Успехи биологической химии, т. 60, 2020, с. 277-316

ЭВОЛЮЦИЯ БЕЛКОВ СЕМЕЙСТВА ДНК-ФОТОЛИАЗ/КРИПТОХРОМОВ.

©2020 г. Ю. Л. ВЕЧТОМОВА, Т. А. ТЕЛЕГИНА, М. С. КРИЦКИЙ

Институт биохимии им. А.Н. Баха, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук, Москва

I. Введение. II. Строение белков семейства ДНК-фотолиаз/криптохромов. III. Классификация белков семейства ДНК-фотолиаз/ криптохромов и их распространение в современных организмах. IV. Древний предшественник семейства ДНК-фотолиаз/криптохромов, каким он был? V. Заключение.

І. ВВЕДЕНИЕ

Основные продукты облучения ДНК УФ-В излучением (λ 200÷320 нм) – это циклобутановые пиримидиновые димеры (СРD, 75%) или пиримидин (6–4) пиримидиновые фотопродукты ((6–4) фотопродукты, 25%), в которых ковалентно связаны два соседних пиримидина (рис. 1). Образование таких фотопродуктов (циклобутановых димеров и (6–4) фотопродуктов) повреждает клетки, блокируя репликацию и транскрипцию ДНК, и в редких случаях, когда ДНК-полимераза способна обходить поврежденные участки, вызывает мутации. Клетки способны защитить себя от вредного воздействия УФ света при помощи одновременного или последующего облучения ближним

Принятые сокращения: СРD – циклобутановые пиримидиновые димеры; СРF – семейство ДНК-фотолиаз/криптохромов; LUCA – последний универсальный общий предок; МТНF – 5,10-метенил-5,6,7,8-тетрагидрофолат; 8-HDF – 7-дезметил-8-гидрокси-5-дезазарибофлавин; DMRL –6,7-диметил-8-рибитиллюмазин; Cry-DASH – криптохром DASH; PHR CPD I (II или III) – ДНКфотолиаза циклобутановых пиримидиновых димеров класса 1 (2 или 3); Plant PHR2 – ДНК-фотолиаза растений класса 2; Plant Cry – растительный криптохром; pCry-like – белок, подобный криптохромам растений; (6–4) PHR – ДНК-фотолиаза пиримидин (6–4) пиримидиновых фотопродуктов; Animal Cry – животный криптохром.

Адрес для корреспонденции: vechtomova@inbi.ras.ru

Работа выполнена при частичной поддержке Программы Президиума РАН №16.

Рис. 1. Образование в ДНК циклобутановых пиримидиновых димеров и (6–4) фотопродуктов под действием УФ облучения (200–320 нм).

УФ – видимым светом (λ 320÷500 нм) в процессе фоторепарации с участием фермента ДНК-фотолиазы (РНR, КФ – 4.1.99.3) [1–3] или удаляя поврежденные участки ДНК с помощью эндонуклеаз с заменой поврежденных нуклеотидов [4–7].

ДНК-фотолиазы – это, по-видимому, самые древние ферменты репарации ДНК в эволюции. Они используют энергию света для того, чтобы напрямую восстановить исходную структуру поврежденной ДНК. В отличие от репарации с помощью эндонуклеаз этот процесс не требует наличия других ферментов и синтеза дополнительных нуклеотидов [2, 5, 7, 8].

Современные фотолиазы входят в состав семейства белков ДНК-фотолиаз/криптохромов (CPF – Cryptochrome Photolyase Family). Криптохромы – белки рецепторы ближнего УФ/синего света и регуляторы транскрипции различных генов. Термин «криптохром» был первоначально предложен для обозначения любых фоторегуляторных белков, контролирующих «ответы на синий свет» [9]. После того, как M. Ahmad и A.R. Cashmore в 1993 году открыли первые криптохромы у Arabidopsis thaliana, сразу же было установлено их сходство с фотолиазой и название «криптохром» закрепилось исключительно за рецепторами, гомологичными ДНК-фотолиазам [10, 11]. Позднее были открыты другие флавопротеины, которые также принимали участие в регуляции ближним УФ/синим светом, но они отличались от криптохромов по структуре и получили другие названия. Несмотря на филогенетическое родство, криптохромы выполняют совершенно иные функции, нежели ДНК-фотолиазы, - они осуществляют фоторегуляцию транскрипции различных генов, а также являются частью циркадного осциллятора животных и участвуют в коррекции светом циркадных ритмов, как у растений, так и у животных [10-15]. Криптохромы также принимают участие в магниторецепции – пространственной ориентации птиц и насекомых в магнитном поле [12, 16, 17].

Считается, что один или несколько генов, кодирующих ДНК-фотолиазы, были у общего универсального предшественника всех современные живых организмов – LUCA (Last Universal Common Ancestor). Теоретически такой предшественник мог существовать на Земле более 3,8 млрд. лет назад в условиях сильного УФ-излучения и восстановительной атмосферы с высоким содержанием метана и водорода [5, 18]. В таких условиях, организмам была жизненно необходима система защиты от повреждающего солнечного излучения, поскольку озоновый слой на тот момент еще не сформировался. Скорее всего, именно в таких условиях зародился первый белок семейства СРF. Каким был предок СРF, какие выполнял функции, и какие хромофоры он содержал? Ответ на этот вопрос поможет нам лучше представить процессы, лежащие в основе эволюции живых организмов, и понять факторы, влияющие на отбор тех или иных молекул на роль фоторецепторов. Для того чтобы ответить на эти вопросы, мы проанализировали современных представителей этого семейства белков: что у них есть общего и чем они отличаются друг от друга, а также рассмотрели различные эволюционные и филогенетические исследования на эту тему [8, 19-25].

II. СТРОЕНИЕ БЕЛКОВ СЕМЕЙСТВА ДНК-ФОТОЛИАЗ/КРИПТОХРОМОВ

Анализ кристаллической структуры показал, что белки семейства фотолиаз/криптохромов имеют схожее строение и содержат два нековалентно связанных хромофора в стехиометрической пропорции. Это мономерные глобулярные белки, состоящие из двух хорошо обозначенных доменов: N-концевой α/β домен (180–220 аминокислот), который содержит 5 β-складчатых параллельных структур, и С-концевой α -спиральный домен (240-280 аминокислот) [26, 27]. Эти два домена связаны друг с другом длинной междоменной петлей, которая оборачивается вокруг α/β -домена (рис. 2). С-концевой α -спиральный домен содержит консервативную для всех представителей семейства последовательность аминокислот, отвечает за связывание флавинового хромофора и ДНК-фотопродуктов [16, 26–31]. Как α -спиральный домен, так и α/β домен часто способны на неспецифическое связывание неповрежденной ДНК [26].

В активном центре фермента находится основной хромофор – флавинадениндинуклеотид (FAD) в необычной U-образной конформации, когда изоаллоксазиновое и адениновое кольца сближены друг с другом (см. рис. 2). В ДНК-фотолиазах FAD (точнее его

Рис. 2. Обобщенная структура белков семейства ДНК-фотолиаз/криптохромов на примере Cry-DASH *Synechocystis* sp. [14].

восстановленная форма FADH-) отвечает за связывание фермента с поврежденными участками ДНК и функционирует в составе каталитического центра в репарационном процессе. Сайт связывания FAD крайне консервативен во всех белках СРГ [32]. Второй хромофор, в большинстве исследованных ДНКфотолиаз-5,10-метенил-5,6,7,8-тетрагидрофолат (MTHF) или 7-дезметил-8-гидрокси-5-дезазарибофлавин (8-HDF), выполняет функцию «антенны-светосборщика», т.е. расширяет спектральный диапазон захвата фотонов, увеличивает количество поглощенных фотонов и передает энергию возбуждения на FADH⁻ [33]. Этот хромофор располагается между двумя доменами ближе к поверхности белка и за его

связывание отвечает более вариабельный α/β домен [16, 26, 27, 34]. По последовательности аминокислот между СРF и другими белками, связывающими флавины и фолаты, выполняющими различные другие функции в живых организмах, гомологии не наблюдается. Это объясняется тем, что СРF связывают хромофоры, как в основном, так и возбужденном состоянии, а другие ферменты только в основном [26, 34].

ФОТОЦИКЛ ДНК-ФОТОЛИАЗЫ

Фотоцикл ДНК-фотолиазы состоит из нескольких стадий (рис. 3). На первой стадии происходит связывание фермента с циклобутановыми пиримидиновыми димерами или (6–4) фотопродуктами поврежденной ДНК и встраивание их в активный центр фермента с образованием стабильного фермент-субстратного комплекса. Специфическое связывание с СРD идет независимо от последовательности ДНК и в 10⁵ раз сильнее, чем неспецифическое связывание с неповрежденной ДНК [34]. Эта стадия не зависит от света. Антенная молекула поглощает фотон УФ-А/синего света и передает энергию возбуждения (путем Ферстеровского диполь-дипольного резонансного взаимодействия) на FADH⁻, который затем передает электрон на циклобутановый пиримидиновый димер или (6–4) фотопродукт. Далее происходит

Рис. 3. Фотоцикл ДНК-фотолиаз.

перераспределение электронной плотности внутри молекулы и восстанавливается исходная структура ДНК. После этого электрон возвращается на флавин, регенерируя исходную FADH⁻ форму из промежуточной свободнорадикальной формы FADH⁻. В первом приближении механизм ферментативной реакции представляет собой катализируемый энергией фотона циклический перенос электрона, не приводящий к потере электрона и поэтому, строго говоря, не являющийся окислительно-восстановительной реакцией [2, 23, 31]. За открытие структурно-функциональной организации, механизма работы фотоцикла ДНК-фотолиазы и другие исследования в области структуры и функций белков СРF в 2015 году доктору Азизу Санджару (Aziz Sancar) была присуждена Нобелевская премия по химии.

ФОТОВОССТАНОВЛЕНИЕ FAD

Для работы фотолиазы необходимо, чтобы флавин в каталитическом центре находился в восстановленном состоянии в виде FADH⁻. Часто при выделении и очистке белка FAD в каталитическом центре окисляется до радикала FADH[•] или до полностью окисленного FAD и для того, чтобы белок снова мог работать проводят процесс

фотовосстановления FAD с дитионитом или другими слабыми восстановителями. При этом светом 300–450 нм возбуждают флавин, и он по цепочке, состоящей из трех триптофанов, забирает электрон из восстановителя, находящегося в окружающем буфере. Работает ли такой механизм восстановления в фотолиазах *in vivo* неизвестно, однако необходимые для переноса электрона цепочки, состоящие из трех триптофанов, найдены практически у всех представителей этого семейства и являются консервативным элементом структуры этих белков. В отдельных случаях триптофан может заменяться тирозином, или у некоторых организмов даже существуют два возможных пути переноса электрона, через разные аминокислотные остатки триптофанов. Это может указывать на важность процесса фотовосстановления для работы белков СРF [15, 16, 35–37].

СТРОЕНИЕ И ФУНКЦИИ КРИПТОХРОМОВ

Аминокислотная последовательность криптохромов на 25÷40% гомологична последовательности ДНК-фотолиаз при этом в большинстве случаев у криптохромов отсутствует сайт связывания ДНК, хотя некоторые представители сохранили способность связывать как поврежденную, так и неповрежденную ДНК [16, 28, 30]. На Сили N-конце криптохромов существует дополнительный «хвост», который существенен для локализации белка в ядре клетки и взаимодействия с другими регуляторными белками, связываясь с которыми криптохромы могут влиять на процесс экспрессии генов [3, 14, 15, 21, 37]. Несмотря на большое количество исследований, посвященных функционированию криптохромов, содержащих полностью окисленный FAD или частично восстановленный FADH, фотоциклы криптохромов остаются не ясными [10, 31, 32, 38, 39]. Получены данные о том, что основу преобразования сигнала в процессах фоторегуляции составляют фотоиндуцированные изменения конформации молекул криптохрома [16, 40, 41]. Было также высказано предположение, что в основе функционирования криптохромов лежит реакция фотоактивации за счет передачи электрона к фотовозбужденному флавину от ароматических аминокислот триптофана и тирозина, находящихся в активном центре фоторецептора. При этом донором водорода может служить аспарагиновая кислота [35].

