ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «ФУНДАМЕНТАЛЬНЫЕ ОСНОВЫ БИОТЕХНОЛОГИИ» РОССИЙСКОЙ АКАДЕМИИ НАУК» ИНСТИТУТ БИОХИМИИ ИМ. А.Н. БАХА

На правах рукописи

Мартини Билли Александровна

МАЛЫЕ НЕКОДИРУЮЩИЕ РНК DRRS И MCR11 *МУСОВАСТЕRIUM ТИВЕRCULOSIS* – ФАКТОРЫ ВЗАИМОДЕЙСТВИЯ "ПАТОГЕН-ХОЗЯИН"

Специальность 1.5.4. Биохимия

ДИССЕРТАЦИЯ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА БИОЛОГИЧЕСКИХ НАУК

Научный руководитель:

д.б.н. Салина Е.Г.

Москва – 2023

СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ	6
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ	7
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ	16
1.1. Mycobacterium tuberculosis – возбудитель туберкулёза	16
1.1.1. Общая характеристика M. tuberculosis	17
1.1.2. Патогенез туберкулёзной инфекции	18
1.1.3. Факторы патогенности M. tuberculosis	19
1.1.4 Взаимодействие с иммунной системой и уход <i>M. tuberculosis</i> от	
иммунного ответа	25
1.2. Бактериальные некодирующие РНК	27
1.2.1. Регуляция генной экспрессии с помощью некодирующих РНК	27
1.2.2. Механизмы действия малых РНК	30
1.2.3. Особенности взаимодействия «патоген-хозяин»,	
осуществляемые посредством малых РНК	32
1.3. Малые некодирующие РНК микобактерий	34
1.3.1. Поиск малых РНК микобактерий	34
1.3.2. Малые РНК <i>M. tuberculosis</i> с установленным механизмом	
действия	38
1.3.3. Малые PHK Mcr11 и DrrS M. tuberculosis	45
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ	48
2.1. Объект исследования и условия культивирования	48
2.2. Световая микроскопия	49
2.3. Получение компетентных клеток M. tuberculosis и их трансформация	49
2.4. Создание штаммов <i>M. tuberculosis</i> , гиперэкспрессирующих малые	
РНК Mcr11 и DrrS	50
2.5. Создание штаммов <i>M. tuberculosis</i> с делециями генов малых РНК	
Mcr11 и DrrS и двойной делецией	50

2.6. Создание штамма <i>M. tuberculosis</i> с комплементацией делеций генов	
малых РНК Mcr11 и DrrS	52
2.7. Действие стрессовых агентов	54
2.8. Включение радиоактивно меченного урацила в клетки	
M. tuberculosis	55
2.9. Переход в состояние покоя («некультивируемости») и реактивация в	
метаболически активное состояние	56
2.10. Выделение РНК и ДНК <i>M. tuberculosis</i>	57
2.11. Количественная ПЦР с обратной транскрипцией	58
2.12. Транскриптомный анализ методом RNA-seq	59
2.13. Инфицирование макрофагов	61
2.14. Восстановления вирулентности штаммов M. tuberculosis	62
2.15. Инфицирование мышей	63
2.16. Анализ сдвига электрофоретической подвижности (EMSA)	64
2.17. Статистика	64
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ	65
3.1. Изучение штаммов, гиперэкспрессирующих малые РНК Mcr11 и	
DrrS	65
3.1.1. Устойчивость штаммов, гиперэкспрессирующих малые РНК	
Mcr11 и DrrS к стрессовым воздействиям in vitro	66
3.1.2. Выживаемость бактерий при инфекции клеток линии ТНР-1	70
3.1.3. Транскриптомный анализ штаммов, гиперэкспрессирующих	
малые PHK Mcr11 и DrrS	72
3.2. Создание штаммов <i>M. tuberculosis</i> с делецией генов малых PHK DrrS	
и Mcr11	78
3.2.1. Получение конструкций для делеции генов малых РНК	78
3.2.2. Получение штаммов ΔDrrS и ΔMcr11 с делециями генов малых	
РНК	83

