQ	Rv2535c	33%	6	82	57	41	29
dormant (D2)	cyt	1772	48,3	0,29	Probable cytic peptidase PepQ	Rv2535c	47%	14	71	57	41	29
active	sds	1120	2,9	0,04	Probable alanyl-tRNA synthetase AlaS (alaninetRNA ligase) (alanine translase) (ALARS)	Rv2555c	68%	60	634	93	N/D	N/D
active	cyt	718	57,2	0,69	Conserved protein	Rv2557	71%	16	101	21	38	38
dormant (D2)	cyt	1759	32,2	0,20	Conserved protein	Rv2557	86%	16	128	21	38	38
active	cyt	669	50,8	0,62	Conserved protein	Rv2558	51%	10	62	25	N/D	N/D
active	sds	1181	17,6	0,26	Probable glutamine-transport ATP-binding protein ABC transporter GInQ	Rv2564	74%	22	164	50	83	N/D
dormant (D1)	sds	2292	8,4	0,07	Probable glutamine-transport ATP-binding protein ABC transporter GInQ	Rv2564	48%	6	118	50	83	N/D
active	cyt	706	30,9	0,38	Possible haloalkane dehalogenase DhaA (1-chlorohexane halidohydrolase)	Rv2579	47%	11	71	45	N/D	N/D
active	sds	1171	217,9	3,20	Possible glyoxalase II (hydroxyacylglutathione hydrolase) (GLX II)	Rv2581c	47%	6	72	4	N/D	N/D
dormant (D2)	sds	1232	62,6	0,83	Probable acyl-CoA thioesterase II TesB2 (TEII)	Rv2605c	52%	14	84	N/D	N/D	14
active	cyt	676	19,4	0,24	Possible pyridoxine biosynthesis protein SnzP	Rv2606c	90%	31	107	22	15	69
active	cyt	702	55,1	0,67	Possible pyridoxine biosynthesis protein SnzP	Rv2606c	49%	13	78	22	15	69
dormant (D1)	cyt	2145	24,8	1,25	Possible pyridoxine biosynthesis protein SnzP	Rv2606c	35%	8	83	22	15	69
dormant (D2)	cyt	1896	5,6	0,03	Possible pyridoxine biosynthesis protein SnzP	Rv2606c	46%	10	55	22	15	69
active	cyt	670	25,1	0,30	Probable pyridoxamine 5'-phosphate oxidase PdxH (PNP/PMP oxidase) (pyridoxinephosphate oxidase) (PNPOX) (pyridoxine 5'-phosphate oxidase)	Rv2607	62%	12	90	55	N/D	N/D
active	cyt	655	131,9	1,60	Universal stress protein family protein TB31.7	Rv2623	81%	24	287	6	40	N/D
active	cyt	656	64,4	0,78	Universal stress protein family protein TB31.7	Rv2623	53%	11	97	6	40	N/D
active	cyt	696	17,9	0,22	Universal stress protein family protein TB31.7	Rv2623	51%	11	75	6	40	N/D
dormant (D1)	cyt	2170	6,7	0,34	Universal stress protein family protein TB31.7	Rv2623	51%	10	86	6	40	N/D
dormant (D1)	sds	2255	49,7	0,44	Universal stress protein family protein TB31.7	Rv2623	29%	9	123	N/D	34	31
dormant (D1)	sds	2256	74,5	0,66	Universal stress protein family protein TB31.7	Rv2623	13%	2	190	N/D	34	31
dormant (D2)	sds	1225	34,9	0,47	Universal stress protein family protein TB31.7	Rv2623	53%	13	60	N/D	34	31
active	cyt	687	20,8	0,25	Universal stress protein family protein	Rv2624c	91%	27	273	67	N/D	N/D
active	sds	1179	6,2	0,09	Conserved protein	Rv2629	75%	20	146	73	N/D	27
dormant (D2)	sds	1222	39,9	0,53	Conserved protein	Rv2629	45%	11	83	73	N/D	27
active	sds	1077	40,8	0,60	Possible secreted protease	Rv2672	84%	30	265	25	N/D	N/D

active	sds	1082	11,3	0,17	Possible secreted protease	Rv2672	34%	10	58	25	N/D	N/D
dormant (D2)	sds	1236	43,3	0,58	Conserved hypothetical protein	Rv2675c	45%	6	52	N/D	N/D	24
active	cyt	711	46,1	0,56	Conserved protein	Rv2680	67%	16	92	28	N/D	N/D
active	sds	1113	5,7	0,08	Probable 1-deoxy-D-xylulose 5-phosphate synthase Dxs1 (1-deoxyxylulose-5-phosphate synthase) (DXP synthase) (DXPS)	Rv2682c	47%	24	120	75	N/D	N/D
active	cyt	668	23,3	0,28	TRK system potassium uptake protein CeoB	Rv2691	64%	13	127	59	N/D	N/D
active	sds	1182	9,1	0,13	Conserved alanine and glycine and valine rich protein	Rv2696c	48%	8	68	63	N/D	N/D
active	cyt	663	146,8	1,78	Iron-dependent repressor and activator IdeR	Rv2711	69%	13	67	4	12	N/D
dormant (D1)	sds	2277	92,1	0,82	Iron-dependent repressor and activator IdeR	Rv2711	48%	8	62	N/D	29	N/D
active	cyt	735	6,9	0,08	Conserved alanine and leucine rich protein	Rv2714	81%	21	201	117	N/D	N/D
active	sds	1102	1,5	0,02	Possible conserved transmembrane alanine and glycine rich protein	Rv2721c	73%	30	284	105	60	67
dormant (D1)	sds	2205	26,4	0,24	Possible conserved transmembrane alanine and glycine rich protein	Rv2721c	44%	10	121	105	60	67
dormant (D2)	sds	1191	8,1	0,11	Possible conserved transmembrane alanine and glycine rich protein	Rv2721c	44%	11	122	105	60	67
dormant (D2)	cyt	1901	16,6	0,10	Possible conserved transmembrane alanine and glycine rich protein	Rv2721c	42%	11	61	55	41	51
active	cyt	704	23,7	0,29	Probable diaminopimelate epimerase DapF (DAP epimerase)	Rv2726c	42%	12	72	58	N/D	N/D
active	cyt	733	11,5	0,14	Conserved alanine rich protein	Rv2728c	81%	11	130	97	N/D	N/D
active	sds	1148	45,9	0,67	RecA protein (recombinase A) [contains: endonuclease PI-MTUI (MTU RecA intein)].	Rv2737c	37%	20	117	24	N/D	N/D
active	cyt	680	25,7	0,31	Conserved 35 kDa alanine rich protein	Rv2744c	88%	33	381	54	6	N/D
active	sds	1161	50,9	0,75	Conserved 35 kDa alanine rich protein	Rv2744c	87%	37	398	9	6	2
active	sds	1162	51,4	0,75	Conserved 35 kDa alanine rich protein	Rv2744c	93%	38	462	9	6	2
active	sds	1167	135,5	1,99	Conserved 35 kDa alanine rich protein	Rv2744c	96%	40	381	9	6	2
active	sds	1168	70,5	1,03	Conserved 35 kDa alanine rich protein	Rv2744c	88%	33	293	9	6	2
dormant (D1)	cyt	2150	44,8	2,26	Conserved 35 kDa alanine rich protein	Rv2744c	60%	15	189	54	6	N/D
dormant (D1)	sds	2251	377,2	3,36	Conserved 35 kDa alanine rich protein	Rv2744c	89%	32	250	9	6	2