Радикал FADH[•] может поглощать свет не только в синей (в области 465 нм), но также и в желтой (в области 580 нм) и в красной (в области 630 нм) областях спектра. Было показано, что (6–4) фотолиаза *Chlamydomonas reinhardtii* (UniProt – A8J8W0) с двойной функцией в ответ на стимуляцию как синим, так и красным (в меньшей степени

желтым) светом регулирует экспрессию генов, кодирующих белки биосинтеза каротиноидов, хлорофилла, светособирающих комплексов, метаболизма азота, регуляции клеточного цикла и циркадных ритмов. Исходно в реакционном центре находится FAD в окисленном состоянии, после стимуляции синим светом в области 465 нм он восстанавливается до нейтрального радикала FADH[•], при дальнейшем облучении он полностью восстанавливается до FADH⁻. Эта последовательная смена окислительно-восстановительного состояния FAD, предположительно, лежит в основе процессов фоторегуляции экспрессии генов [42]. С образованием свободно-радикальных форм флавина, в том числе, радикальной пары FADH[•] – Trp[•] (где Trp[•] радикал триптофана) связывают магниторецепторную функцию криптохромов [17, 37, 43].

АНТЕННЫЕ МОЛЕКУЛЫ В БЕЛКАХ СРГ

В белках СРF помимо основного хромофора FAD присутствуют пигменты-светосборщики, выполняющие роль антенны. Ключевой ролью «антенны-светосборщика» в ДНК-фотолиазах является поглощение фотонов света и резонансный перенос энергии путем диполь-дипольного взаимодействия на каталитический FADH⁻[2, 31, 44, 45]. Для CPF было описано пять молекул выполняющих роль «антенны». МТНГ у большинства эукариот и у некоторых прокариот (например: Escherichia coli, Neurospora crassa или Saccharomyces cerevisiae) [2]. 8-HDF у некоторых прокариот (Streptomyces griseus, Anacystis nidulans и т. д.) [2], простейших эукариот (Ostreococcus tauri, Scenedesmus acutus), которые имеют путь биосинтеза этого соединения [46, 47], и в очень редких случаях у эукариот, которые могут получать его от симбиотических бактерий и сохранили способность связывать дезазафлавин (Drosophila melanogaster) [47]. Также в качестве антенны могут функционировать вторая молекула FAD (у архебактерий Sulfolobus tokodaii) [48] и FMN (у Thermus *thermophilus*) [49]. Недавно было показано, что 6,7-диметил-8-рибитиллюмазин (DMRL) может функционировать в качестве антенны в прокариотических (6-4)-фотолиазах (Agrobacterium fabrum, Rhodobacter sphaeroides) [19, 50].

Второй, антенный, хромофор не обязателен для фотокаталитической функции ДНК-фотолиазы и не влияет на связывание с субстратом. Однако в условиях недостаточной освещенности может увеличивать скорость фоторепарации ДНК от 10 до 100 раз в зависимости от условий облучения. Это связано с тем, что второй хромофор имеет более высокий коэффициент экстинкции и более широкую полосу погло-

щения в области УФА-света ($\varepsilon_{370\text{нм}} 29000 \text{ M}^{-1} \text{сm}^{-1}$ для МТНF или $\varepsilon_{440\text{нм}} 40000 \text{ M}^{-1} \text{сm}^{-1}$ для 8-HDF) по сравнению с флавиновым хромофором (FADH⁻ – $\varepsilon_{380\text{нм}} 6000 \text{ M}^{-1} \text{сm}^{-1}$, $\varepsilon_{580\text{нм}} 4800 \text{ M}^{-1} \text{cm}^{-1}$) [2, 51].

III. КЛАССИФИКАЦИЯ БЕЛКОВ СЕМЕЙСТВА ДНК-ФОТОЛИАЗ/КРИПТОХРОМОВ И ИХ РАСПРОСТРАНЕНИЕ В СОВРЕМЕННЫХ ОРГАНИЗМАХ

По выполняемым функциям основные представители СРГ подразделяются на: фотолиазы циклобутанового типа (PHR CPD), (6-4)-фотолиазы, криптохромы DASH, криптохромы растений и животных. Первоначально СРД ДНК-фотолиазы были поделены на два класса на основании сходства в их аминокислотных последовательностях: белки имеющие сходство с E. coli ДНК-фотолиазой (UniProt – P00914) отнесли к классу 1 (PHR CPD I), а белки похожие на фотолиазу D. melanogaster (UniProt – Q24443) отнесли ко второму классу (PHR СРД II) [32]. Позже были найдены ДНК-фотолиазы, похожие на PHR CPD I, но имеющие в своей структуре некоторое сходство с криптохромами растений и их выделили в отдельный класс под номером три (PHR CPD III) [52]. Также фотолиазы подразделяли по наличию второго антенного хромофора на фолатный тип (MTHF в качестве антенны) и дезазафлавиновый тип (8-HDF, FAD или FMN в качестве антенны) [32]. Но позднее такая классификация утратила свою актуальность, поскольку не удавалось проследить корреляции между филогенетическим положением белка и химической природой антенного хромофора.

Филогенетические реконструкции последних лет [19–25] подразделяют белки CPF на 4 основных группы (см. таблицу): первая группа содержит PHR CPD II и некоторые подобные ей белки с неустановленной функцией [20], для упрощения последние не включены в таблицу; вторая группа включает в себя криптохромы DASH и ДНК-фотолиазы растений (Plant PHR2) по аминокислотной последовательности схожие с PHR CPD II; третья группа состоит из PHR CPD I и III, а также включает криптохромы растений (Plant Cry) и подобные им белки (pCry-like), найденные в основном только по геному и пока мало изученные; четвертая группа включает в себя все типы (6–4) фотолиаз и криптохромы животных (Animal Cry). Рассмотрим более подробно структуру и функции всех этих представителей CPF.

$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	L t		PHR	Группа С	ry-DASH	Группа Рі	HR CPD I / 1	криптохром	ы растений	Группа (6-4	.) фотолиазы / животных	криптох,	pombi	Ссылки
1 2 3 4 5 6 7 8 9 10 11 12 13 Burgers Address vision 5 4 7 8 7 13 13 13 dablok Cafeteria rows- bergents vision 34 10 11 12 13 13 45DNA Cafeteria rows- bergents vision Q4K108 E314N5 E314N5 E314N5 E314N5 E314N5 Abroaders Cafeteria rows- bergents Q4K108 P P P P P Abroaders Cafeteria rows- bergentiane Q4K108 P P P P P Abroader Production P P P P P P P Abroader Production P P P P P P P P Abroader P P P P P P P P P P P Abroader Production P P P P P P P P Abroader Production P P P P P P <	I руппа	Организм	CPD II	Cry-DASH	Plant PHR2	PHR CPD I	PHR CPD III	pCry-like	Plant Cry	CryPro	(6-4) PHR / Cry	(6-4) PHR	Animal Cry	
Buyca Expression E3T4N5 E3T4N5 E3T4N6 E3T4N6 E3T4N6 E3T4N6 E3T4N6 E3T4N6 E3T4N6 E3T4N6 E3T4N5 E3T4N6 E3T4N6 E3T4N5 E3T4N6 E3T4N5 E3T4N6 <	-	2	3	4	5	9	7	∞	6	10	11	12	13	14
	Вирусы													
		Cafeteria roen- bergensis virus				E3T4N5				E3T4R9				53
Myxona virusQ9Q8H428Abran virusQ9Q8H428Abran virusSuffolobus28AreaF9VNB1F9VNB128Thermo- Pyrobactili oguntensePyrobactili Pyrobactili oguntenseF9VNB1F9VNB128Methano- oguntensePhile Pirobactili matorophier- matorophilisF9VNB1F9VNB1F9VNB128Methano- odes burnoni matorophilisPil2769Colsb Pil28F90048.28.2Methano- matorophilisMethanococ- matorophilisQ12TR5Q12TR5N8.2Methano- matorophilisMethanococ- DiseAlsQ12TR5DiseAls8.2Methano- matorophilisMethanofor matoriaDiseAls8.2Methanofor mictolaDiseAlsDiseAls8.2Methanofor mictolaDiseAlsDiseAls8.2Methanofor mictolaDiffusDiseAlsDiseAls8.2Methanofor mictolaDiffusDiseAlsDiseAls8.2Methanofor mictolaDiffusDiseAlsDiseAlsMethanoforMethanofor mictolaDiffusDiseAlsDiseAlsDiseAlsMethano mictolaDiffusDiseAlsDiseAlsDiseAlsMethano mictolaDiffusDiseAlsDiseAlsDiseAlsMethano mictolaDiffusDiseAlsDiseAlsDiseAl	dsDNA	Chrysodeixis chalcites nucleo- polyhedrovirus	Q4KT08											19, 53, 54, 55
Apxa Apxa Thermo- protein protein probadatii probadatii podatii potatiano- materia mattano- materia Methanosarcina Methanosarcina mazeri F9VNB1 F9VNB1 F9 Thermo- protein ogunterse Piofodatii Probadatii mattano- materia Methanosarcina mazeri F9VNB1 F9VNB1 F9 Methanother- mobacter ther- mobacter ther- materia P12769 F9 F9 53 Methanother- mobacter ther- materia P12769 Cold 78 53 Methanother- mobacter ther- materia P12769 Cold 78 53 Methanother- materia P12769 Cold 78 53 Methanosarcina QBYK9 Cold 78 53 Methanosarcina QBYK9 Cold 78 78 Methanosarcina QBYK9 Cold 78 8, 2 Methanosarcina QBYK9 E 264 78 8, 2 Methanosarcina QBYK9 E 78 78 78 78 Methanosarcina QBYP9 QBHA94 29 78 78 78		Myxoma virus	Q9Q8H4											28, 56
	Археи													
protein oguinensePyrobaculumHe (BD8He (BD8 <td>Thermo-</td> <td>Sulfolobus tokodaii</td> <td></td> <td></td> <td></td> <td>F9VNB1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>48</td>	Thermo-	Sulfolobus tokodaii				F9VNB1								48
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	protei	Pyrobaculum oguniense								H6QBD8				57
Methanococ- coides burranii Methanococ- coides burranii Methanococ- coides burranii Q12TR5 Q12 Methanococcoccoc (Coides burranii) Methanococcoc (Coides burranii) Methanococcoc (Coides burranii) Methanococcoccoccoccoccoccoccoccoccoccoccocco	Methano- bacteria	Methanother- mobacter ther- mautotrophicus	P12769							O27804				8, 22, 55, 58
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Methanococ- coides burtonii				Q12TR5								∞
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Methano- microbia	Methanosarcina mazei	Q8PYK9											8, 22, 55
Thermo- plasmata Picrophilus QeL055 QeL055 Qellop Color plasmata Iorridus QOHQ6, QOHRG8 6,1 Halobac Ballabacarium QOHRG8 QOHRG8 6,1 Halobac Matronomans QOHRG9 QOHRG8 6,1 Pharaonis QOHRB9 QOHRG8 0,1 6,1		Methanohalo- philus mahii	D5E9U1							D5EAI8				19
Halobacterium C9HQ46, Q9HQ46, Halobac- teria salinarum Q9HRG8 6, 1 Natronomonas Q3IPX9 Q3ILY4 A0A1U7EXZ2	Thermo- plasmata	Picrophilus torridus				Q6L055								×
teria Natronomonas Q3IPX9 Q3ILY4 A0AJU7EXZ2 A0AJU7EXZ2 A	Halobac-	Halobacterium salinarum				Q9HQ46, Q9HP89				Q9HRG8				6, 19, 22
	teria	Natronomonas pharaonis		Q3IPX9		Q3ILY4				A0A1U7EXZ2				×

Эволюция ДНК-фотолиаз и криптохромов

1	2	3	4	5	9	7	~	6	10	11	12	13	14
Бактерии													
Thermotogae	Fervidobacterium nodosum				A7HMU7								∞
	Meiothermus ruber								D3PKP9				19
Demococcus- Thermus	Thermus thermophilus				P61497								49, 59
Chloroflexi	Roseiflexus sp.				A5UYV1				A5UP99				8, 19
	Rubrobacter xylanophilus	Q1AY95											8, 55
Actinobacteria	Streptomyces griseus				P12768				B1VXF9				19, 60
	Bacillus anthracis					Q81NL2							8, 22, 52
Firmicutes	Bacillus pseudofirmus				Q04449								61
	Bacillus selenitire- ducens								D6Y059				19
	Leptospira biflexa								B0SLJ5				19
Spirochaetes	Leptospira borgpetersenii	Q04W16											×
Chlorobi	Chlorobium phaeo- bacteroides	A1BHU7											8, 55
Chlamydiae	Candidatus Protochlamydia amoebophila					Q6MDF3							×

Продолжение табл.

Ю.Л.Вечтомова и соавт.

Продолжение табл.