3.2.3. Получение штамма <i>M. tuberculosis</i> $\Delta\Delta DrrS$ Mcr11 с двойной	
делецией генов малых PHK DrrS и Mcr11	89
3.3. Характеристика мутантных штаммов ΔDrrS, ΔMcr11 и ΔDrrS Mcr11	93
3.3.1. Рост на стандартных средах культивирования	93
3.3.2. Способность переходить в покоящееся состояние <i>in vitro</i>	95
3.3.3. Выживаемость мутантных штаммов при инфекции макрофагов	96
3.3.4. Транскриптомный анализ штаммов ΔDrrS и ΔMcr11	98
3.4. Изучение фенотипа штаммов $\Delta DrrS$, $\Delta Mcr11$ и $\Delta \Delta DrrS$ Mcr11 после	
пассировании іп vivo	111
3.4.1. Получение мутантных штаммов с «восстановленной	
вирулентностью»	111
3.4.2. Зависимость роста мутантных штаммов <i>in vitro</i> от состава	
среды	112
3.4.3. Исследование фенотипа повышенной чувствительности к	
глицерину	115
3.4.4. Подтверждение взаимодействия DrrS и мРНК гена Rv3679	116
3.4.5. Выживание мутантных штаммов при инфекции	
костномозговых макрофагов мыши	118
3.4.6. Анализ эукариотического транскриптома инфицированных	
макрофагов	120
3.4.7. Модель туберкулёзной инфекции мышей	130
ЗАКЛЮЧЕНИЕ	136
выводы	139
СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ	140
ПРИЛОЖЕНИЯ	159
Приложение 1	159
Приложение 2	161
Приложение 3	162
Приложение 4	163

Приложение 5	164
Приложение 6	166
Приложение 7	173
Приложение 8	174
Приложение 8	178
Приложение 10	179
Приложение 11	180

СПИСОК СОКРАЩЕНИЙ

- АДК комплексная питательная добавка, содержащая альбумин, глюкозу и каталазу (albumin, dextrose, catalase)
- ДДС-Na додецилсульфат натрия
- ДЭГ дифференциально экспрессированные гены
- ү-ИНФ гамма-интерферон
- КОЕ колониеобразующие единицы
- ММП матриксные металлопротеиназы
- МФ макрофаги
- КММФ костномозговые макрофаги
- ОП₆₀₀ оптическая плотность культуры при прохождении света с длинной волны 600 нм
- п. н. пар нуклеотидов
- ТБ туберкулёз
- ФНО-α фактор некроза опухоли-α
- ФСБР фосфатно-солевой буферный раствор
- IL интерлейкин (interleukin)
- Log₂FC log₂FoldChange, кратность изменения экспрессии гена, выраженная через логарифм по основанию 2
- MOI кратность инфицирования, то есть соотношение вносимого числа бактерий к числу заражаемых клеток (multiplicity of infection)
- Nos2 индуцируемая NO-синтаза
- TLR толл-подобный рецептор
- wt дикий тип (wild type)

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Опасность туберкулёзной инфекции для человечества сложно переоценить. Ежегодно в мире регистрируется около 10 миллионов новых случаев инфекции и примерно 1,5 миллиона смертельных исходов [1]. Принято считать, что туберкулёзом инфицирована четверть всего населения Земли, но у подавляющего числа лиц она никак не обнаруживается, приводя к латентной инфекции – бессимптомному носительству. Это обусловлено способностью возбудителя инфекции *Mycobacterium tuberculosis* к долгому пребыванию внутри организма человека с сохранением риска развития инфекционного заболевания [2,3].

Длительное сохранение жизнеспособных микобактерий внутри организма человека объясняется их способностью переходить в состояние отсутствия деления и роста в ответ на неоптимальные внешние условия. Данное физиологическое состояние характеризуется подавлением процессов центрального метаболизма, значительно сниженным уровнем репликации и чрезвычайной устойчивостью к защитным механизмам иммунной системы и медикаментозному лечению, при этом сохраняется возможность реактивации бактерий из покоящегося состояния при наступлении благоприятных условий [2–4].