dormant (D1)	sds	2252	151,6	1,35	Conserved 35 kDa alanine rich protein	Rv2744c	78%	22	163	9	6	2
dormant (D1)	sds	2253	291,8	2,60	Conserved 35 kDa alanine rich protein	Rv2744c	70%	22	168	9	6	2
dormant (D1)	sds	2254	29,4	0,26	Conserved 35 kDa alanine rich protein	Rv2744c	56%	13	108	9	6	2
dormant (D1)	sds	2255	49,7	0,44	Conserved 35 kDa alanine rich protein	Rv2744c	20%	4	235	9	6	2
dormant (D1)	sds	2256	74,5	0,66	Conserved 35 kDa alanine rich protein	Rv2744c	38%	7	74	9	6	2

dormant (D1)	sds	2302	45,1	0,40	Conserved 35 kDa alanine rich protein	Rv2744c	49%	14	82	9	6	2
dormant (D1)	sds	2303	27,6	0,25	Conserved 35 kDa alanine rich protein	Rv2744c	63%	16	123	9	6	2
dormant (D2)	sds	1223	351,1	4,68	Conserved 35 kDa alanine rich protein	Rv2744c	79%	24	280	9	6	2
dormant (D2)	sds	1224	114,1	1,52	Conserved 35 kDa alanine rich protein	Rv2744c	93%	38	316	9	6	2
dormant (D2)	sds	1224	114,1	1,52	Conserved 35 kDa alanine rich protein	Rv2744c	93%	40	329	9	6	2
dormant (D2)	sds	1225	34,9	0,47	Conserved 35 kDa alanine rich protein	Rv2744c	83%	31	238	9	6	2
dormant (D2)	sds	1226	37,5	0,50	Conserved 35 kDa alanine rich protein	Rv2744c	70%	18	121	9	6	2
dormant (D2)	sds	1231	12,9	0,17	Conserved 35 kDa alanine rich protein	Rv2744c	91%	37	293	9	6	2
dormant (D2)	sds	1232	62,6	0,83	Conserved 35 kDa alanine rich protein	Rv2744c	87%	31	270	9	6	2
active	cyt	697	29,3	0,36	Probable dihydrodipicolinate synthase DapA (DHDPS) (dihydrodipicolinate synthetase)	Rv2753c	69%	16	95	47	N/D	N/D
active	cyt	740	18,8	0,23	Probable alanine rich hydrolase	Rv2765	76%	17	126	76	N/D	N/D
active	cyt	681	29	0,35	Dihydrodipicolinate reductase DapB (DHPR)	Rv2773c	82%	8	79	35	N/D	N/D
active	cyt	683	39,2	0,48	Dihydrodipicolinate reductase DapB (DHPR)	Rv2773c	79%	15	166	35	N/D	N/D
dormant (D2)	sds	1236	43,3	0,58	Dihydrodipicolinate reductase DapB (DHPR)	Rv2773c	77%	8	96	N/D	N/D	24
active	cyt	693	16,1	0,20	Secreted L-alanine dehydrogenase Ald (40 kDa antigen) (TB43)	Rv2780	51%	12	97	2	N/D	55
active	cyt	782	262,3	3,19	Secreted L-alanine dehydrogenase Ald (40 kDa antigen) (TB43)	Rv2780	95%	32	373	2	N/D	55
active	cyt	783	32,1	0,39	Secreted L-alanine dehydrogenase Ald (40 kDa antigen) (TB43)	Rv2780	73%	8	70	2	N/D	55
active	sds	1138	17,4	0,26	Secreted L-alanine dehydrogenase Ald (40 kDa antigen) (TB43)	Rv2780	73%	21	156	51	N/D	N/D
dormant (D2)	cyt	1900	12,3	0,07	Secreted L-alanine dehydrogenase Ald (40 kDa antigen) (TB43)	Rv2780	88%	28	216	2	N/D	55
dormant (D1)	cyt	2153	10,5	0,53	Probable enoyl-CoA hydratase EchA16 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv2831	75%	15	90	N/D	34	N/D
active	sds	1179	6,2	0,09	Possible magnesium chelatase	Rv2850c	58%	19	144	73	N/D	N/D
active	cyt	722	8,7	0,11	Probable GcpE protein	Rv2868c	75%	23	139	109	N/D	N/D
active	cyt	664	100	1,21	Ribosome recycling factor Frr (ribosome releasing factor) (RRF)	Rv2882c	57%	12	116	7	N/D	N/D
active	cyt	727	3,1	0,04	Probable uridylate kinase PyrH (UK) (uridine monophosphate kinase) (UMP kinase)	Rv2883c	92%	29	202	108	N/D	N/D
active	cyt	727	3,1	0,04	Probable uridylate kinase PyrH (UK) (uridine monophosphate kinase) (UMP kinase)	Rv2883c	93%	29	202	108	N/D	N/D
active	cyt	741	8,8	0,11	Probable uridylate kinase PyrH (UK) (uridine monophosphate kinase) (UMP kinase)	Rv2883c	70%	15	63	108	N/D	N/D
active	cyt	675	19,4	0,24	Probable elongation factor Tsf (EF-ts)	Rv2889c	91%	40	586	72	50	69
dormant (D1)	sds	2259	71,7	0,64	Probable elongation factor Tsf (EF-ts)	Rv2889c	58%	13	174	N/D	38	N/D

dormant (D2)	cyt	1896	5,6	0,03	Probable elongation factor Tsf (EF-ts)	Rv2889c	75%	24	337	72	50	69
active	cyt	691	15,6	0,19	30S ribosomal protein S2 RpsB	Rv2890c	75%	18	186	89	N/D	N/D
active	sds	1146	72,3	1,06	30S ribosomal protein S2 RpsB	Rv2890c	92%	30	231	15	85	34
dormant (D1)	sds	2284	6,2	0,06	30S ribosomal protein S2 RpsB	Rv2890c	31%	7	55	15	85	34
dormant (D2)	sds	1220	31,3	0,42	30S ribosomal protein S2 RpsB	Rv2890c	85%	20	160	15	85	34
active	cyt	685	37,8	0,46	Possible mycobactin utilization protein ViuB	Rv2895c	90%	25	284	36	N/D	N/D
active	sds	1100	4,2	0,06	Probable signal recognition particle protein Ffh (fifty-four homolog) (SRP protein)	Rv2916c	62%	30	214	82	N/D	N/D
active	sds	1094	1,4	0,02	Probable cell division protein FtsY (SRP receptor) (signal recognition particle receptor)	Rv2921c	64%	17	151	97	N/D	N/D
active	sds	1095	2,3	0,03	Probable cell division protein FtsY (SRP receptor) (signal recognition particle receptor)	Rv2921c	68%	20	228	97	N/D	N/D
active	cyt	698	11,9	0,14	Probable ribonuclease III Rnc (RNase III)	Rv2925c	86%	16	111	96	N/D	N/D
active	cyt	798	5,1	0,06	Fatty-acid-AMP ligase FadD28 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase)	Rv2941	79%	40	479	132	25	N/D
dormant (D1)	cyt	2125	17,2	0,87	Fatty-acid-AMP ligase FadD28 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase)	Rv2941	36%	13	65	132	25	N/D
dormant (D2)	sds	1251	9,8	0,13	Fatty-acid-AMP ligase FadD28 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase)	Rv2941	33%	9	74	N/D	N/D	60
active	sds	1087	12,5	0,18	Probable polyketide synthase Pks15	Rv2947c	46%	13	53	58	N/D	N/D