-	,		4	v	9	۲	×	0	10	=	12	13	14
	Anacystis nidu- lans (Synechococ- cus sp.)		16NL2Q		P05327				Q5N550	1			8, 19, 62
Cyanobacteria	Synechocystis sp		P77967		Q55081				P74080				63, 64, 65, 66
	Gloeobacter violaceus		Q7NMD1		Q7NMI2						Q7NJT31		21, 23, 52
Acidobacteria	Solibacter usitatus	Q01RX5											8
Delta-proteo- bacteria	Desulfohalobium retbaense	C8X2G2							C8X3W0				19, 55
	Escherichia coli				P00914								34, 67, 68
Gamma- proteobacteria	Legionella pneumophila					QSWZW5			Q5WZX1				8, 19, 52
	Vibrio cholerae		Q9KR33		Q9KNA8				Q9KLD7				52, 69, 70
Beta-proteo-	Burkholderia vietnamiensis					A4JRC0 ²			A4JRC3				8, 19
bacteria	Polynucleobac- ter sp.		A0A1L9GKT4		A4SVE8				A4SZA8				8, 19
	Agrobacterium fabrum					A9CJC9			A9CH39				71, 72, 73
Alpha-proteo- bacteria	Rhodobacter capsulatus				D5APW6				D5AP96				19, 74
	Rhodobacter sphaeroides					Q3J4I8			Q3IXP1				19, 50, 71
Planctomyce- tes	Rhodopirellula baltica	Q7UFL3, Q7ULU5	Q7UJB1						Q7UG69				8, 19, 55
Bacteroidetes	Salinibacter ruber		Q2S3C6		Q2S3L9				Q2S0Y7				8, 19, 57

287

Продолжение табл. см. на сл. стр.

1.	I
Ø	
a	
2	

288

Ю.Л.Вечтомова и соавт.

							I				прода	пнәж	е табл.
						ľ	•	4	¢,	Ţ	;	;	;
-	7	s	4	n	0		×	6	10	П	17	13	14
Эукариот	.PI												
	Leishmania major				Q4Q4G2								8, 21
EXCAVAIA	Naegleria gru- beri		D2VYR8										21
Rhodo- phyta	Cyanidioschyzon merolae		M1V3I5, M1V828, M1VF92				M1V522	MIVDQ4, MIV6L5			M1V623		15, 52
	Guillardia theta	L1IW67, L1JUL2, L1JDR5	L1JSA3				L1J295, L1JGSI						20, 21, 22
Hacrobia	Emiliania huxleyi	R1BP27	R1E9B6				R1E582, R1CPW3, R1D8F8						20, 22
	Paramecium tetraurelia	A0E5N7							A0DL57				8, 19, 22
Ciliophora	Tetrahymena thermophila				Q23F29, Q23DL8								8, 21, 22
	Ectocarpus siliculosus	D8LQK0	D7FPZ3, D7FPZ4							D7FPP0			20, 22
	Fragilariopsis cylindrus	A0A1E7F753	A0A1E7FAW6, A0A1E7FSI6				2 белка ³			A0A1E7FCX3			20, 22
Hetero-	Nannochloropsis gaditana		W7TQV2								K8Z8X9		21, 22
konto- phyta	Phaeodactylum tricornutum	B7FZ06	B7FV99				B7FWG0			B7FZ64			71, 75, 76
	Phytophthora infestans	D0P348									D0MTX4, D0NSW4, D0NSW0		8, 21, 22
	Thalassiosira pseudonana	B8C5K8	B8C520				B8C6C5			B8C682			20, 21, 22
									оdП	должение	табл. сл	<i>ч. на с</i>	л. стр.

14	21, 22	8, 21	21		LL	78	2, 21, 22, 60	8, 21	2,60,78,79,80	8, 81	8, 82	8, 21	8, 21
13								$3K7^4$					
12								A0A0E0SC		GYYY99		E3L5I0	
11													
10													
6													
8													
7													
9							P05066	I1RB88	P27526	G9PA82	Q5BGE3	E3K586	D6RMI7
ŝ													
4						A0A0F7W019		Q411Q6	Q7SI68			E3KCQ9	
3	S8GN02	C5LCK4	L8H2W9		Q5UUY8								
2	Toxoplasma gondii	Perkinsus marinus	Acanthamoeba castellanii		Antonospora locustae	Phycomyces blakesleeanus	Saccharomyces cerevisiae	Gibberella zeae	Neurospora crassa	<i>Hypocrea</i> <i>atroviridis</i>	Emericella nidulans	Puccinia graminis	Coprinopsis cinerea
1	Altradata	AIVCOIAIC	Amoebozoa	Грибы	Microsporidia	Mucoromycota			Ascomycota			Dacidicantosta	Dasimonity cota

Продолжение табл.

289

Продолжение табл. см. на сл. стр.

290

Продолжение табл.

	4	2	9	<u>ه</u>	6	10	П	12	13	14
A8IAH1 A8IVN7	VNVI81				A8JF11, Q42696	V	8J8W0	A8IVS7		2, 42, 76, 83, 84, 85
								Q52Z99		3, 86
JIFHX2				CIFGJ5 CIEA54		0	1FH66			21, 20, 22, 55
DSIFN2, MOA1Y5I5M3							SIFNI			15, 47, 76, 87, 88
					Q2V2M0					52
A9U403 A9S2A4	v9S2A4				Q9SXG9, A9RD25			A9RJ31		21, 22
38S0Z3, D8R6C0, 38SBM0 D8S4N3	0886C0, 0884N3				D8QNP6, D8RDY0, D8R021, D8SZW4, D8RF17, D8SD85			D8S8F7, D8S2S6		21
					082786, 082769, 082779, Q9S7R6, Q9S794					20, 22
V1PX25					U5CWV1, W1PEN2			W1P7K7		21
238JU2 A0A3Q7	40A3Q7	16Y9			Q9XHD8, Q9LDJ5			K4DF80		21
Q651U1					Q852P4, Q6K1S1, Q948J6, Q9SXI0	0	0E2Y1			52, 89
SZ7B4 C5X0P3	5X0P3				Q8H6B3			C5XXX7		21, 22, 90
284KJ5 Q8LB72	28LB72				Q43125, Q96524		148652			28, 38, 39, 45, 91–96
					P40115					28, 38

Ю.Л.Вечтомова и соавт.

Продолжение табл.

1	2	3	4	ŝ	9	7	×	6	10	11	12	13	14
Животные													
Porifera	Amphimedon queenslandica	A0A1X7U8P6										A0A1X7UX67, A0A1X7U XA7	20, 24
Cnidaria	Nematostella vectensis	A7RWM4, A7T6S3	A7SYS9								A7RWD1	A7S6B3, A7S6B4, A7SZ19, A7SSN5, A7SBA6	20, 21
	Hydra magnipapillata		T2MCV5										21
Nematoda	Trichinella spiralis	E5S834											21
	Daphnia pulex	E9HAM9	E9G193								E9G560	E9GSJ7, E9GDJ9	21, 55
	Anopheles gambiae	Q7Q9T5									Q7Q8F7	Q7PY17, Q0QW07	15, 52
Arthropoda	Drosophila melanogaster	Q24443, A1Z758, Q7JY97								_	Q8SXK5, Q24281	077059	$^{47}_{97-100}$
	Apis mellifera	H9K9F9										A4GKG5	20, 21, 55,
	Danaus plexippus										A4GKG4	Q2TJN5, Q0QWP3	20, 55
Mollusca	Lottia gigantea	V4A167	V4B9P4								V4BE98	V4A2E7	20
Annelid	Platynereis dumerilii	A0A075F4M7	A0A1V0EL14, A0A075F5Q0				A0A068LF35				U5NH00	G8Z9G7, U5NDX3	20
Echinoder- mata	Strongylo- centrotus purpuratus	C1KCC9	W4Y1N8								W4YV73	XP_786331, XP_785873 ⁵	8, 20, 21
Leptocardii	Branchiostoma floridae	C3ZWY3, C3ZD92										C3Y2F6, C3Y2F8, C3Z8I0	20, 21, 55
Chondri- chthyes	Callorhinchus milii											V9KIN5, V9KQN3, V9KHI9	21

291

Продолжение табл. см. на сл. стр.

Ю.Л.Вечтомова	и	соавт.

Окончание табл. см. на сл. стр.

14	21	20, 21, 101	15, 21, 29, 102	8, 20, 21	70, 103-106	8, 21, 55	21	21	21	15, 20, 24, 55	21	21
13	H3AHZ5, H3AHZ6, H3BGM2	A0A3B315U9, A0A3B3HFY0, H2MP56, H2MIF1	А4QN37, Q9I915, Q7ZU53 и еще 8 Cry	H2RVV2, H2UQC9	Q90WY1, Q90WY0, Q90WX9	GIKQX0, GIKQ76, GIKCZ3	A0A1U7RUT0, A0A1U7SA87	U3ILG1, U3I8Z9	XP_005237400, XP_005239660 ⁵	F1P3P5, Q8QG61, Q2TV23, Q8QG60	U3JIC8, U3KG30, U3JUK6	F6X5C4, F6X852
12		H2MAP7	116160	A0A3B5KBP7	019190	R4G9E8	A0A1U7RYQI		один белок ³			
Ħ												
10												
6												
8		один белок ³	E7FFE4	H2UJL0								
٢												
9												
s												
4		H2M1H2	Q4KML2	H2V6H4	Q75WS4	R4GCK0		U3IC66	XP_005241036 ⁵		U3JVU2	
3		Q91186	Q7SY19	H2TBM7	Q3C2L7	H9G6X4	A0A1U7RF14		XP_005237868 ⁵	F1NSZ2	U3JYH0	
2	Latimeria chalumnae	Oryzias latipes	Danio rerio	Takifugu rubripes	Xenopus laevis	Anolis carolinensis	Alligator sinensis	Anas platyrhynchos	Falco peregrinus	Gallus gallus	<i>Ficedula</i> <i>albicollis</i>	Ornithorhyn- chus anatinus
1	Sarcopte- rygii		Actinopte- rygii		Amphibia		керина			AVES		Monotre- mata

292

Продолжение табл.

1	7	e	4	2	9	7	8	6	10	11	12	13	14
	Monodelphis domestica	Q28464										F7BWW8, F6WL04	32, 52, 55
Marsupial	Potorous tridactylus	Q28811											55, 60, 107
	Sarcophilus harrisii	G3VYP											21
	Bos taurus											A7YWC2, F1N0J9	21
	Ailuropoda melanoleuca											D2HXW9, G1L1K6	21
Placentalia	Mus musculus											P97784, Q9R194	15, 21, 108
	Homo sapiens											Q49AN0, Q16526	$\frac{13,108,}{109}$
¹ - Возми 2 -В Unil 3 - в лити 4 - Белок 5 - номер	ожно, результа Ргот белок опр аратуре нет чет до конца не о белка в базе №	гг горизонта еделен как F гкой привяз характеризс VCBI Proteir	льного пере РНК СРD I, ки к актуали 18ан, может 1 (https://ww	зноса гена и в литерату ным на дан быть как (6- w.ncbi.nlm.	з водорос: ре как РН ный моме -4)-фотол nih.gov/pr	лей; IR CPD III энт послел иазой так otein), в U	; овательн и крипто niProtKB	остям в б xpomom; cootbetc	азе UniPro	tKB; белков не	. F		
В табли Серым 1	ще указаны об цветом выделен	означения б ны белки ил	елков в баз; и группы б	е данных Un елков, для к	iiProtKB [эторых бь	57]. Іли показа	ины как ф	ункции Д	потоф-УНК	иазы, так	тпидя и	охромов.	

Окончание табл.

ДНК-ФОТОЛИАЗЫ ЦИКЛОБУТАНОВОГО ТИПА

ДНК-фотолиазы циклобутанового типа класса 1 (PHR CPD I)

Это классические ДНК-фотолиазы, найденные у прокариот, простейших эукариот и грибов (см. табл.) [29]. Наиболее изученным представителем этого класса является ДНК-фотолиаза *E. coli* (UniProt – P00914) [34, 67, 68].

ДНК-фотолиазы циклобутанового типа класса 2 (PHR CPD II)

РНК СРD II отличаются от всех остальных членов СРГ тем, что у них длинная делеция в С-концевом домене и значительные отличия в сайтах связывания кофакторов и субстрата. Это может свидетельствовать о том, что эти ферменты выделились в отдельную группу на самых ранних этапах эволюции этого семейства [32]. Эти фотолиазы найдены во всех царствах вплоть до сумчатых млекопитающих (см. табл.). В отличие от СРD I и (6-4)-фотолиаз, имеющих триптофаны для процесса фотовосстановления в одних и тех же положениях, PHR CPD II также содержит три триптофана, но в других позициях относительно основного кофактора FAD и эти позиции также консервативны для большинства PHR CPD II. Кинетика фотовосстановления PHR CPD II аналогична кинетике для PHR СРD I и (6-4) PHR, но скорость реакции немного выше у PHR CPD II по сравнению с PHR CPD I. Это говорит о том, что между тремя классами фотолиаз существуют только небольшие различия в организации активного центра фермента [36].