Адаптация бактерий к неблагоприятным внешним условиям происходит за счёт регуляции уровня экспрессии генов. Ключевую роль в этом процессе играют малые РНК, способные в ответ на определённые сигналы «подстраивать» метаболизм бактерии под меняющиеся условия среды [5,6]. Малые РНК подразделяют на цис- и транс-кодируемые РНК в зависимости от их расположения в геноме относительно регулируемого гена. Цис-кодируемые малые РНК закодированы на комплементарной цепи регулируемого гена, а транс-кодируемые РНК могут быть расположены в любом участке генома, и, как правило, имеют несколько генов-мишеней. Изучение регуляторной роли малых РНК в метаболизме *М. tuberculosis* является перспективным направлением биохимических исследований, переживающим в настоящее время бурное развитие. У *М. tuberculosis* экспериментально подтверждено наличие по крайней мере 20 малых транс-кодируемых РНК, но только 8 из них охарактеризованы достаточно подробно [7,8].

Maлые PHK Mcr11 и DrrS *M. tuberculosis* присутствуют только у патогенных микобактерий туберкулезного комплекса, то есть способных вызывать туберкулез человека и животных. Было установлено, что уровень их экспрессии нарастает при переходе в стационарную фазу роста, а также при воздействии на клетки ряда стрессовых факторов, с которыми *M. tuberculosis* сталкивается при взаимодействии с клетками иммунной системы [9]. Особенно сильно уровень экспрессии Mcr11 и DrrS возрастает в модели экспериментального туберкулеза у мышей [10] и в покоящемся состоянии *M. tuberculosis* [11]. Эти факты указывают на важную роль малых PHK Mcr11 и DrrS в регуляции метаболических процессов *M. tuberculosis* при развитии туберкулезной инфекции и взаимодействии с инфицированным организмом. Выявление стратегий адаптации *M. tuberculosis* при инфекции И метаболических путей, в регуляции которых задействованы малые PHK Mcr11 и DrrS, является актуальной биохимической задачей.

Целью настоящей работы было изучение роли малых некодирующих PHK DrrS и Mcr11 *M. tuberculosis* в регуляции взаимодействия патогена и макроорганизма при инфекции. Для достижения этой цели были поставлены и решены следующие **задачи**:

1. Изучить роль DrrS и Mcr11 в формировании устойчивости к стрессовому воздействию, которому *M. tuberculosis* подвергается при инфекции.

2. Проанализировать участие DrrS и Mcr11 в сохранении жизнеспособности *M. tuberculosis* при фагоцитировании их клетками иммунной системы.

3. Исследовать изменение профиля транскрипции мутантных штаммов с гиперэкспрессией и делецией DrrS и Mcr11, и оценить вовлеченность этих малых РНК в регуляцию основных метаболических путей *M. tuberculosis*

4. Изучить транскриптом костномозговых макофагов мыши при инфекции их мутантными штаммами ΔDrrS, ΔMcr11 и ΔΔDrrS_Mcr11, проследить роль DrrS и Mcr11 в модуляции иммунного ответа макроорганизма.

5. Исследовать характер течения инфекции *in vivo* в моделях экспериментального туберкулеза мышей при инфицировании их мутантными штаммами с делецией DrrS и Mcr11.

Основные положения, выносимые на защиту

1. Малая PHK DrrS участвует в формировании устойчивости клеток к стрессам *in vitro*, моделирующим условия пребывания *M. tuberculosis* в фагосоме при инфекции макроорганизма, и способствует сохранению жизнеспособности микобактерий в макрофагах.

2. В штамме с делецией DrrS наблюдается транскриптомный ответ, указывающий на снижение эффективности центральных метаболических процессов и запуск программы выживания *M. tuberculosis* в стрессовых условиях.

3. В штамме с делецией Mcr11 по данным транскриптомного анализа происходит активация процессов ремоделирования клеточной стенки и подавления биосинтеза факторов вирулентности *M. tuberculosis*.