active	sds	1117	1,8	0,03	P-hydroxybenzoyl-AMP ligase FadD22	Rv2948c	46%	22	92	103	N/D	N/D
dormant (D2)	sds	1256	45,8	0,61	Possible oxidoreductase	Rv2951c	65%	18	119	N/D	N/D	23
active	sds	1145	138,4	2,03	Probable lipase/esterase LipN	Rv2970c	75%	17	94	8	44	17
dormant (D1)	sds	2257	47,3	0,42	Probable lipase/esterase LipN	Rv2970c	14%	3	150	8	44	17
dormant (D1)	sds	2282	11,1	0,10	Probable lipase/esterase LipN	Rv2970c	38%	8	55	8	44	17
dormant (D2)	sds	1219	58,6	0,78	Probable lipase/esterase LipN	Rv2970c	40%	10	93	8	44	17
active	cyt	726	7,3	0,09	Probable oxidoreductase	Rv2971	79%	22	262	113	N/D	40
dormant (D2)	cyt	1757	29,7	0,18	Probable oxidoreductase	Rv2971	76%	17	98	113	N/D	40
active	sds	1179	6,2	0,09	Probable D-alanineD-alanine ligase DdlA (D-alanylalanine synthetase) (D-ala-D-ala ligase)	Rv2981c	52%	14	112	73	91	N/D
active	sds	1180	4,7	0,07	Probable D-alanineD-alanine ligase DdlA (D-alanylalanine synthetase) (D-ala-D-ala ligase)	Rv2981c	56%	18	79	73	91	N/D
dormant (D1)	sds	2226	4,3	0,78	Probable D-alanineD-alanine ligase DdlA (D-alanylalanine synthetase) (D-ala-D-ala ligase)	Rv2981c	57%	13	93	73	91	N/D
dormant (D2)	sds	1254	123,8	1,65	DNA-binding protein HU homolog HupB (histone-like protein) (HLP) (21-kDa laminin-2- binding protein)	Rv2986c	69%	8	100	N/D	N/D	7
dormant (D2)	sds	1216	6,5	0,09	Glutamyl-tRNA synthetase GltS (glutamatetRNA ligase) (glutamyl-tRNA synthase) (GLURS)	Rv2992c	23%	7	58	N/D	N/D	70

1	1	1	1	1		1	1		1	1	1	1
active	cyt	706	30,9	0,38	Possible 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase (HHDD isomerase)	Rv2993c	70%	14	134	45	N/D	26
active	cyt	706	30,9	0,38	Possible 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase (HHDD isomerase)	Rv2993c	68%	12	126	45	N/D	26
dormant (D2)	cyt	1748	56	0,34	Possible 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase (HHDD isomerase)	Rv2993c	43%	9	74	45	N/D	26
dormant (D2)	cyt	1748	56	0,34	Possible 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase (HHDD isomerase)	Rv2993c	56%	11	100	45	N/D	26
dormant (D1)	sds	2293	10,9	0,10	Probable 3-isopropylmalate dehydrogenase LeuB (beta-IPM dehydrogenase) (IMDH) (3- IPM-DH)	Rv2995c	16%	4	62	N/D	77	N/D
active	cyt	766	2,5	0,03	Probable D-3-phosphoglycerate dehydrogenase SerA1 (PGDH)	Rv2996c	89%	32	345	153	42	30
dormant (D1)	sds	2216	98,9	0,88	Probable D-3-phosphoglycerate dehydrogenase SerA1 (PGDH)	Rv2996c	49%	17	220	N/D	27	N/D
dormant (D2)	cyt	1891	46,6	0,28	Probable D-3-phosphoglycerate dehydrogenase SerA1 (PGDH)	Rv2996c	80%	25	199	153	42	30
active	sds	1167	135,5	1,99	Probable conserved lipoprotein LppY	Rv2999	51%	9	54	9	N/D	N/D
active	sds	1148	45,9	0,67	Probable KETOL-acid reductoisomerase IIvC (acetohydroxy-acid isomeroreductase) (alpha- keto-beta-hydroxylacil reductoisomerase)	Rv3001c	38%	8	48	24	5	49
active	sds	1149	26,1	0,38	Probable KETOL-acid reductoisomerase IIvC (acetohydroxy-acid isomeroreductase) (alpha- keto-beta-hydroxylacil reductoisomerase)	Rv3001c	78%	36	456	24	5	49
dormant (D1)	sds	2236	419,4	3,74	Probable KETOL-acid reductoisomerase IIvC (acetohydroxy-acid isomeroreductase) (alpha- keto-beta-hydroxylacil reductoisomerase)	Rv3001c	29%	9	90	24	5	49
dormant (D2)	sds	1227	15	0,20	Probable KETOL-acid reductoisomerase IIvC (acetohydroxy-acid isomeroreductase) (alpha- keto-beta-hydroxylacil reductoisomerase)	Rv3001c	76%	31	225	24	5	49
active	sds	1113	5,7	0,08	Acetolactate synthase (large subunit) IIvB1 (acetohydroxy-acid synthase)	Rv3003c	56%	21	89	75	N/D	N/D
active	sds	1153	29,1	0,43	Probable conserved lipoprotein LppZ	Rv3006	75%	15	200	33	N/D	N/D
dormant (D2)	cyt	1755	147,3	0,89	Probable conserved lipoprotein LppZ	Rv3006	62%	9	76	N/D	N/D	11
dormant (D2)	cyt	1756	127,4	0,77	Probable conserved lipoprotein LppZ	Rv3006	69%	11	60	N/D	N/D	11
active	sds	1089	4,3	0,06	Probable glutamyl-tRNA(GLN) amidotransferase (subunit B) GatB (Glu-ADT subunit B)	Rv3009c	57%	16	109	80	N/D	N/D
active	cyt	767	2,6	0,03	Probable glutamyl-tRNA(GLN) amidotransferase (subunit A) GatA (Glu-ADT subunit A)	Rv3011c	67%	33	252	151	N/D	32
dormant (D2)	cyt	1892	45,1	0,27	Probable glutamyl-tRNA(GLN) amidotransferase (subunit A) GatA (Glu-ADT subunit A)	Rv3011c	60%	16	78	151	N/D	32
active	cyt	700	55	0,67	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	80%	16	227	23	2	19
active	cyt	726	7,3	0,09	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	84%	6	60	23	2	19
dormant (D1)	cyt	2136	70,5	3,55	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	80%	15	232	23	2	19
dormant (D1)	cyt	2141	16,9	0,85	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	83%	11	88	23	2	19
dormant (D1)	sds	2269	32,8	0,29	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	47%	3	300	N/D	50	26

dormant (D2)	sds	1240	40,2	0,54	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	91%	16	284	N/D	50	26
dormant (D2)	cyt	1746	102,2	0,62	Probable electron transfer flavoprotein (alpha-subunit) FixB (alpha-ETF) (electron transfer flavoprotein large subunit) (ETFLS)	Rv3028c	90%	16	265	23	2	19
active	cyt	707	68,8	0,84	Probable electron transfer flavoprotein (beta-subunit) FixA (beta-ETF) (electron transfer flavoprotein small subunit) (ETFSS)	Rv3029c	85%	27	419	15	9	20