ДНК-фотолиазы циклобутанового типа класса 3 (PHR CPD III)

РНК СРD III – это бактериальные ДНК-фотолиазы филогенетически близкие как к РНК СРD I, так и к криптохромам растений. Было показано, что эти белки работают как ДНК-фотолиазы и содержат в качестве «антенны» МТНГ, с сайтом связывания более характерным для криптохромов, что позволяет считать их переходной формой от РНК СРD I к криптохромам растений [52, 71].

КРИПТОХРОМЫ РАСТЕНИЙ И РСКУ-LIKE

Криптохромы растений (Plant Cry)

Подобно фотолиазам Plant Cry имеют сайт связывания FAD, но теряют при этом способность к фоторепарации из-за того, что карман доступа к флавину, который у фотолиаз служит местом связывания с поврежденной ДНК, имеет другую форму. При этом вместо ДНК криптохромы могут связывать молекулу ATP, которая принимает

участие в работе белка. Так же, в отличие от фотолиаз, у них есть С-концевое удлинение ответственное за локализацию белка в клетке и связывание с другими белками. Второй хромофор у Plant Cry либо отсутствует, либо это MTHF [14, 76, 84, 91]. Plant Cry влияют на процессы роста и цветения растений, биосинтеза многих соединений, включая антенны фотосинтетического комплекса и каротиноиды, а также принимают участие в регуляции циркадных ритмов растений. Циркадные ритмы – это механизм биологического определения времени, который координирует разнообразные физиологические процессы с приблизительно суточным свет/темнота циклом.

У растений может быть не один представитель группы Plant Cry и, как правило, функции этих криптохромов немного различаются. Например, у *A. thaliana* есть два криптохрома Cry1 (UniProt – Q43125) и Cry2 (UniProt – Q96524). Cry1 работает при высоких интенсивностях света и принимает участие в регуляции циркадных ритмов. В определенных условиях FAD в Cry1 образует стабильный семихиноновый промежуточный продукт, который поглощает, в том числе, и в зеленой области спектра и поэтому свет в этой области влияет на работу криптохрома [110]. Cry2 напротив работает при низких интенсивностях света, а при высоких быстро разлагается и не участвует в регуляции циркадных ритмов [24, 91].

Подобные криптохромам растений белки (pCry-like)

У некоторых животных и гетероконтофитовых водорослей найдены представители СРF, которые филогенетически близки к криптохромам растений. Аналогично криптохромам растений они имеют С-концевое удлинение, однако там отсутствуют ключевые аминокислоты, необходимые для выполнения функций присущих растительным криптохромам. Также существует N-концевое удлинение, возможно, необходимое для выполнения функций, которые пока не ясны [20].

КРИПТОХРОМЫ DASH И ДНК-ФОТОЛИАЗЫ РАСТЕНИЙ

Криптохромы DASH (Cry-DASH)

В 2003 году Brudler et al. [64] описали особый класс криптохромов, которые обладают фотолиазной активностью, но не для двухцепочечных ДНК, а только для одноцепочечных. Эти криптохромы назвали криптохромами DASH (Cry-DASH, Drosophila, Arabidopsis, Synechocystis and Homo cryptochrome). Название отражает то, что найденные в *A. thaliana* и *Synechocystis sp* новые криптохромы по своей аминокислотной последовательности ближе к Animal Cry

плодовой мушки и человека, чем к другим криптохромам найденным в A. thaliana и Synechocystis sp. Однако у человека и дрозофилы белки с аналогичной Cry-DASH последовательностью не обнаружены [35, 64, 70, 111]. Cry-DASH, как и фотолиазы, в качестве кофактора содержат восстановленный FADH-, и их структура в целом похожа на структуру ДНК-фотолиазы, но с небольшими отклонениями в сайте связывания антенны и субстрата. Полностью консервативные у ДНК-фотолиаз аминокислотные остатки, ответственные за связывание с циклобутановыми пиримидиновыми димерами, у Cry-DASH частично заменены на менее гидрофобные аминокислоты. Вероятно, поэтому они утратили способность связывать поврежденные участки, но возможность связывать неповрежденную ДНК или циклобутановые димеры в одноцепочечной ДНК сохранилась, (6-4) фотопродукты они не связывают [7, 29, 39, 64, 70]. Несмотря на возможность ограниченной фоторепарации, на выживание клеток при УФ-повреждениях присутствие Cry-DASH влияет мало, поэтому скорее всего они функционируют как криптохромы [29]. В отличие от других криптохромов Cry-DASH не имеют С-концевого удлинения, но имеют небольшой N-концевой фрагмент. В качестве антенны Cry-DASH могут содержать МТНF с относительно консервативным сайтом связывания внутри данного семейства [39].

Фотосинтезирующие организмы, живущие в водной среде, особенно эукариотические водоросли, имеют несколько копий гена, кодирующего Cry-DASH. У красной водоросли *Cyanidioschyzon merolae* существует семь генов представителей белков CPF, из них три относятся к группе Cry-DASH. Два из них проявляют способность фоторепарировать одноцепочечные ДНК, а функции третьего остаются не ясными, но точно установлено, что он не способен репарировать ни одноцепочечные, ни двухцепочечные циклобутановые димеры, ни (6–4) фотопродукты [15]. Помимо функций репарации одноцепочечных ДНК, для Cry-DASH было показано, что они участвуют в фоторегуляции активности генов, в основном путем репрессии [64], в том числе участвуют в регуляции фототаксиса у цианобактерий [66].

На основе анализа аминокислотной последовательности Cry-DASH, они сначала были отнесены к группе (6–4)-фотолиазы/ криптохромы животных. Позднее их выделили в самостоятельную группу. Kleine et al. [28] предположили, что растительные Cry-DASH белки *A. thaliana* (AtCry3, UniProt - Q84KJ5) происходят от эндосимбиотического предшественника современных цианобактерий (вероятного предшественника хлоропластов в современных растениях),

Эволюция	ЛНК-фотолиаз	u	криптохромов
0000000000000	AIIII pomonius	v	np uninonp osno o

тогда как криптохромы растений (AtCry1, UniProt - Q43125 и AtCry2, UniProt – Q96524) происходят от эндосимбиотического предшественника современных α-протеобактерий (вероятного предшественника митохондрий современных эукариотических организмов). Основываясь на обнаружении нового класса криптохромов у бактерий (ранее считалось, что криптохромы есть только у эукариотических организмов), было высказано предположение, что крипто-хромы возникли ещё до разделения ствола эволюции организмов на прокариоты и эукариоты [28, 29].

ДНК-фотолиазы растений (Plant PHR2)

Plant PHR2 -это группа белков, которая по структуре близка как Cry-DASH, так и PHR CPD II. По функциям Plant PHR2 не отличается от других ДНК-фотолиаз, но имеет значительные отличия в аминокислотной последовательности и специфичность к определенным клеточным органеллам [21, 112]. Из-за сходства между Plant PHR2 и PHR CPD II, изначально их считали представителями одной группы [113], но потом филогенетический анализ показал, что Plant PHR2 произошли от древнего гена Cry-DASH, но при этом сохранили способность к репарации поврежденной ДНК, как и некоторые Cry-DASH грибов [21, 78].

(6-4)-ФОТОЛИАЗЫ

(6–4)-Фотолиазы ((6–4) PHR) имеют схожую структуру с СРD фотолиазами, одинаковые хромофоры и схожий реакционный механизм, но имеют отличия в сайте связывания субстрата и квантовый выход фоторепарации (6–4)-фотолиаз (0,05-0,10) значительно меньше квантового выхода циклобутановых фотолиаз (0,50–0,98). Это связано с тем, что фоторепарация пиримидин (6–4) пиримидиновых фотопродуктов структурно и химически более сложная реакция, чем репарация циклобутановых димеров [3, 103, 104, 114]. Классические (6–4)-фотолиазы найдены у эукариотических организмов вплоть до рептилий и птиц, но не найдены у млекопитающих, в том числе и у человека (см. табл.).

(6-4)-фотолиазы с двойной функцией ((6-4) PHR/Cry)

(6-4) PHR/Cry эта группа белков, выделенная на основе филогенетического анализа и включающая в себя (6-4) фотолиазы, которые могут также работать как криптохромы [20, 85]. Эти белки найдены у гетероконтофитовых и зеленых водорослей (в том числе у диатомовых водорослей [115]), а также у некоторых растений (см. табл.).

Прокариотические (6-4) PHR

Прокариотические (6-4) PHR (или иногда их называют CryPro) найдены у бактерий, архей, а также у некоторых простейших эукариотических организмов (например, Paramecium tetraurelia), и их присутствие выявлено, в основном, по анализу генетической последовательности [19]. Для тех представителей этой группы, которые были изучены более подробно, показаны как функции криптохрома у R.sphaeroides (UniProt – Q3IXP1) – регуляция экспрессии фотосинтетических генов [50], так и функции (6-4) фотолиазы у А. fabrum (UniProt -А9СНЗ9) [19, 73, 116]. Характерной особенностью этой группы является наличие четырех консервативных цистеинов, С-концевого каталитического домена (аналогично криптохромам), DMRL в качестве «антенны» и [4Fe-4S] кластера в каталитическом домене (у примерно 70% из всех найденных на данный момент) [50, 73]. Также для стимуляции фоторепарации ДНК, как содержащим, так и не содержащим [4Fe-4S] кластер, прокариотическим (6-4) фотолиазам требует наличие ионов Mg²⁺ в области связывания ДНК [73].

Структура прокариотических (6-4)-фотолиаз в области связывания [4Fe-4S] кластера похожа на структуру большой субъединицы праймаз эукариотов и архей – ферментов, синтезирующих РНК олигонуклеотиды при репликации ДНК, что может говорить об общем происхождении этих белков [19]. Роль [4Fe-4S] кластера в прокариотических (6-4) PHR не вполне ясна, но высказываются предположения, что они могут реагировать на наличие активных форм кислорода в среде, что может приводить к изменению конфигурации белка и вызывать повышенную экспрессию гена самой фотолиазы в ответ на окислительный стресс [50]. Так же высказывается предположение, что [4Fe-4S] кластер может служить донором электрона в процессе фотовосстановления FAD и необходим для стабилизации структуры самой фотолиазы [116]. Из всех найденных последовательностей, характерных для прокариотических (6-4) фотолиаз, только 67% содержат консервативные остатки сайта связывания DMRL; остальные белки, по-видимому, не будут иметь антенны [19].

КРИПТОХРОМЫ ЖИВОТНЫХ

Криптохромы животных, согласно филогенетическому анализу, принадлежат к той же группе, что и (6–4)-фотолиазы. Помимо основного FAD-связывающего домена с консервативной для всех криптохромов этого типа последовательностью, они также имеют С-концевое удлинение различной протяженности и структуры, которое играет важную роль в функционировании белка. Одна из

основных функций криптохромов животных связана с циркадными ритмами. Существует центральный осциллятор, который генерирует примерно суточный цикл, пути перезапуска этого цикла в ответ на действие света и пути запуска осциллятором разнообразных циркадных ответов [23, 117].

Когда для работы или перезапуска циркадного осциллятора необходим сигнал в виде ближнего $Y\Phi/$ синего света, то работает криптохром 1 типа. Когда центральный осциллятор способен поддерживать ритмичность и без освещения, то в этом процессе принимает участие криптохром 2 типа. Криптохромы первого типа найдены у насекомых, и их часто называют d-Cry (от Drosophila). Криптохромы второго типа найдены у позвоночных животных и их иногда называют v-Cry (от vertebrates). У части беспозвоночных (например, у плодовой мушки) есть только один криптохром d-Cry (их цикл работает с обязательным участием света). У некоторых позвоночных, в том числе у мыши и человека, есть два криптохрома и оба v-Cry (работают без участия света). Есть животные (как беспозвоночные, так и позвоночные), которые обладают более сложной системой циркадных ритмов, где задействованы как d-Cry, так и v-Cry, как например у Danio rerio или Danaus plexippus, в этом случае в темноте работает основной осциллятор, а на свету происходит перезапуск цикла [14, 24, 37]. Криптохромы d-Cry могут разрушаться на свету, в отличие от v-Cry [24].