4. Инфекция костномозговых макрофагов мыши штаммами *M. tuberculosis* с делецией малых PHK DrrS и Mcr11 вызывает дисбаланс иммунных реакций макроорганизма, особенно выраженный при инфекции штаммом с делецией двух малых PHK ΔΔDrrS_Mcr11.

5. Инфекция мышей штаммом *M. tuberculosis* ΔDrrS приводит к увеличению времени жизни животных, а штаммом ΔMcr11 и ΔΔDrrS_Mcr11 –

к сокращению времени жизни животных по сравнению с их временем жизни при инфекции штаммом дикого типа.

6. Малые PHK DrrS и Mcr11 являются регуляторами метаболической адаптации патогена при инфекции, влияя на его жизнеспособность и модулируя иммунный ответ организма-хозяина.

Научная новизна

- Впервые получены штаммы *M. tuberculosis* с делецией генов малых PHK DrrS и Mcr11 и проведена их характеристика при росте *in vitro* и при инфекции *ex vivo* и *in vivo*.
- Впервые получены и проанализированы транскриптомы мутантных штаммов *M. tuberculosis* с гиперэкспрессией и делецией малых PHK DrrS и Mcr11; обнаружено, что DrrS участвует в регуляции экспрессии генов, кодирующих НАДН-дегидрогеназу, АТФ-синтазу и гены Dos-регулона, играющего основную роль в персистировании *M. tuberculosis* при инфекции. Кроме того, малые PHK Mcr11 и DrrS регулируют уровень экспрессии генов, определяющих патогенность бактерии и кодирующих факторы вирулентности и белки стрессового ответа.
- Доказано участие малой РНК DrrS в формировании устойчивости
 М. tuberculosis к действию внешних стрессовых факторов и выживанию в макрофагах при фагоцитировании.
- Впервые показано, что одной из мишеней малой РНК DrrS может являться ген Rv3679, кодирующий белок с АТФазной активностью и участвующий в метаболизме глицерина.
- Впервые установлено, что делеция генов малых РНК DrrS и Mcr11 вызывает дисбаланс иммунных реакций макроорганизма, наиболее выраженный для штамма ΔΔDrrS_Mcr11 с делецией двух малых РНК.
- Впервые показано, что инфекция мышей штаммом *M. tuberculosis* с делецией малой PHK ΔDrrS приводит к увеличению времени жизни животных, а инфекция штаммом с делецией ΔMcr11 и двух малых PHK

ΔΔDrrS_Mcr11 – к сокращению времени жизни животных по сравнению с животными, инфицированными штаммом дикого типа.

— Установлено, что малые РНК DrrS и Mcr11 вовлечены в процессы биохимической регуляции взаимодействия патогена *M. tuberculosis* и макроорганизма при инфекции, и могут оказывать значительное влияние как на успешную адаптацию патогена и сохранение его жизнеспособности при инфекции, так и определять характер течения инфекции для организмахозяина, модулируя его иммунный ответ.

Теоретическая и практическая значимость

В ходе работы установлены метаболические пути M. tuberculosis, в регуляции которых принимают участие малые PHK Mcr11 и DrrS. На основании анализа профиля транскрипции мутантных штаммов с делецией и гиперэкспрессией Mcr11 и DrrS показано, что малая PHK DrrS регулирует экспрессию генов, кодирующих НАДН-дегидрогеназу, АТФ-синтазу и гены Dos-регулона, играющего основную роль в персистировании M. tuberculosis при инфекции. Кроме того, обнаружено, что малые PHK Mcr11 и DrrS влияют бактерии факторов на уровень экспрессии генов патогенности И вирулентности, а также генов, кодирующих белки стрессового ответа.