dormant (D1)	cyt	2142	39,2	1,97	Probable electron transfer flavoprotein (beta-subunit) FixA (beta-ETF) (electron transfer flavoprotein small subunit) (ETFSS)	Rv3029c	64%	16	142	15	9	20
dormant (D2)	cyt	1745	96,3	0,58	Probable electron transfer flavoprotein (beta-subunit) FixA (beta-ETF) (electron transfer flavoprotein small subunit) (ETFSS)	Rv3029c	89%	25	301	15	9	20
active	cyt	733	11,5	0,14	Probable conserved secreted protein TB22.2	Rv3036c	60%	10	90	97	N/D	N/D
active	sds	1152	21,5	0,32	Probable FEIII-dicitrate-binding periplasmic lipoprotein FecB	Rv3044	80%	15	182	42	N/D	N/D
active	cyt	721	6	0,07	Probable NADP-dependent alcohol dehydrogenase AdhC	Rv3045	81%	36	374	127	N/D	28
dormant (D2)	cyt	1773	50,9	0,31	Probable NADP-dependent alcohol dehydrogenase AdhC	Rv3045	76%	23	289	127	N/D	28
dormant (D1)	cyt	2140	10,3	0,52	Conserved protein	Rv3075c	46%	12	90	58	35	11
dormant (D2)	cyt	1755	147,3	0,89	Conserved protein	Rv3075c	29%	9	65	58	35	11
active	cyt	705	19,1	0,23	Conserved protein	Rv3099c	33%	7	47	74	N/D	N/D
active	cyt	763	11,4	0,14	Probable peptide chain release factor 2 PrfB (RF-2)	Rv3105c	61%	18	70	98	N/D	31
active	cyt	764	6,3	0,08	Probable peptide chain release factor 2 PrfB (RF-2)	Rv3105c	79%	25	191	98	N/D	31
active	cyt	764	6,3	0,08	Probable peptide chain release factor 2 PrfB (RF-2)	Rv3105c	76%	25	188	98	N/D	31
dormant (D2)	cyt	1882	45,5	0,28	Probable peptide chain release factor 2 PrfB (RF-2)	Rv3105c	66%	18	105	98	N/D	31
dormant (D2)	cyt	1886	31,8	0,19	Probable peptide chain release factor 2 PrfB (RF-2)	Rv3105c	59%	16	198	98	N/D	31
active	cyt	811	2,8	0,03	Probable acyl-CoA dehydrogenase FadE24	Rv3139	36%	13	69	150	N/D	N/D
active	sds	1143	22,9	0,34	Probable acyl-CoA dehydrogenase FadE23	Rv3140	72%	15	123	39	26	42
dormant (D1)	sds	2225	104,1	0,93	Probable acyl-CoA dehydrogenase FadE23	Rv3140	40%	7	65	39	26	42
dormant (D2)	sds	1264	20,2	0,27	Probable acyl-CoA dehydrogenase FadE23	Rv3140	51%	26	193	39	26	42
active	cyt	662	49,2	0,60	Probable NADH dehydrogenase I (chain C) NuoC (NADH-ubiquinone oxidoreductase chain C)	Rv3147	82%	18	172	27	N/D	N/D
dormant (D2)	cyt	1775	44,2	0,27	Probable NADH dehydrogenase I (chain E) NuoE (NADH-ubiquinone oxidoreductase chain E)	Rv3149	51%	9	86	N/D	N/D	33
active	cyt	687	20,8	0,25	Probable NADH dehydrogenase I (chain I) Nuol (NADH-ubiquinone oxidoreductase chain I)	Rv3153	77%	10	61	67	N/D	N/D
dormant (D1)	cyt	2134	4,9	0,25	Possible dioxygenase	Rv3161c	64%	16	94	N/D	49	47
dormant (D1)	sds	2301	12,6	0,11	Possible dioxygenase	Rv3161c	26%	9	60	N/D	74	N/D

dormant (D2)	cyt	1893	21,7	0,13	Possible dioxygenase	Rv3161c	53%	16	154	N/D	49	47
dormant (D1)	cyt	2166	5,5	0,28	Conserved protein	Rv3169	29%	7	39	N/D	47	18
dormant (D2)	cyt	1880	103,3	0,63	Conserved protein	Rv3169	57%	15	97	N/D	47	18
dormant (D2)	sds	1233	108,8	1,45	Conserved protein	Rv3205c	52%	7	54	N/D	N/D	9
active	sds	1143	22,9	0,34	Probable molybdenum cofactor biosynthesis protein MoeB1 (MPT-synthase sulfurylase) (molybdopterin synthase sulphurylase)	Rv3206c	41%	11	72	39	N/D	N/D
active	cyt	670	25,1	0,30	Possible phosphoglycerate mutase Gpm2 (phosphoglyceromutase) (PGAM) (BPG- dependent PGAM)	Rv3214	49%	7	36	55	N/D	59
dormant (D2)	cyt	1770	9,9	0,06	Possible phosphoglycerate mutase Gpm2 (phosphoglyceromutase) (PGAM) (BPG- dependent PGAM)	Rv3214	12%	1	77	55	N/D	59
active	cyt	656	64,4	0,78	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	61%	23	175	16	40	52
active	sds	1159	38,7	0,57	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	48%	12	56	27	34	29
dormant (D1)	cyt	2170	6,7	0,34	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	48%	13	105	16	40	52
dormant (D1)	sds	2256	74,5	0,66	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	38%	10	80	27	34	29
dormant (D1)	sds	2302	45,1	0,40	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	64%	10	46	27	34	29
dormant (D2)	sds	1226	37,5	0,50	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	53%	16	65	27	34	29
dormant (D2)	cyt	1894	14,9	0,09	Possible iron-regulated short-chain dehydrogenase/reductase	Rv3224	69%	24	159	16	40	52
active	sds	1121	2,5	0,04	Probable preprotein translocase SecA1 1 subunit	Rv3240c	67%	71	635	96	70	N/D
dormant (D1)	sds	2295	15,9	0,14	Probable preprotein translocase SecA1 1 subunit	Rv3240c	19%	12	133	96	70	N/D
active	cyt	683	39,2	0,48	Two component sensory transduction transcriptional regulatory protein MtrA	Rv3246c	48%	8	85	35	N/D	N/D
active	sds	1172	64,3	0,94	Two component sensory transduction transcriptional regulatory protein MtrA	Rv3246c	87%	27	314	18	28	24
dormant (D1)	sds	2306	97,6	0,87	Two component sensory transduction transcriptional regulatory protein MtrA	Rv3246c	64%	14	128	18	28	24
dormant (D2)	sds	1236	43,3	0,58	Two component sensory transduction transcriptional regulatory protein MtrA	Rv3246c	83%	20	175	18	28	24
dormant (D1)	cyt	2126	6,3	0,32	Probable adenosylhomocysteinase SahH (S-adenosyl-L-homocysteine hydrolase) (adohcyase)	Rv3248c	42%	20	106	N/D	44	3