Одноклеточные организмы имеют только один независимый циркадный осциллятор. В многоклеточных организмах с дифференцировкой тканей может быть мульти-осцилляторная система, регулирующая различные ритмы. У животных центральный осциллятор находится в головном мозге и отвечает за ритмичное поведение организма в целом и синхронизацию работы осцилляторов отдельных органов, а рецептор, отвечающий за перезапуск цикла под действием света, находится в глазах [14, 21, 23, 117].

Помимо основных двух типов криптохромов, в последние годы была выделена еще одна группа криптохромов типа 0 (Eye-CRY/I-CRY), найденные у губок (Porifera). Они находятся в первичных глазах губок и влияют на сократительные движения губок в ответ на свет и, возможно, выполняют другие фоторецепторные функции [24]. Так же в отдельную группу выделены криптохромы типа 4, найденные у лягушек, рыб и птиц. Существуют косвенные данные, что они выполняют фоторецепторные функции, но участие их в регуляции циркадных ритмов остается под вопросом [24].

IV. ДРЕВНИЙ ПРЕДШЕСТВЕННИК СЕМЕЙСТВА ДНК-ФОТОЛИАЗ/КРИПТОХРОМОВ, КАКИМ ОН БЫЛ?

Когда мы анализируем эволюцию белков на основании их строения и функций у современных организмов, то должны учитывать тот факт, что даже самые филогенетически древние организмы – это все равно результат многовековой эволюции данного вида и можно только строить гипотезы по поводу того, как они были устроены и как работали много веков назад. Поэтому, если мы хотим понять каким был древний предшественник СРГ, то нужно относиться к тем данным, которые у нас есть скорее как к следам, оставшимся от того, что происходило много лет назад. Для проведения такого анализа, мы собрали информацию доступную в литературе и различных базах данных в интернете о более 1000 белках СРГ, найденных в 440 видах. Многие из этих белков найдены только по анализу генетической последовательности и не были выделены и охарактеризованы, но имеющийся массив данных позволяет нам проводить параллели и экстраполяции, для того чтобы уловить некие общие черты и попытаться заглянуть в прошлое этого семейства.

Поскольку информация обо всех белках слишком обширна, то мы отобрали 112 наиболее характерных и изученных организмов и привели данные об их белках СРF в таблице. Организмы в таблице расположены в соответствии с обобщенными представлениями об эволюции и филогенетическом родстве. Вирусы вынесены в начало таблицы, поскольку нет однозначного представления о том, каким образом и в какой момент эволюции они возникли. Далее мы исходили из теории о том, что из общего предка всех современных организмов (LUCA) произошли археи и бактерии, а потом обе эти группы стали родоначальниками эукариотических организмов [18]. Вначале возникли простейшие эукариоты, а потом и более сложные, среди которых выделились три основных царства: грибы, растения и животные, которые эволюционировали относительно независимо друг от друга. Белки CPF в таблице разделены в соответствии с современным представлением о филогенетическом родстве отдельных представителей на четыре больших группы: ДНК-фотолиазы СРD II; Cry-DASH; ДНК-фотолиазы CPD I и криптохромы растений; (6-4)-фотолиазы и криптохромы животных. В самой таблице указаны номера белков в базе UniProtKB [57], если они есть, и литературные источники с информацией о данных белках.

Гены, кодирующие ДНК-фотолиазы, есть в геноме некоторых ДНК-вирусов (см. табл.). Фотолиазы синтезируются в клетке хозяина

вместе со структурными белками и упаковываются в вирион в готовом виде. Структура и свойства вириона не предусматривает в нем наличия сложных метаболических процессов. Он предназначен только для защиты генетического материала и внедрения в клетку хозяина. Для работы ДНК-фотолиазы в составе вириона необходим только свет (не нужно сменных нуклеотидов или АТР как источника энергии, как в случае работы других репарирующих ферментов), что делает этот фермент крайне полезным для вирусов. Происхождение гена ДНК-фотолиаз у вирусов не известно, возможно, они позаимствовали его из организмов своих хозяев и это значительно повысило их устойчивость к облучению УФ и способствовало общему выживанию ДНК-вирусов [53, 56].

Как видно из таблицы, три основных группы белков CPF содержат в своем составе как ДНК-фотолиазы так и криптохромы. Несмотря на то, что функции у фотолиаз и криптохромов разные, довольно часто встречаются белки, которые могут выполнять как функции криптохромов, так и функции фотолиаз (см. табл.). Некоторые представители СРГ могут выполнять не специфичные для их группы функции: белки по аминокислотной последовательности, относящиеся к криптохромам, могут выполнять функции фотолиаз и наоборот. Например, если взять мышей дефицитных по криптохромам с нарушением работы циркадных ритмов и привить им искусственно ген PHR СРD II от сумчатого млекопитающего – кенгуровой крысы Potorous tridactylus (UniProt – Q28811), то она может заменить криптохромы в работе циркадных ритмов с небольшим ухудшением и измененным механизмом действия. Другие PHR CPD I или (6-4) не могут оказывать такого влияния на работу циркадных ритмов [107]. Поскольку PHR СРО II отделилась от остальных членов семейства на очень ранних этапах эволюции и сохранила способность влиять на циркадные ритмы, то это может указывать на то, что древний предшественник СРГ выполнял не только функции фоторепарации ДНК, но и принимал участие в регуляции транскрипции различных генов, в том числе связанных с циркадными ритмами. Потом, в процессе эволюции каждой отдельной группы, у фотолиаз была частично или полностью утеряна способность работать как криптохром, а у криптохромов фотолиазная функция.

Гриб Aspergillus nidulans (Emericella nidulans) содержит только один ген принадлежащий к СРF – СгуА (UniProt – Q5BGE3). Белок находится в ядре и подавляет половое развитие при действии света 350–370 нм, но также имеет и фотолиазную активность, что показано на мутантах *E. Coli*, не имеющих собственной фотолиазы. Согласно

филогенетическому анализу этот белок принадлежит к PHR CPD I. У этого гриба есть другие белки не из семейства CPF, которые принимают участие в фоторегуляции развития, поэтому, возможно, остальные представители CPF были потеряны в процессе эволюции и остался только один белок, который одновременно выполняет как функции фотолиазы, так и криптохрома [82]. Другой гриб, *Trichoderma atroviride (Hypocrea atroviridis)*, также имеет PHR CPD I (UniProt – G9PA82), которая, помимо основных своих фоторепарирующих функций, принимает участие в фоторегуляции экспрессии собственного гена. Предполагается, что фоторегуляторные функции связаны с наличием у этой фотолиазы N-концевого удлинения в 140 аминокислот, которое также характерно для Cry-DASH [81].

Плесневый гриб *Phycomyces blakesleeanus* содержит в своем геноме единственный ген CPF, который кодирует белок Cry-DASH (UniProt – A0A0F7W019). Этот белок способен работать как полноценная CPD-фотолиаза, восстанавливая повреждения как в двухцепочечных, так и в одноцепочечных ДНК с такой же эффективностью, как и PHR CPD I *E. Coli* [78]. Предполагается, что другие Cry-DASH белки плесневых грибов (Mucoromycota) также могут выполнять роль ДНК-фотолиазы. Помимо этого, было показано, что они могут также принимать участие в регуляции светом развития и пигментации грибов [81, 118, 119].

Несмотря на присутствие генов фотолиаз и криптохромов в организмах трех царств живых существ (архей, бактерий и эукариот), эволюционная взаимосвязь отдельных представителей этого уникального семейства остается предметом дискуссий [63]. Считается, что ДНК-фотолиазы являются наиболее древними белками способными восстанавливать УФ-поврежденные ДНК. Они, должно быть, возникли у самых первых организмов, которые обитали в среде, подверженной интенсивному воздействию УФ-света [7]. Наиболее распространенно мнение, что родоначальником всех белков этого семейства является, вероятно, фотолиаза циклобутановых пиримидиновых димеров [52]. С другой стороны последние данные филогенетического анализа показали, что наиболее древними представителями данной группы являются прокариотические (6-4)-фотолиазы, содержащие [4Fe-4S] кластеры, для которых были показаны как функции фотолиазы, так и функции криптохромов – участие в регуляции экспрессии генов [19, 20, 50]. С учетом условий, в которых предположительно существовал LUCA (восстановительная среда, отсутствие озонового слоя, и как следствие высокий уровень УФ облучения) можно предположить,

что для древних организмов актуальным было не только защитить ДНК от повреждений, но и выработать правильные поведенческие и физиологические ответы на УФ и ближний синий свет. Если мы посмотрим на современные организмы, обитающие в воде в условиях высокого уровня освещенности, то увидим, что многие из этих организмов имеют большое разнообразие представителей СРF с множественным удвоением генов, экспрессирующих белки, выполняющие как защитные, так и регуляторные функции.

Примером бактерий, которые увеличили количество генов, кодирующих белки, способные восстанавливать УФ повреждения, являются галобактерии (археи Halobacteriales). Они имеют более чем один гомолог фотолиазы (полученный либо дупликацией, либо через горизонтальный перенос гена), в некоторых случаях содержат криптохром-DASH, а также одну или несколько систем «темновой» репарации УФ-повреждений ДНК. Галобактерии живут в водоемах, подобных Мертвому морю. Очевидно, что в этих условиях они подвержены интенсивному воздействию УФ-света, и наличие надежной системы защиты (и не одного, а нескольких уровней) жизненно важно для этих организмов [7].

Еще одним интересным примером приспособления к окружающей среде с потерей или усилением генов, ответственных за белки, репарирующие УФ-повреждения ДНК, могут быть различные штаммы цианобактерии *Prochlorococcus marinus*. Штамм, который живет на глубине более 100 м и практически не подвергается воздействию УФ света, не содержит в своем геноме генов СРF. Но у него имеется другая репарирующая УФ-повреждения система, работающая в темноте (вероятно, на случай возможных кратковременных попаданий в область воздействия УФ-света). Штамм, который обитает на глубине порядка 30 м, содержит не только фотолиазу и Cry-DASH, но и еще одну систему, работающую в темноте, что позволяет бактерии выживать в условиях высокого УФ-облучения [7].

Диатомовые водоросли представляют собой уникальные организмы, возникшие в результате серии эндосимбиотических событий и содержащие в себе гены растений, животных и бактерий. Они содержат до 8 различных представителей СРF, гены многих из них дублируются. Повышенное содержание фотолиаз и криптохромов и удвоение их генов – результат адаптации к повышенному воздействию УФ-излучения в водном окружении. Присутствие представителей всех четырех основных групп СРF у эукариотических организмов говорит о том, что, скорее всего, у последнего предка всех эукариот было как

минимум 4 гена – по одному представителю от всех 4-х групп [20].

Для рыб характерно наличие большого числа представителей СРF, например, *Oryzias latipes* имеет 8 генов, среди которых есть представители всех 4 основных групп (см. табл.). Исследование мутантов по генам PHR CPD II, (6–4)-фотолиазы и Cry-DASH [101] показало: 1) при отсутствии PHR CPD II мутанты слабо устойчивы к воздействию УФ-света и идет значительное накопление CPD в ДНК; 2) мутанты по Cry-DASH почти не отличались от исходных рыб в отношении устойчивости к повреждающему УФ-излучению; 3) мутанты по (6–4)-фотолиазам наоборот показали, что, несмотря на отсутствие фотолиазы, фоторепарация (6–4)-фотопродуктов все же происходит. Это может говорить о том, что существует какой-то механизм, который активирует светом темновую репарацию ДНК, либо о том, что криптохромы возможно обладают слабой фоторепарирующей активностью.

Представители всех 4 основных групп есть не только у эукариотов, но также у бактерий и архей. Хотя для архей не характерно наличие представителей группы Cry-DASH, они присутствуют скорее как исключение у некоторых видов галобактерий и это может быть результатом горизонтального переноса гена. Но, тем не менее, можно предположить, что не только у предка эукариотических организмов, но и у предка всех современных организмов – LUCA, тоже было как минимум 4 гена, кодирующих предшественников 4-х групп современных СРF. Мы полагаем, что эти 4 гена могли возникнуть из-за нескольких дупликаций одного исходного гена предшественника всех СРГ. Он мог связываться как с поврежденной, так и с неповрежденной ДНК и выполнять как защитные функции, репарируя поврежденную ДНК, так и регуляторные, регулируя биосинтез тех или иных белков в ответ на действие света, и это впоследствии стало основной функцией криптохромов. Из-за того, что в условиях высокого УФ облучения такие функции были крайне важны, организм старался любыми путями сохранить данный белок, в том числе и путем удвоения генов. Независимая эволюция этих генов впоследствии и привела к образованию четырех генов, кодирующих белки, у которых структура и функции уже не были полностью идентичны. Результат этой эволюции отражен в таблице1.