dormant (D2)	cyt	1873	560,7	3,40	Probable adenosylhomocysteinase SahH (S-adenosyl-L-homocysteine hydrolase) (adohcyase)	Rv3248c	72%	41	292	N/D	44	3
active	cyt	771	7,1	0,09	Probable mannose-6-phosphate isomerase ManA (phosphomannose isomerase) (phosphomannoisomerase) (PMI) (phosphohexoisomerase) (phosphohexomutase)	Rv3255c	41%	11	68	115	N/D	16
dormant (D2)	cyt	1881	126,5	0,77	Probable mannose-6-phosphate isomerase ManA (phosphomannose isomerase) (phosphomannoisomerase) (PMI) (phosphohexoisomerase) (phosphohexomutase)	Rv3255c	36%	11	121	115	N/D	16
active	sds	1151	7,5	0,11	Conserved protein	Rv3256c	48%	12	79	71	N/D	56
dormant (D2)	sds	1228	10,8	0,14	Conserved protein	Rv3256c	59%	14	78	71	N/D	56

active	cyt	728	4	0,05	D-alpha-D-mannose-1-phosphate guanylyltransferase ManB (D-alpha-D-heptose-1- phosphate guanylyltransferase)	Rv3264c	71%	25	141	104	N/D	N/D
active	cyt	729	9,7	0,12	D-alpha-D-mannose-1-phosphate guanylyltransferase ManB (D-alpha-D-heptose-1- phosphate guanylyltransferase)	Rv3264c	31%	10	51	104	N/D	N/D
dormant (D2)	sds	1227	15	0,20	D-alpha-D-mannose-1-phosphate guanylyltransferase ManB (D-alpha-D-heptose-1- phosphate guanylyltransferase)	Rv3264c	62%	21	136	N/D	N/D	49
active	cyt	781	19	0,23	Probable acyl-CoA dehydrogenase FadE25	Rv3274c	89%	50	499	75	N/D	53
dormant (D2)	cyt	1885	14,7	0,09	Probable acyl-CoA dehydrogenase FadE25	Rv3274c	71%	31	189	75	N/D	53
active	cyt	813	4,7	0,06	Probable propionyl-CoA carboxylase beta chain 5 AccD5 (pccase) (propanoyl-CoA:carbon dioxide ligase)	Rv3280	82%	39	330	133	N/D	41
dormant (D1)	sds	2308	8,7	0,08	Probable propionyl-CoA carboxylase beta chain 5 AccD5 (pccase) (propanoyl-CoA:carbon dioxide ligase)	Rv3280	27%	7	68	N/D	81	N/D
dormant (D2)	cyt	1875	29,1	0,18	Probable propionyl-CoA carboxylase beta chain 5 AccD5 (pccase) (propanoyl-CoA:carbon dioxide ligase)	Rv3280	73%	24	133	133	N/D	41
dormant (D2)	cyt	1751	51,7	0,31	Probable thiosulfate sulfurtransferase SseA (rhodanese) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv3283	82%	20	242	N/D	N/D	27
dormant (D2)	cyt	1751	51,7	0,31	Probable thiosulfate sulfurtransferase SseA (rhodanese) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv3283	82%	20	242	N/D	N/D	27
dormant (D2)	cyt	1758	26,9	0,16	Probable thiosulfate sulfurtransferase SseA (rhodanese) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv3283	64%	21	189	N/D	N/D	27
dormant (D2)	cyt	1895	7,9	0,05	Probable thiosulfate sulfurtransferase SseA (rhodanese) (thiosulfate cyanide transsulfurase) (thiosulfate thiotransferase)	Rv3283	43%	9	91	N/D	N/D	27
active	cyt	808	6,8	0,08	Probable bifunctional protein acetyl-/propionyl-coenzyme A carboxylase (alpha chain) AccA3: biotin carboxylase + biotin carboxyl carrier protein (BCCP)	Rv3285	77%	32	399	120	88	N/D
active	sds	1122	4,1	0,06	Probable bifunctional protein acetyl-/propionyl-coenzyme A carboxylase (alpha chain) AccA3: biotin carboxylase + biotin carboxyl carrier protein (BCCP)	Rv3285	75%	30	340	83	N/D	5
dormant (D2)	sds	1212	158,5	2,11	Probable bifunctional protein acetyl-/propionyl-coenzyme A carboxylase (alpha chain) AccA3: biotin carboxylase + biotin carboxyl carrier protein (BCCP)	Rv3285	24%	8	81	83	N/D	5
dormant (D2)	sds	1213	80,3	1,07	Probable bifunctional protein acetyl-/propionyl-coenzyme A carboxylase (alpha chain) AccA3: biotin carboxylase + biotin carboxyl carrier protein (BCCP)	Rv3285	32%	12	127	83	N/D	5
dormant (D2)	sds	1248	5,6	0,07	Probable bifunctional protein acetyl-/propionyl-coenzyme A carboxylase (alpha chain) AccA3: biotin carboxylase + biotin carboxyl carrier protein (BCCP)	Rv3285	29%	7	61	83	N/D	5
dormant (D1)	sds	2280	5,3	0,05	Probable L-lysine-epsilon aminotransferase Lat (L-lysine aminotransferase) (lysine 6- aminotransferase)	Rv3290c	62%	3	121	N/D	86	N/D
active	sds	1180	4,7	0,07	Conserved hypothetical protein	Rv3292	76%	22	150	78	91	N/D
dormant (D1)	sds	2289	4,3	0,04	Conserved hypothetical protein	Rv3292	39%	14	108	78	91	N/D
active	sds	1111	2,9	0,04	Probable glycerol-3-phosphate dehydrogenase GlpD2	Rv3302c	41%	19	198	91	N/D	N/D
active	cyt	730	5,8	0,07	Probable tryptophanyl-tRNA synthetase TrpS (tryptophantRNA ligase) (TRPRS) (tryptophan translase)	Rv3336c	69%	15	208	129	N/D	N/D
active	cyt	688	21,4	0,26	Possible methyltransferase (methylase)	Rv3342	83%	19	212	64	N/D	N/D
active	cyt	686	27	0,33	Probable bifunctional protein FoID: methylenetetrahydrofolate dehydrogenase + methenyltetrahydrofolate cyclohydrolase	Rv3356c	94%	30	268	52	N/D	N/D
--------------	-----	------	-------	------	--	---------	-----	----	-----	-----	-----	-----
dormant (D2)	sds	1231	12,9	0,17	Probable bifunctional protein FoID: methylenetetrahydrofolate dehydrogenase + methenyltetrahydrofolate cyclohydrolase	Rv3356c	50%	7	42	N/D	N/D	51
active	cyt	665	75,2	0,91	Possible oxidoreductase	Rv3368c	56%	10	84	10	N/D	N/D
dormant (D2)	cyt	1763	2,8	0,02	Conserved protein	Rv3369	54%	7	109	N/D	N/D	72
active	cyt	676	19,4	0,24	Probable 3-hydroxyacyl-thioester dehydratase HtdY	Rv3389c	73%	18	82	22	15	27
active	cyt	702	55,1	0,67	Probable 3-hydroxyacyl-thioester dehydratase HtdY	Rv3389c	82%	24	294	22	15	27