PHR CPD II, видимо, практически сразу эволюционировала в сторону только функций фотолиазы, хотя и сохранила рудиментарную способность влиять на циркадные ритмы [107]. Все остальные гены были, скорее всего, многофункциональными и далее в процессе эволюционного отбора некоторые из них утрачивали те или иные

функции, или их функции видоизменялись, приспосабливаясь к новым условиям обитания. Таким образом, можно объяснить, почему PHR CPD I у грибов может работать как криптохром. А криптохромы DASH в зависимости от организмов могут выполнять как функции фотолиазы, так и криптохромов или обе сразу. Потерю той или иной функции или даже вообще полное отсутствие CPF у тех или иных организмов можно рассмотреть с точки зрения эволюционной теории, как приспособление к меняющимся условиям окружающей среды.

При сравнительном анализе генома прокариот, для которых он был полностью установлен, было выявлено, что только примерно 50% эубактерий и 25% архебактерий содержат гены представителей семейства фотолиаз/криптохромов. Наиболее вероятно, что потеря генов связана с условиями обитания конкретных видов. Многие виды бактерий, живущие в среде, где они не подвергаются воздействию УФ света (например, на большой глубине в океанах), утратили ген фотолиазы [7]. Некоторые бактерии, большинство из которых облигатные эндосимбионты, не только утратили фотолиазы, но и другие специфические белки «темновой» репарации УФ-поврежденной ДНК. Причиной этого скорее является не то, что они больше не подвергаются воздействию УФ света, а селективное давление, приводящее к снижению размера генома. Вероятно, что такие эндосимбиотические организмы используют системы восстановления их хозяев [7].

Отсутствие ДНК-фотолиаз у высших животных может указывать на то, что естественный отбор на последнем этапе эволюции стал слабее, и отсутствие мутаций могло иметь отрицательное значение для приспособления организмов к изменяющимся условиям обитания [21]. В некоторых случаях организмы (например, дрожжи подтипа Saccharomycotina), которые шли по пути быстрой эволюции за счет мутаций и уменьшения размера генома, полностью утратили не только гены фотолиаз, но и другие гены репарирующие поврежденную ДНК [120]. Защита от УФ повреждений для животных имеющих волосяной покров или защитную пигментацию кожи не так необходима, но регуляция циркадных ритмов и экспрессии генов продолжают быть актуальными. Тем не менее, если млекопитающим, в частности мышам, искусственно привить ген фотолиазы, то она будет работать и защищать организм от мутаций, загара и рака кожи [107]. Также пленки, содержащие ДНК-фотолиазы, рассматривают как метод лечения УФ-индуцированных кожных заболеваний у людей, в том числе и онкологических [121]. Периодически в литературе появляются противоречивые сообщения об эффективности включения экзогенных ДНК-фотолиаз в косметические средства, препятствую-

щие развитию патологических изменений в коже человека при воздействии УФ-излучения, например, при загаре [122–124].

Как можно видеть из таблицы, у прокариот (архей и наиболее примитивных бактерий) присутствуют PHR CPD I, затем появляются бактериальные PHR CPD III, причем у тех организмов, у которых есть PHR CPD III, обычно нет PHR CPD I.Это может указывать на то, что это один и тот же ген, который «мутировал» у части организмов. Можно рассматривать PHR CPD III как промежуточную форму между CPDI и криптохромами растений, а можно рассматривать его как белок, который сохранил в себе признаки древнего прародителя этой ветки, из которого произошли современные фотолиазы PHR CPD I и криптохромы растений. Возможно, изучение pCry-like белков поможет в будущем лучше разобраться в этом вопросе.

Для группы (6–4) фотолиаз двойная функция предшественника этой группы гораздо более очевидна. И в процессе эволюции эти функции разделились у эукариот на собственно (6–4) фотолиазы и криптохромы беспозвоночных и позвоночных животных, которые согласно филогенетическим исследованиям возникли в разное время независимо друг от друга [23]. Можно думать, что представление о множественном независимом возникновении из «чистых» фотолиаз (с одной единственной функцией фоторепарации) криптохромов (с совершенно другой функцией) менее убедительно по сравнению с гипотезой, согласно которой предок всех этих белков, вероятно, обладал двойной функцией и одна из этих функций в процессе эволюции была потеряна в результате мутаций и естественного отбора.

V. ЗАКЛЮЧЕНИЕ

Обобщая все вышеприведенные данные можно выявить общие черты, которые имеют все белки семейства ДНК-фотолиаз/криптохромов. 1. Консервативный для всего семейства сайт связывания молекулы FAD, которая может находиться как в основном, так и возбужденном состоянии. По этому сайту определяют принадлежность белка к этому семейству. 2. Все они в той или иной степени могут связывать или взаимодействовать с ДНК как поврежденной, так и неповрежденной. 3. Функции этих белков в основном связаны со способностью FAD поглощать свет и/или образовывать радикальные формы. 4. Наличие пути фотовосстановления молекулы FAD, через цепочку из трех триптофанов.

Несмотря на простоту строения и структурное сходство, белки этого семейства обладают большим разнообразием выполняемых функций, которое сформировалось в процессе эволюции этого семейства. В число этих функций входит: способность к фоторепарации двух типов повреждений ДНК, а именно, циклобутановых димеров и (6–4)-фотопродуктов; регуляция работы циркадных ритмов, как при действии света, так и в темноте; регуляция транскрипции различных генов, в том числе и своих собственных, в ответ на действие света; участие в магниторецепции и другие фоторецепторные функции.

Исходя из общих особенностей представителей СРF, можно предположить, что прародителем этого семейства, был флавопротеин, который принимал участие в фоторепарации ДНК и фоторегуляции транскрипции различных генов. На первых порах, в отсутствии других более сложных «темновых» систем репарации ДНК, важно было удалять как СРD, так и (6–4)-фотопродукты. Выполнение нескольких функций и важность данного белка в условиях активного УФ-излучения, возможно, приводили к дупликации гена древней фотолиазы и со временем к разделению функций у отдельных копий гена. Это привело к образованию как минимум 4-х генов предшественников современных 4-х классов СРF у общего предка современных организмов – LUCA.

Со временем у организмов появились другие, альтернативные способы восстановления ДНК и у некоторых организмов часть генов, отвечающих за фоторепарацию, была утрачена, либо они утратили способность к связыванию поврежденной ДНК и на первый план вышли фоторегуляторные функции криптохромов. Причем, удаление циклобутановых димеров актуально и в наше время, поскольку часто в отсутствии фотолиаз, они могут вызывать повреждения и мутации, а с (6–4) фотопродуктами хорошо справляются и другие системы репарации ДНК [101]. Поэтому, у современных представителей ветки (6–4)-фотолиаз так часто встречаются белки с двойной функцией, т.е. сохранились, в основном, белки, которые в той или иной степени могут быть полезны как в качестве фотолиазы, так и в качестве криптохромов.

Авторы заявляют об отсутствии конфликта интересов

ЛИТЕРАТУРА

- Todo, T., Takemori, H., Ryo, H., Ihara, M., Matsunaga, T., Nikaido, O., Sato, K., Nomura, T. (1993) A new photoreactivating enzyme that specifically repairs ultraviolet lightinduced (6–4) photoproducts, *Nature*, **361**, 371–374.
- Sancar, A. (2003) Structure and Function of DNA photolyase and Cryptocrome Blue-Light Photoreceptors, *Chemical Reviews*, 103, 2203–2237.
- Yi, Y., Cao, Y., Li, Q., Liu, M., Cheng, L., Bai, L., Yang, Z., Qiao, D. (2006) Cloning and Sequence Analysis of the Gene Encoding (6–4)photolyase from *Dunaliella salina*, *Biotechnology Letters*, 28, 309–314.
- Сойфер В.Н. (1997) Репарация генетических повреждений, Соросовский образовательный журнал, 8, 4–13.
- Eisen, J.A., Hanawalt, P.C. (1999) A phylogenomic study of DNA repair genes, proteins, and processes, *Mutation Research*, 435, 171–213.
- 6. McCready, S., Marcello, L. (2003) Repair of UV damage in *Halobacterium salinarum*, *Biochemical Society Transactions*, **31**, 694–698.
- 7. Goosen, N., Moolenaar, G.F. (2008) Repair of UV damage in bacteria, *DNA Repair*, 7, 353–379.
- Lucas-Lledó, J.I., Lynch, M. (2009) Evolution of Mutation Rates: Phylogenomic Analysis of the Photolyase/Cryptochrome Family, *Molecular Biology and Evolution*, 26, 1143–1153.
- Gressel, J. (1979) Blue light photoreception, *Photochemistry and Photobiology*, **30**, 749–754.
- Ahmad, M., and Cahsmore, A.R. (1993) HY4 gene of *A. thaliana* encodes a protein with characteristics of a blue-light photoreceptor, *Nature*, **366**, 162–166.

- Cashmore, A. R., Jarillo, J. A., Wu, Y.-J., Liu, D. (1999) Cryptochromes: blue light receptors for plants and animals, *Science*, **284**, 760–765.
- Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Shuman, J.M., Dutton, P.L., Cashmore, A.R. (1995) Association of flavin adenine dinucleotide with the *Arabidopsis* blue light receptor CRY1, *Science*, 269, 968–970.
- Hsu, D.S., Zhao, X., Kazantsev, A., Wang, R.-P., Todo, T., Wei, Y.-F., Sancar, A. (1996) Putative human blue-light photoreceptor hCRY1 and hCRY2 are flavoproteins, *Biochemistry*, **35**, 13871–13877.
- 14. Lin, C., Todo, T. (2005) The cryptochromes, *Genome Biology*, **6**, 220.
- Asimgil, H., Kavakli, I.H. (2012) Purification and characterization of five members of photolyase/cryptochrome family from *Cyanidioschyzon merolae*, *Plant Science*, **185–186**, 190–198.
- Partch, C.L. and Sancar, A. (2005) Photochemistry and Photobiology of Cryptochrome Blue-light Photopigments: The Search for a Photocycle, *Photochemistry and Photobiology*, 81, 1291–1304.
- 17. Rodgers, C.T. and Hore, P.J. (2009) Chemical magnetoreception in birds: The radical pair mechanism, *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 353–360.
- Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., Martin, W.F. (2016) The physiology and habitat of the last universal common ancestor, *Nature Microbiology*, 1, 16116.
- Zhang, F., Scheerer, P., Oberpichler, I., Lamparter, T., Krau
 ß, N. (2013) Crystal structure of a prokaryotic (6–4) photolyase with an Fe–S cluster

and a 6,7-dimethyl-8-ribityllumazine antenna chromophore, *Proceedings* of the National Academy of Sciences of the United States of America, **110**, 7217–7222.

- Oliveri, P., Fortunato, A.E., Petrone, L., Ishikawa-Fujiwara, T., Kobayashi, Y., Todo, T., Antonova, O., Arboleda, E., Zantke, J., Tessmar-Raible, K., Falciatore, A. (2014) The Cryptochrome/Photolyase Family in aquatic organisms, *Marine Genomics*, 14, 23–37.
- Mei, Q., Dvornyk, V. (2015) Evolutionary History of the Photolyase/ Cryptochrome Superfamily in Eukaryotes, *PLoS ONE*, 10, e0135940.
- 22. Fortunato, A.E., Annunziata, R., Jaubert, M., Bouly, J.P., Falciatore, A. (2015) Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms, *Journal of Plant Physiology*, **172**, 42–54.
- Michael, A.K., Fribourgh, J.L., Van Gelder, R.N., Partch, C.L. (2017) Animal Cryptochromes: Divergent Roles in Light Perception, Circadian Timekeeping and Beyond, *Photochemistry and Photobiology*, 93, 128–140.
- Ozturk, N. (2017) Phylogenetic and Functional Classification of the Photolyase/Cryptochrome Family, *Photochemistry and Photobiology*, **93**, 104–111.
- Kavakli, I.H., Ozturk, N., Gul, S. (2019) DNA repair by photolyases, Advances in Protein Chemistry and Structural Biology, 115, 1–19.
- Sancar, A. (1994) Structure and function of DNA photolyase, *Biochemistry*, 33, 2–9.
- Hearst, J.E. (1995) The structure of photolyase: using photon energy for DNA repair, *Science*, 268, 1858–1859.
- Kleine, T., Lockhart, P., Batschauer, A. (2003) An Arabidopsis protein closely related to Synechocystis cryp-

tochrome is targeted to organelles, *The Plant Journal*, **35**, 93–103.