dormant (D1)	cyt	2145	24,8	1,25	Probable 3-hydroxyacyl-thioester dehydratase HtdY	Rv3389c	65%	21	189	22	15	27
dormant (D2)	cyt	1750	34	0,21	Probable 3-hydroxyacyl-thioester dehydratase HtdY	Rv3389c	88%	25	281	22	15	27
dormant (D2)	cyt	1751	51,7	0,31	Probable 3-hydroxyacyl-thioester dehydratase HtdY	Rv3389c	45%	6	65	22	15	27
dormant (D2)	cyt	1896	5,6	0,03	Probable 3-hydroxyacyl-thioester dehydratase HtdY	Rv3389c	56%	11	77	22	15	27
active	sds	1174	105,9	1,55	Probable conserved lipoprotein LpqD	Rv3390	51%	16	258	11	N/D	N/D
active	cyt	677	45	0,55	Probable hydrolase	Rv3400	90%	29	308	30	N/D	N/D
dormant (D2)	sds	1263	27,3	0,36	Probable hydrolase	Rv3400	68%	10	110	N/D	N/D	38
dormant (D1)	cyt	2167	6,5	0,33	Probable inosine-5'-monophosphate dehydrogenase GuaB3 (imp dehydrogenase) (inosinic acid dehydrogenase) (inosinate dehydrogenase) (imp oxidoreductase) (inosine-5'- monophosphate oxidoreductase) (IMPDH) (IMPD)	Rv3410c	45%	7	54	N/D	41	28
dormant (D2)	cyt	1773	50,9	0,31	Probable inosine-5'-monophosphate dehydrogenase GuaB3 (imp dehydrogenase) (inosinic acid dehydrogenase) (inosinate dehydrogenase) (imp oxidoreductase) (inosine-5'- monophosphate oxidoreductase) (IMPDH) (IMPD)	Rv3410c	48%	13	130	N/D	41	28
active	cyt	806	4,4	0,05	Probable inosine-5'-monophosphate dehydrogenase GuaB2 (imp dehydrogenase) (inosinic acid dehydrogenase) (inosinate dehydrogenase) (imp oxidoreductase) (inosine-5'- monophosphate oxidoreductase) (IMPDH) (IMPD)	Rv3411c	83%	39	415	137	N/D	N/D
active	sds	1097	14,1	0,21	Probable inosine-5'-monophosphate dehydrogenase GuaB2 (imp dehydrogenase) (inosinic acid dehydrogenase) (inosinate dehydrogenase) (imp oxidoreductase) (inosine-5'- monophosphate oxidoreductase) (IMPDH) (IMPD)	Rv3411c	81%	47	461	56	N/D	N/D
active	sds	1098	8,7	0,13	Probable inosine-5'-monophosphate dehydrogenase GuaB2 (imp dehydrogenase) (inosinic acid dehydrogenase) (inosinate dehydrogenase) (imp oxidoreductase) (inosine-5'- monophosphate oxidoreductase) (IMPDH) (IMPD)	Rv3411c	89%	50	526	56	N/D	N/D
active	cyt	774	6,5	0,08	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	90%	46	528	122	45	30
active	sds	1086	18,3	0,27	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	86%	50	410	48	N/D	6
active	sds	1087	12,5	0,18	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	45%	16	76	48	N/D	6
dormant (D2)	sds	1208	17,2	0,23	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	84%	41	334	48	N/D	6
dormant (D2)	sds	1209	125,3	1,67	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	43%	14	73	48	N/D	6

dormant (D2)	sds	1248	5,6	0,07	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	43%	16	163	48	N/D	6
dormant (D2)	cyt	1891	46,6	0,28	60 kDa chaperonin 1 GroEL1 (protein CPN60-1) (GroEL protein 1)	Rv3417c	42%	12	58	122	45	30
dormant (D2)	cyt	1742	470,8	2,85	10 kDa chaperonin GroES (protein CPN10) (protein GroES) (BCG-a heat shock protein) (10 kDa antigen)	Rv3418c	99%	17	334	N/D	N/D	4
dormant (D2)	cyt	1743	140,7	0,85	11 kDa chaperonin GroES (protein CPN10) (protein GroES) (BCG-a heat shock protein) (10 kDa antigen)	Rv3418c	91%	13	260	N/D	N/D	4
dormant (D1)	sds	2257	47,3	0,42	Alanine racemase Alr	Rv3423c	21%	3	96	N/D	44	N/D
dormant (D2)	sds	1249	12,4	0,17	Probable glutamate decarboxylase GadB	Rv3432c	30%	10	77	N/D	N/D	52
dormant (D1)	sds	2249	83,4	0,74	Probable glucosaminefructose-6-phosphate aminotransferase [isomerizing] GlmS (hexosephosphate aminotransferase) (D-fructose-6-phosphate amidotransferase) (GFAT) (L-glutamine-D-fructose-6-phosphate amidotransferase) (glucosamine-6-phosphate synthase)	Rv3436c	46%	13	107	N/D	32	N/D
active	cyt	749	15	0,18	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	93%	37	557	91	28	43
active	sds	1131	3,6	0,05	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	89%	23	179	87	73	N/D
dormant (D1)	cyt	2130	8,3	0,42	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	54%	10	64	91	28	43
dormant (D1)	cyt	2139	14,7	0,74	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	87%	26	255	91	28	43
dormant (D1)	sds	2309	13,3	0,12	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	62%	17	260	87	73	N/D
dormant (D2)	cyt	1774	24,1	0,15	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	64%	18	100	91	28	43
dormant (D2)	cyt	1887	4,8	0,03	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	75%	26	292	91	28	43
dormant (D2)	cyt	1888	23,9	0,14	Probable DNA-directed RNA polymerase (alpha chain) RpoA (transcriptase alpha chain) (RNA polymerase alpha subunit) (DNA-directed RNA nucleotidyltransferase)	Rv3457c	75%	20	70	91	28	43
dormant (D1)	sds	2263	13,7	0,12	PE family protein PPE60	Rv3478	17%	5	161	N/D	72	N/D
active	sds	1133	19,2	0,28	Possible triacylglycerol synthase (diacylglycerol acyltransferase)	Rv3480c	40%	11	57	47	N/D	N/D
active	sds	1134	12,5	0,18	Possible triacylglycerol synthase (diacylglycerol acyltransferase)	Rv3480c	56%	16	112	47	N/D	N/D
active	cyt	686	27	0,33	Probable short-chain type dehydrogenase/reductase	Rv3485c	53%	13	68	52	N/D	N/D
dormant (D2)	sds	1232	62,6	0,83	Probable short-chain type dehydrogenase/reductase	Rv3485c	45%	9	54	N/D	N/D	14
dormant (D1)	sds	2263	13,7	0,12	Mce-family protein Mce4C	Rv3497c	9%	3	100	N/D	72	N/D
active	cyt	723	6,8	0,08	Probable acyl-CoA dehydrogenase FadE27	Rv3505	38%	11	62	119	N/D	N/D
active	cyt	745	16,7	0,20	Probable acetohydroxyacid synthase IlvX (acetolactate synthase)	Rv3509c	60%	22	206	83	48	8

dormant (D1)	cyt	2122	4,9	0,25	Probable acetohydroxyacid synthase IlvX (acetolactate synthase)	Rv3509c	72%	30	224	83	48	8
dormant (D1)	sds	2214	125,6	1,12	Probable acetohydroxyacid synthase IlvX (acetolactate synthase)	Rv3509c	21%	7	77	N/D	21	61
dormant (D2)	sds	1207	9,6	0,13	Probable acetohydroxyacid synthase IlvX (acetolactate synthase)	Rv3509c	45%	14	75	N/D	21	61
dormant (D2)	cyt	1781	217,6	1,32	Probable acetohydroxyacid synthase IlvX (acetolactate synthase)	Rv3509c	75%	29	254	83	48	8
dormant (D2)	cyt	1886	31,8	0,19	Probable acetohydroxyacid synthase IlvX (acetolactate synthase)	Rv3509c	54%	10	94	83	48	8
dormant (D2)	cyt	1886	31,8	0,19	Probable cytochrome P450 monooxygenase 142 Cyp142	Rv3518c	72%	27	136	N/D	N/D	39
active	cyt	687	20,8	0,25	Possible CoA-transferase (beta subunit)	Rv3552	61%	10	62	67	N/D	N/D
dormant (D2)	cyt	1893	21,7	0,13	Probable acetyl-CoA acetyltransferase FadA6 (acetoacetyl-CoA thiolase)	Rv3556c	59%	18	62	N/D	N/D	47
dormant (D2)	cyt	1903	17,7	0,11	Probable acetyl-CoA acetyltransferase FadA6 (acetoacetyl-CoA thiolase)	Rv3556c	60%	11	44	N/D	N/D	47
dormant (D1)	sds	2281	8,5	0,08	Possible oxidoreductase. Possible 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17- dione hydroxylase.	Rv3570c	26%	7	44	N/D	82	N/D
dormant (D2)	cyt	1900	12,3	0,07	Possible oxidoreductase. Possible 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17- dione hydroxylase.	Rv3570c	43%	12	52	N/D	N/D	55
dormant (D1)	sds	2227	83,9	0,75	Conserved hypothetical protein	Rv3586	42%	9	110	N/D	31	44
dormant (D2)	sds	1265	18,2	0,24	Conserved hypothetical protein	Rv3586	54%	14	87	N/D	31	44
active	cyt	801	9	0,11	Probable ATP-dependent protease ATP-binding subunit ClpC1	Rv3596c	62%	40	471	106	N/D	N/D
active	sds	1105	15,7	0,23	Probable ATP-dependent protease ATP-binding subunit ClpC1	Rv3596c	62%	44	414	55	92	62
active	sds	1115	3,5	0,05	Probable ATP-dependent protease ATP-binding subunit ClpC1	Rv3596c	67%	56	605	55	92	62
dormant (D1)	sds	2296	2,6	0,02	Probable ATP-dependent protease ATP-binding subunit ClpC1	Rv3596c	14%	10	175	55	92	62
dormant (D2)	sds	1195	9,5	0,13	Probable ATP-dependent protease ATP-binding subunit ClpC1	Rv3596c	55%	49	458	55	92	62
dormant (D1)	sds	2308	8,7	0,08	Lysyl-tRNA synthetase 1 LysS (lysinetRNA ligase 1) (LysRS 1) (lysine translase)	Rv3598c	15%	4	113	N/D	81	N/D
active	cyt	716	22,9	0,28	ESX-1 secretion-associated protein EspD	Rv3614c	94%	16	246	62	N/D	N/D
dormant (D1)	sds	2271	22,2	0,20	Probable conserved lipoprotein LpqG	Rv3623	66%	13	335	N/D	65	12
dormant (D2)	sds	1238	93,6	1,25	Probable conserved lipoprotein LpqG	Rv3623	70%	15	163	N/D	65	12
active	cyt	710	32,5	0,39	Inorganic pyrophosphatase Ppa (pyrophosphate phospho-hydrolase) (PPASE) (inorganic diphosphatase) (diphosphate phospho-hydrolase)	Rv3628	57%	11	139	41	N/D	34
dormant (D2)	cyt	1760	39,3	0,24	Inorganic pyrophosphatase Ppa (pyrophosphate phospho-hydrolase) (PPASE) (inorganic diphosphatase) (diphosphate phospho-hydrolase)	Rv3628	59%	12	142	41	N/D	34
dormant (D1)	cyt	2150	44,8	2,26	UDP-glucose 4-epimerase GalE1 (galactowaldenase) (UDP-galactose 4-epimerase) (uridine diphosphate galactose 4-epimerase) (uridine diphospho-galactose 4-epimerase)	Rv3634c	39%	6	68	34	6	N/D
active	sds	1181	17,6	0,26	Probable anion transporter ATPase	Rv3679	55%	15	150	50	N/D	N/D

dormant (D1)	sds	2282	11,1	0,10	Probable lyase	Rv3684	38%	10	74	N/D	76	N/D
active	cyt	669	50,8	0,62	Conserved protein	Rv3688c	82%	9	61	25	N/D	N/D
active	sds	1180	4,7	0,07	Probable methanol dehydrogenase transcriptional regulatory protein MoxR2	Rv3692	76%	20	51	78	N/D	N/D
dormant (D1)	cyt	2126	6,3	0,32	Probable glycerol kinase GlpK (ATP:glycerol 3-phosphotransferase) (glycerokinase) (GK)	Rv3696c	52%	18	79	72	44	N/D
active	cyt	737	8,1	0,10	Conserved protein	Rv3699	91%	11	131	92	24	N/D
active	cyt	737	8,1	0,10	Conserved protein	Rv3699	74%	11	130	92	24	N/D
active	cyt	738	14,8	0,18	Conserved protein	Rv3699	94%	18	291	92	24	N/D
dormant (D1)	cyt	2173	17,5	0,88	Conserved protein	Rv3699	90%	13	193	92	24	N/D
active	sds	1127	4,1	0,06	Glutamatecysteine ligase GshA (gamma-glutamylcysteine synthetase) (gamma-ECS) (GCS) (gamma-glutamyl-L-cysteine synthetase)	Rv3704c	34%	13	103	84	N/D	N/D
active	cyt	719	22,2	0,27	Aspartate-semialdehyde dehydrogenase Asd (ASA dehydrogenase) (ASADH) (aspartic semialdehyde dehydrogenase)	Rv3708c	85%	24	264	63	N/D	N/D
active	sds	1151	7,5	0,11	Aspartate-semialdehyde dehydrogenase Asd (ASA dehydrogenase) (ASADH) (aspartic semialdehyde dehydrogenase) (L-aspartate-beta-semialdehyde dehydrogenase)	Rv3708c	82%	28	295	71	43	56
dormant (D1)	sds	2265	49,7	0,44	Aspartate-semialdehyde dehydrogenase Asd (ASA dehydrogenase) (ASADH) (aspartic semialdehyde dehydrogenase)	Rv3708c	26%	3	226	71	43	56
dormant (D2)	sds	1228	10,8	0,14	Aspartate-semialdehyde dehydrogenase Asd (ASA dehydrogenase) (ASADH) (aspartic semialdehyde dehydrogenase)	Rv3708c	84%	23	255	71	43	56