- Daiyasu, H., Ishikawa, T., Kuma, K., Iwai, S., Todo, T., Toh, H. (2004) Identification of cryptochrome DASH from vertebrates, *Genes Cells*, 9, 479–495.
- Essen, L.O., Klar, T. (2006) Lightdriven DNA repair by photolyases, *Cellular and Molecular Life Sciences*, 63, 1266–1277.
- Sancar, A. (2008) Minireview: Structure and Function of Photolyase and in Vivo Enzymology: 50th Anniversary, *Journal of Biological Chemistry*, 283, 32153–32157.
- Kanai, S., Kikuno, R., Toh, H., Ryo, H., Todo, T. (1997) Molecular Evolution of the Photolyase–Blue-Light Photoreceptor Family, *Journal of Molecular Evolution*, 45, 535–548.
- 33. Крицкий М.С., Телегина Т.А., Вечтомова Ю.Л., Колесников М.П., Людникова Т.А., Голуб О.А. (2010) Фотовозбужденные молекулы флавиновых и птериновых коферментов в эволюции, Биохимия, 75, 1348–1366.
- Park, H.-W., Kim, S.-T., Sancar, A., Deisenhofer, J. (1995) Crystal structure of DNA photolyase from *Escherichia coli*, *Science*, 268, 1866–1872.
- Losi, A. (2007) Flavin-based Bluelight Photosensors: A Photobiophysics Update, *Photochemistry and Photobiology*, 83, 1283–1300.
- Okafuji, A., Biskup, T., Hitomi, K., Getzoff, E.D., Kaiser, G., Batschauer, A., Bacher, A., Hidema, J., Teranishi, M., Yamamoto, K., Schleicher, E., Weber, S. (2010) Light-induced activation of class II cyclobutane pyrimidine dimer photolyases, *DNA repair*, 9, 495–505.
- 37. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.O., van der Horst, G.T., Batschauer, A., Ahmad, M. (2011) The Cryptochromes: Blue Light Photoreceptors in Plants and Animals,

Annual Review of Plant Biology, **62**, 335–364.

- 38. Malhotra, K., Kim, S.-T., Batschauer, A., Dawut, L., Sancar, A. (1995) Putative blue-light photoreceptor from *Arabidopsis thaliana* and *Sinapis alba* with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity, *Biochemistry*, **34**, 6892–6899.
- 39. Huang, Y., Baxter, R., Smith, B.S., Partch, C.L., Colbert, C.L., Deisenhofer, J. (2006) Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity, Proceedings of the National Academy of Sciences of the United States of America, 103, 17701–17706.
- 40. Bouly, J.P., Giovani, B., Djamei, A., Mueller, M., Zeugner, A., Dudkin, E.A., Batschauer, A., Ahmad, M. (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and Human cryptochrome-1, *European Journal of Biochemistry*, **270**, 2921–2928.
- 41. Liu, H.T., Yu, X.H., Li, K.W., Klejnot, J., Yang, H.Y., Lisiero, D., Lin, C.T. (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis, *Science*, **322**, 1535–1539.
- 42. Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., Dewez, D., Ikoma, D., Grossman, A.R., Kottke, T., Mittag, M. (2012) A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in *Chlamydomonas reinhardtii, Plant Cell*, 24, 2992–3008.
- Biskup, T., Schleicher, E., Okafuji, A., Link, G., Hitomi, K., Getzoff, E.D., Weber, S. (2009) Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor, *Angewandte Chemie*, 48, 404–407.

- 44. Henry, A.A., Jimenez, R., Hanway, D., Romesberg, F.E. (2004) Preliminary characterization of light harvesting in *E. coli* DNA photolyase, *ChemBioChem*, 5, 1088–1094.
- 45. Klar, T., Pokorny, R., Moldt, J., Batschauer, A., Essen, L.-O. (2007) Cryptochrome 3 from *Arabidopsis thaliana*: Structural and Functional Analysis of its Complex with a Folate Light Antenna, *Journal of Molecular Biology*, **366**, 954–964.
- 46. Eker, A.P.M., Hessels, J.K.C., van de Velde, J. (1988) Photoreactivating enzyme from the green alga *Scenedesmus acutus*. Evidence for the presence of two different flavin chromophores, *Biochemistry*, 27, 1758–1765.
- 47. Glas, A.F., Maul, M.J., Cryle, M., Barends, T.R., Schneider, S., Kaya, E., Schlichting, I., Carell, T. (2009) The archaeal cofactor F0 is a lightharvesting antenna chromophore in eukaryotes, *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 11540–11545.
- 48. Fujihashi, M., Numoto, N., Kobayashi, Y., Mizushima, A., Tsujimura, M., Nakamura, A., Kawarabayasi, Y., Miki, K. (2007) Crystal structure of archaeal photolyase from *Sulfolobus tokodaii* with two FAD molecules: implication of a novel light-harvesting cofactor, *Journal of Molecular Biology*, **365**, 903–910.
- 49. Ueda, T., Kato, A., Kuramitsu, S., Terasawa, H., Shimada, I. (2005) Identification and Characterization of a Second Chromophore of DNA Photolyase from *Thermus thermophilus* HB27, *Journal of Biological Chemistry*, **280**, 36237–36243.
- 50. Geisselbrecht, Y., Frühwirth, S., Schroeder, C., Pierik, A.J., Klug, G., Essen, L.-O. (2012) CryB from *Rhodobacter sphaeroides*: a unique class of cryptochromes with new cofactors, *EMBO reports*, **13**, 223–229.

- 51. Jorns, M.S., Wang, B., Jordan, S.P., Chanderkar, L.P. (1990) Chromophore function and interaction in *E. coli* DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives, *Biochemistry*, 295, 552–561.
- 52. Ozturk, N., Kao, Y-T., Selby, C.P., Kavakli, I.H., Partch, C.L., Zhong, D., Sancar, A. (2008) Purification and Characterization of a Type III Photolyase from *Caulobacter crescentus*, *Biochemistry*, 47, 10255–10261.
- 53. Van Oers, M.M., Lampen, M.H., Bajek, M.I., Vlak, J.M., Eker, A.P. (2008) Active DNA photolyase encoded by a baculovirus from the insect *Chrysodeixis chalcites*, *DNA repair*, 7, 1309–1318.
- 54. Fischer, M.G., Allen, M.J., Wilson, W.H., Suttle, C.A. (2010) Giant virus with a remarkable complement of genes infects marine zooplankton, *Proceedings of the National Academy* of Sciences of the United States of America, **107**, 19508–19513.
- 55. Kiontke, S., Gnau, P., Haselsberger, R., Batschauer, A., Essen, L.O. (2014) Structural and evolutionary aspects of antenna chromophore usage by class II photolyases, *Journal of Biological Chemistry*, 289, 19659–19669.
- 56. Srinivasan, V., Schnitzlein, W.M., Tripathy, D.N. (2001) Fowlpox virus encodes a novel DNA repair enzyme, CPD-photolyase, that restores infectivity of UV light-damaged virus, *Journal of Virology*, **75**, 1681–1688.
- 57. База данных полипептидных последовательностей UniProtKB (Universal Protein Knowledgebase): https://www.uniprot.org.
- Jorns, M.S. (1990) DNA photorepair: chromophore composition and function in two classes of DNA photolyases, *Biofactors*, 2, 207–211.
- 59. Klar, T., Kaiser, G., Hennecke, U., Carell, T., Batschauer, A., Essen, L.O. (2006) Natural and non-natural

antenna chromophores in the DNA photolyase from *Thermus thermophilus*, *ChemBioChem*, **7**, 1798–1806.

- 60. Yasui, A., Eker, A.P., Yasuhira, S., Yajima, H., Kobayashi, T., Takao, M., Oikawa, A. (1994) A new class of DNA photolyases present in various organisms including aplacental mammals, *The EMBO Journal*, 13, 6143–6151.
- Malhotra, K., Kim, S.-T., Sancar, A. (1994) Characterization of medium wavelength type DNA photolyase: purification and properties of photolyase from *Bacillus firmus*, *Biochemistry*, 33, 8712–8718.
- 62. Kort, R., Komori, H., Adachi, S., Miki, K., Eker, A.(2004) DNA apophotolyase from *Anacystis nidulans*: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction, *Acta Crystallographica Section D: Structural Biology*, **60**, 1205–1213.
- Müller, M., Carell, T. (2009) Structural biology of DNA photolyases and cryptochromes, *Current Opinion in Structural Biology*, 19, 277–285.
- 64. Brudler, R., Hitomi, K., Daiyasu, H., Toh, H., Kucho, K., Ishiura, M., Kanehisa, M., Roberts, V.A., Todo ,T., Tainer, J.A., Getzoff, E.D. (2003) Identification of a new cryptochrome class. Structure, function, and evolution, *Molecular Cell*, **11**, 59–67.
- 65. Ng, W.O., Zentella, R., Wang, Y., Taylor, J.S., Pakrasi, H.B. (2000) PhrA, the major photoreactivating factor in the cyanobacterium *Synechocystis sp.* strain PCC 6803 codes for a cyclobutane-pyrimidine-dimerspecific DNA photolyase, *Archives of Microbiology*, **173**, 412–417.
- Moon, Y.-J., Kim, S.I., Chung, Y.-H. (2012) Sensing and Responding to UV-A in Cyanobacteria, *International Journal of Molecular Sciences*, 13, 16303–16332.
- 67. Kim, S.-T., Heelis, P.F., Okamura, T., Hirata, Y., Mataga, N., Sancar,

A. (1991) Determination of rates and yields of interchromophore (folate \rightarrow flavin) energy transfer and intermolecular (flavin \rightarrow DNA) electron transfer in *Escherichia coli* photolyase by time-resolved fluorescence and absorbtion spectroscopy, *Biochemistry*, **30**, 11262–11270.

- 68. Xu, L., Zhang, D., Mu, W., van Berkel, W.J., Luo, Z. (2006) Reversible resolution of flavin and pterin cofactors of His-tagged *Escherichia coli* DNA photolyase, *Biochimica et Biophysica Acta*, **1764**, 1454–1461.
- 69. Worthington, E.N., Kavakli, I.H., Berrocal-Tito, G., Bondo, B.E., Sancar, A. (2003) Purification and characterization of three members of the photolyase /cryptochrome family blue-light photoreceptors from *Vibrio cholerae*, *Journal of Biological Chemistry*, **278**, 39143–39154.
- Selby, C.P., Sancar, A. (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity, *Proceedings* of the National Academy of Sciences of the United States of America, 103, 17696–17700.
- 71. Scheerer, P., Zhang, F., Kalms, J., von Stetten, D., Krauß, N., Oberpichler, I., Lamparter, T. (2015) The Class III Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals a New Antenna Chromophore Binding Site and Alternative Photoreduction Pathways, *Journal of Biological Chemistry*, **290**, 11504–11514.
- Oberpichler, I., Pierik, A.J, Wesslowski, J., Pokorny, R, Rosen, R., Vugman, M., Zhang, F., Neubauer, O., Ron, E.Z., Batschauer, A., Lamparter, T. (2011) A Photolyase-Like Protein from *Agrobacterium tumefaciens* with an Iron-Sulfur Cluster, *PLoS ONE*, 6, e26775.
- 73. Ma, H, Holub, D, Gillet, N, Kaeser, G, Thoulass, K, Elstner, M, Krauß, N, Lamparter, T. (2019) Two aspartate residues close to the lesion bin-

ding site of *Agrobacterium* (6–4) photolyase are required for Mg²⁺ stimulation of DNA repair, *The FEBS Journal*, **286**, 1765–1779.