active	cyt	759	4,7	0,06	2-isopropylmalate synthase LeuA (alpha-isopropylmalate synthase) (alpha-IPM synthetase) (IPMS)	Rv3710	41%	19	108	134	N/D	N/D
active	sds	1133	19,2	0,28	Possible fatty acid synthase	Rv3720	55%	16	102	47	N/D	N/D
active	cyt	783	32,1	0,39	Putative triacylglycerol synthase (diacylglycerol acyltransferase) Tgs2	Rv3734c	80%	40	371	43	N/D	N/D
active	sds	1135	180,7	2,65	Putative triacylglycerol synthase (diacylglycerol acyltransferase) Tgs2	Rv3734c	76%	33	391	6	N/D	43
dormant (D2)	sds	1252	19,3	0,26	Putative triacylglycerol synthase (diacylglycerol acyltransferase) Tgs2	Rv3734c	55%	20	174	6	N/D	43
active	sds	1168	70,5	1,03	Prephenate dehydrogenase TyrA (PDH) (hydroxyphenylpyruvate synthase)	Rv3754	43%	9	93	16	N/D	N/D
active	cyt	669	50,8	0,62	Conserved protein	Rv3755c	78%	13	80	25	28	N/D
active	cyt	670	25,1	0,30	Conserved protein	Rv3755c	77%	12	73	25	28	N/D
active	cyt	698	11,9	0,14	Conserved protein	Rv3755c	76%	19	109	25	28	N/D
dormant (D1)	cyt	2145	24,8	1,25	Possible osmoprotectant (glycine betaine/carnitine/choline/L-proline) binding lipoprotein ProX	Rv3759c	37%	5	73	N/D	15	N/D
dormant (D2)	cyt	1767	14,7	0,09	19 kDa lipoprotein antigen precursor LpqH	Rv3763	37%	1	219	N/D	N/D	54
active	cyt	704	23,7	0,29	Possible S-adenosylmethionine-dependent methyltransferase	Rv3767c	69%	11	72	58	N/D	N/D
active	sds	1184	20,4	0,30	Possible S-adenosylmethionine-dependent methyltransferase	Rv3767c	68%	13	114	43	37	N/D
dormant (D1)	sds	2305	72,1	0,64	Possible S-adenosylmethionine-dependent methyltransferase	Rv3767c	87%	25	285	43	37	N/D

active	cyt	704	23,7	0,29	Possible enoyl-CoA hydratase EchA21 (enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase)	Rv3774	83%	21	178	58	N/D	N/D
active	cyt	695	18,4	0,22	Probable oxidoreductase	Rv3777	59%	18	110	79	N/D	N/D
dormant (D1)	sds	2284	6,2	0,06	Possible aminotransferase	Rv3778c	31%	8	68	N/D	85	N/D
dormant (D2)	sds	1233	108,8	1,45	Probable O-antigen/lipopolysaccharide transport ATP-binding protein ABC transporter RfbE	Rv3781	33%	7	43	N/D	N/D	9
active	cyt	800	3,9	0,05	Fatty-acid-AMP ligase FadD32 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase). Also shown to have acyl-ACP ligase activity.	Rv3801c	79%	34	468	142	N/D	N/D
active	sds	1107	19,9	0,29	Fatty-acid-AMP ligase FadD32 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase). Also shown to have acyl-ACP ligase activity.	Rv3801c	70%	29	363	46	N/D	N/D
active	sds	1158	25,8	0,38	Probable conserved membrane protein	Rv3802c	36%	8	49	37	N/D	N/D
active	cyt	670	25,1	0,30	Secreted MPT51/MPB51 antigen protein FbpD (MPT51/MPB51 antigen 85 complex C) (AG58C) (mycolyl transferase 85C) (fibronectin-binding protein C) (85C)	Rv3803c	79%	18	109	55	3	N/D
active	cyt	671	12,6	0,15	Secreted MPT51/MPB51 antigen protein FbpD (MPT51/MPB51 antigen 85 complex C) (AG58C) (mycolyl transferase 85C) (fibronectin-binding protein C) (85C)	Rv3803c	79%	18	122	55	3	N/D
active	cyt	671	12,6	0,15	Secreted MPT51/MPB51 antigen protein FbpD (MPT51/MPB51 antigen 85 complex C) (AG58C) (mycolyl transferase 85C) (fibronectin-binding protein C) (85C)	Rv3803c	79%	18	122	55	3	N/D
dormant (D1)	cyt	2146	47,6	2,40	Secreted MPT51/MPB51 antigen protein FbpD (MPT51/MPB51 antigen 85 complex C) (AG58C) (mycolyl transferase 85C) (fibronectin-binding protein C) (85C)	Rv3803c	79%	15	154	55	3	N/D
active	cyt	661	42,4	0,52	Secreted antigen 85-a FbpA (mycolyl transferase 85A) (fibronectin-binding protein A) (antigen 85 complex A)	Rv3804c	71%	22	218	32	N/D	N/D
active	cyt	808	6,8	0,08	Probable fatty-acid-AMP ligase FadD23 (fatty-acid-AMP synthetase) (fatty-acid-AMP synthase)	Rv3826	37%	11	83	120	N/D	N/D
dormant (D2)	sds	1213	80,3	1,07	SERYL-tRNA synthetase SerS (serinetRNA ligase) (SERRS) (serine translase)	Rv3834c	33%	10	72	N/D	N/D	13
dormant (D2)	cyt	1760	39,3	0,24	Bacterioferritin BfrB	Rv3841	44%	7	82	N/D	N/D	34
active	cyt	666	37,3	0,45	Superoxide dismutase [FE] SodA	Rv3846	99%	18	281	38	11	50
dormant (D1)	cyt	2149	35,8	1,80	Superoxide dismutase [FE] SodA	Rv3846	65%	9	138	38	11	50
dormant (D2)	cyt	1768	17,2	0,10	Superoxide dismutase [FE] SodA	Rv3846	60%	8	77	38	11	50
active	sds	1184	20,4	0,30	ESX-1 secretion-associated protein EspG1	Rv3866	37%	6	42	43	N/D	N/D
active	cyt	717	59,2	0,72	ESX-1 secretion-associated protein EspH	Rv3867	63%	14	165	19	N/D	N/D
active	sds	1112	4,9	0,07	ESX conserved component EccCb1. ESX-1 type VII secretion system protein.	Rv3871	70%	47	366	77	N/D	N/D
active	cyt	744	3,6	0,04	Secreted ESX-1 substrate protein B, EspB. Conserved alanine and glycine rich protein	Rv3881c	89%	31	452	145	N/D	N/D
active	cyt	696	17,9	0,22	Probable thioredoxin reductase TrxB2 (TRXR) (TR)	Rv3913	88%	27	226	81	N/D	N/D
active	cyt	696	17,9	0,22	Probable thioredoxin reductase TrxB2 (TRXR) (TR)	Rv3913	88%	27	226	81	N/D	N/D
dormant (D1)	sds	2302	45,1	0,40	Probable thioredoxin reductase TrxB2 (TRXR) (TR)	Rv3913	54%	12	73	N/D	45	N/D
dormant (D2)	cyt	1762	10	0,06	Thioredoxin TrxC (TRX) (MPT46)	Rv3914	67%	6	90	N/D	N/D	58
active	cyt	731	8,9	0,11	Conserved protein similar to jag protein	Rv3920c	93%	20	320	107	N/D	N/D