- 74. Braatsch, S., Klug, G. (2004) ORF90, a Gene Required for Photoreactivation in *Rhodobacter capsulatus* SB1003 Encodes a Cyclobutane Pyrimidine Dimer Photolyase, *Photosynthesis Research*, **79**, 167–177.
- Coesel, S., Mangogna, M., Ishikawa, T., Heijde, M., Rogato, A., Finazzi, G., Todo, T., Bowler, C., Falciatore, A. (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity, *EMBO reports*, **10**, 655–661.
- 76. Juhas, M., von Zadow, A., Spexard, M., Schmidt, M., Kottke, T., Büchel, C. (2014) A novel cryptochrome in the diatom *Phaeodactylum tricornutum* influences the regulation of lightharvesting protein levels, *The FEBS Journal*, **281**, 2299–2311.
- Slamovits, C.H., Keeling, P.J. (2004) Class II Photolyase in a Microsporidian Intracellular Parasite, *Journal of Molecular Biology*, 341, 713–721.
- 78. Tagua, V.G., Pausch, M., Eckel, M., Gutiérrez, G., Miralles-Durán, A., Sanz, C., Eslava, A.P., Pokorny, R., Corrochano, L.M., Batschauer, A. (2015) Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution, *Proceedings of the National Academy* of Sciences of the United States of America, **112**, 15130–15135.
- Eker, A.P.M., Yajima, H., Yasui, A. (1994) DNA photolyase from the fungus *Neurospora crassa*. Purification, characterization and comparison with other photolyases, *Photochemistry and Photobiology*, **30**, 749–754.
- Yajima, H., Inoue, H., Oikawa, A., Yasui, A. (1991) Cloning and functional characterization of a eucaryotic DNA photolyase gene from

Neurospora crassa, Nucleic Acids Research, **19**, 5359–5362.

- Berrocal-Tito, G.M., Esquivel-Naranjo, E.U., Horwitz, B.A., Herrera-Estrella, A. (2007) *Trichoderma atroviride* PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction, *Eukaryot Cell*, 6, 1682–1692.
- 82. Bayram, O., Biesemann, C., Krappmann, S., Galland, P., Braus, G.H. (2008) More than a repair enzyme: *Aspergillus nidulans* photolyaselike CryA is a regulator of sexual development, *Molecular Biology of the Cell*, **19**, 3254–3262.
- 83. Small, G.D., Min, B., Lefebvre, P.A. (1995) Characterization of a *Chlamydomonas reinhardtii* gene encoding a protein of the DNA photolyase/blue light photoreceptor family, *Plant Molecular Biology*, 28, 443–454.
- 84. Xu, L., Wen, B., Shao, W., Yao, P., Zheng, W., Zhou, Z., Zhang, Y., Zhu, G. (2019) Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of *Chlamydomonas reinhardtii* Cryptochrome, *ChemBioChem*, **20**, 940–948.
- Franz, S., Ignatz, E., Wenzel, S., Zielosko, H., Putu, E.P.G.N., Maestre-Reyna, M., Tsai, M.D., Yamamoto, J., Mittag, M., Essen, L.O. (2018) Structure of the bifunctional cryptochrome aCRY from *Chlamydomonas reinhardtii*, *Nucleic Acids Research*, 46, 8010–8022.
- 86. Cheng, L., Qiao, D.R., Lu, X.Y., Xiong, Y., Bai, L.H., Xu, H., Yang, Y., Cao, Y. (2007) Identification and expression of the gene product encoding a CPD photolyase from *Dunaliella salina, Journal of Photochemistry and Photobiology B: Biology*, 87, 137–143.
- 87. Usman, A., Brazard, J., Martin, M.M., Plaza, P., Heijde, M., Zabulon, G., Bowler, C. (2009) Spectroscopic characterization of a (6–4) photolyase

from the green alga Ostreococcus tauri, Journal of Photochemistry and Photobiology B: Biology, **96**, 38–48.

- 88. Heijde, M., Zabulon, G., Corellou, F., Ishikawa, T., Brazard, J., Usman, A., Sanchez, F., Plaza, P., Martin, M., Falciatore, A., Todo, T., Bouget, F.Y., Bowler, C. (2010) Characterization of two members of the cryptochrome/ photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes, Plant, Cell & Environment, 33, 1614–1626.
- 89. Hirouchi, T., Nakajima, S., Najrana, T., Tanaka, M., Matsunaga, T., Hidema, J., Teranishi, M., Fujino, T., Kumagai, T., Yamamoto, K. (2003) A gene for a Class II DNA photolyase from *Oryza sativa*: cloning of the cDNA by dilution-amplification, *Molecular Genetics and Genomics*, 269, 508–516.
- Hada, M., Iida, Y., Takeuchi, Y. (2000) Action spectra of DNA photolyases for photorepair of cyclobutane pyrimidine dimers in sorghum and cucumber, *Plant and Cell Physiology*, 41, 644–648.
- 91. Christie, J.M., Briggs, W.R. (2001) MINIREVIEWS: Blue Light Sensing in Higher Plants, *Journal of Biologi*cal Chemistry, **276**, 11457–11460.
- 92. Hoang, N., Bouly, J.-P., Ahmad, M. (2008) Evidence of a Light-Sensing Role for Folate in Arabidopsis Cryptochrome Blue-Light Receptors, *Molecular Plant*, 1, 68–74.
- 93. Brautigam, C.A., Smith, B.S., Ma, Z., Palnitkar, M., Tomchick, D.R., Machius, M., Deisenhofer, J. (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana, Proceedings of the National Academy of Sciences of the United States of America, 101, 12142–12147.
- Hitomi, K., DiTacchio, L., Arvai, A.S., Yamamoto, J., Kim, S.T., Todo, T., Tainer, J.A., Iwai, S., Panda, S., Getzoff, E.D. (2009) Func-

tional motifs in the (6–4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes, *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 6962–6967.

- 95. Kleiner, O., Butenandt, J., Carell, T., Batschauer, A. (1999) Class II DNA photolyase from *Arabidopsis thaliana* contains FAD as a cofactor, *European Journal of Biochemistry*, 264, 161–167.
- 96. Pokorny, R., Klar, T., Essen, L.O. Batschauer, A.(2005) Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana, Acta Crystallographica Section F: Structural Biology Communications, 61, 935–938.
- 97. Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M., Wolf, E. (2007) A Novel Photoreaction Mechanism for the Circadian Blue Light Photoreceptor Drosophila Cryptochrome, *Journal* of Biological Chemistry, 282, 13011–13021.
- Kim, S.-T., Malhotra, K., Ryo, H., Sancar, A., Todo, T. (1996) Purification and characterization of *Drosophila melanogaster* photolyase, *Mutation Research*, 363, 97–104.
- Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash, M., Hall, J.C. (1998) The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila, *Cell*, 95, 681–692.
- 100. Selby, C.P., Sancar, A. (2012) The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors, *Biochemistry*, **51**, 167–171.
- 101. Ishikawa-Fujiwara, T., Shiraishi, E., Fujikawa, Y., Mori, T., Tsujimura,

T., Todo, T. (2017) Targeted Inactivation of DNA Photolyase Genes in Medaka Fish (*Oryzias latipes*), *Photochemistry and Photobiology*, **93**, 315–322.

- 102. Kobayashi, Y., Ishikawa, T., Hirayama, J., Daiyasu, H., Kanai, S., Toh, H., Fukuda, I., Tsujimura, T., Terada, N., Kamei, Y., Yuba, S., Iwai, S., Todo, T. (2000) Molecular analysis of zebrafish photolyase/ cryptochrome family: two types of cryptochromes present in zebrafish, *Genes to Cells*, 5, 725–738.
- 103. Todo, T., Kim, S.T., Hitomi, K., Otoshi, E., Inui, T., Morioka, H., Kobayashi, H., Ohtsuka, E., Toh, H., Ikenaga, M. (1997) Visible lightinducible photolyase gene from the goldfish *Carassius auratus*, *Nucleic Acids Research*, 25, 764–768.
- 104. Weber, S., Kay, C.W., Mögling, H., Möbius, K., Hitomi, K., Todo, T. (2002) Structure and function of DNA photolyases, *Proceedings of* the National Academy of Sciences of the United States of America, 99, 1319–1322.
- 105. Tanida, H., Tahara, E., Mochizuki, M., Yamane, Y., Ryoji, M. (2005) Purification, cDNA cloning, and expression profiles of the cyclobutane pyrimidine dimer photolyase of *Xenopus laevis*, *The FEBS Journal*, 272, 6098–6108.
- 106. Zhu, H., Green, C.B. (2001) Three cryptochromes are rhythmically expressed in *Xenopus laevis* retinal photoreceptors, *Molecular Vision*, 7, 210–215.
- 107. Chaves, I., Nijman, R.M., Biernat, M.A., Bajek, M.I., Brand, K., da Silva, A.C., Saito, S., Yagita, K., Eker, A.P., van der Horst, G.T. (2011) The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock, *PLoS ONE*, 6, e23447.
- 108. Thresher, R.J., Vitaterna, M.H., Miyamoto, Y., Kazantsev, A., Hsu,

D.S., Petit, C., Selby, C.P., Dawut, L., Smithies, O., Takahashi, J.S., Sancar, A. (1998) Role of Mouse Cryptochrome Blue-Light Photoreceptor in Circadian Photoresponses, *Science*, **282**, 1490–1494.

- Özgü, S., Sancar, A. (2003) Purification and Properties of Human Blue-Light Photoreceptor Cryptochrome 2, *Biochemistry*, 42, 2926– 2932.
- 110. Lin, Ch., Ahmad, M., Gordon, D., Cashmore, A.R. (1995) Expression of an *Arabidopsis* cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light, *Proceedings of the National Academy of Sciences of the United States of America*, **92**, 8423–8427.
- 111. Pokorny, R., Klar, T., Hennecke, U., Carell, T., Batschauer, A., Essen, L.O. (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome, *Proceedings of the National Academy of Sciences of the United States of America*, **105**, 21023–21027.
- 112. Chen, J.J., Jiang, C.Z., Britt, A.B. (1996) Little or No Repair of Cyclobutyl Pyrimidine Dimers Is Observed in the Organellar Genomes of the Young *Arabidopsis* Seedling, *Plant Physiology*, **111**, 19–25.
- Petersen, J.L., Lang, D.W., Small, G.D. (1999) Cloning and characterization of a class II DNA photolyase from *Chlamydomonas*, *Plant Molecular Biology*, 40, 1063–1071.
- 114. Li, J., Liu, Z., Tan, C., Guo, X., Wang, L., Sancar, A., Zhong, D. (2010) Dynamics and mechanism of repair of ultraviolet-induced (6–4) photoproduct by photolyase, *Nature*, **466**, 887–890.
- 115. König, S., Juhas, M., Jäger, S., Kottke, T., Büchel, C. (2017) The cryptochrome—photolyase protein

family in diatoms, *Journal of Plant Physiology*, **217**, 15–19.

- 116. Graf, D., Wesslowski, J., Ma, H., Scheerer, P., Krauß, N., Oberpichler, I., Zhang, F., Lamparter, T. (2015) Key Amino Acids in the Bacterial (6–4) Photolyase PhrB from Agrobacterium fabrum, PLoS ONE, 10, e0140955.
- 117. Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., Zoran, M.J. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms, *Nature Reviews Genetics*, 6, 544–556.
- Veluchamy, S., Rollins, J.A. (2008) ACRY-DASH-type photolyase/ cryptochrome from *Sclerotinias clerotiorum* mediates minor UV-A-specific effects on development, *Fungal Genetics and Biology*, 45, 1265–1276.
- 119. Castrillo, M., García-Martínez, J., Avalos, J. (2013) Light-dependent functions of the *Fusarium fujikuroi* CryD DASH cryptochrome in development and secondary metabolism, *Applied and Environmental Microbiology*, **79**, 2777–2788.
- 120. Steenwyk, J.L., Opulente, D.A., Kominek, J., Shen, X.X., Zhou, X., Labella, A.L., Bradley, N.P., Eichman, B.F., Čadež, N., Libkind, D., DeVirgilio, J., Hulfachor, A.B., Kurtzman, C.P., Hittinger, C.T., Rokas, A. (2019) Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts, *PLoS ONE*, **17**, e3000255.
- 121. Puig, S., Granger, C., Garre, A., Trullàs, C., Sanmartin, O., Argenziano, G. (2019) Review of Clinical Evidence over 10 Years on Prevention and Treatment of a Film-Forming Medical Device Containing Photolyase in the Management of Field Cancerization in Actinic Keratosis, *Dermatology and Therapy*, **9**, 259–270.

- 122. Stege, H., Roza, L., Vink, A.A., Grewe, M., Ruzicka, T., Grether-Beck, S., Krutmann, J. (2000) Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin, *Proceedings of the National Academy of Sciences of the United States of America*, **97**, 1790–1795.
- 123. Berardesca, E., Bertona, M., Altabas, K., Altabas, V., Emanuele, E. (2012) Reduced ultraviolet-induced DNA damage and apoptosis in human

skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention, *Molecular Medicine Reports*, **5**, 570–574.

124. Navarrete-Dechent, C., Molgó, M. (2017) The use of a sunscreen containing DNA-photolyase in the treatment of patients with field cancerization and multiple actinic keratoses: a case-series, *Dermatology Online Journal*, 23, pii: 13030/qt5zc6085s.