Штамм с гиперэкспрессией малой РНК DrrS характеризуется большей устойчивостью действию к стрессовых условий in vitro И при фагоцитировании макрофагами. Делеция DrrS вызывает снижение вирулентности *M. tuberculosis*, а делеция Mcr11, и делеция двух малых PHK DrrS и Mcr11 – ее повышение в модели экспериментального ТБ мышей. Данный результат указывает на то, что малые PHK Mcr11 и DrrS могут являться факторами вирулентности M. tuberculosis, участвуя в регуляции бактериального метаболизма и персистировании микобактерий в иммунных клетках хозяина в целом. Полученные результаты имеют фундаментальное значение для понимания механизмов взаимодействия *M. tuberculosis* с организмом хозяина и способности бактерий к длительному выживанию в

стрессовых условиях. Уровень экспрессии малых РНК Mcr11 и DrrS также может являться диагностическим маркёром форм туберкулёза, связанных с длительным персистированием микобактерий в организме, что может быть использовано на практике для разработки новых терапевтических подходов в борьбе с туберкулезом. Штамм с делецией малой PHK DrrS, характеризующийся сниженной вирулентностью, может служить основой для создания вакцинного штамма *M. tuberculosis*

Методология и методы диссертационного исследования

В работе активно применялись современные биохимические, молекулярно-биологические И генно-инженерные методы, методы биоинформатического В транскриптомики И анализа. работе также методы классической микробиологии для использовались работы с патогенными бактериальными культурами, цитологические методы работы с клетками эукариот. Работы с животными, включенные в данное исследование, проводили в строгом соответствии с этическими нормами обращения с животными, принятыми Европейской конвенцией по защите позвоночных животных, используемых для исследовательских и иных научных целей (European Treaty Series, № 123). Статистическая обработка результатов проводилась в соответствии с общепринятыми стандартами.

Степень достоверности полученных результатов

Достоверность результатов, полученных в ходе данной работы, подтверждается их воспроизводимостью и согласованностью. Используемые методы исследования и проведённые расчёты корректны, полученные экспериментальные закономерности подтверждены статистическими критериями. Выводы, представленные в диссертационной работе, полностью подтверждены экспериментальными результатами.

Публикации и апробация работы

По теме диссертации опубликовано 5 статей в международных научных рецензируемых журналах. Результаты были представлены в виде устных и стендовых докладов на международных конгрессах и конференциях: ЕМВО Workshop on Tuberculosis 2022 «From innovation to intervention» в Париже в 2022 году, VII Съезд биохимиков России и Х Российский симпозиум «Белки и пептиды» в Сочи в 2022 году; XXXIII зимняя молодежная научная школа «Перспективные направления физико-химической биологии И биотехнологии». Институт биоорганической химии ИM. академиков М.М.Шемякина и Ю.А.Овчинникова РАН, в Москве В 2021 году; Всероссийская научно-практическая конференция с международным участием «Молекулярная диагностика и биобезопасность – 2020» в Москве в 2020 году; II Объединённый научный форум и VI съезд биохимиков России в Дагомысе в 2019 году.

Статьи рецензируемых журналах:

1. Martini B.A., Grigorov A.S., Skvortsova Y.V., Bychenko O.S., Salina E.G., Azhikina T.L. Small RNA MTS1338 Configures a Stress Resistance Signature in Mycobacterium tuberculosis. Int. J. Mol. Sci. 2023, 24, 7928.

2. Острик А.А. (Мартини Б.А.), Григоров А.С., Бочарова И. В., Капрельянц А. С., Ажикина Т. Л., Салина Е. Г., Малые РНК Mcr11 и DrrS Mycobacterium tuberculosis как возможные регуляторы метаболизма глицерина., Прикл. биохимия и микробиол., 2022, Т. 58, № 4, с. 360–365

3. Острик А.А. (Мартини Б.А.), Ажикина Т.Л., Салина Е.Г. Малые некодирующие РНК и их роль в патогенезе Mycobacterium tuberculosis. Успехи биологической химии – 2021. Т. 61, с. 229–252.

4. Острик А.А. (Мартини Б. А.), Салина Е.Г., Скворцова Ю.В., Григоров А.С., Быченко О.С., Капрельянц А. С., Ажикина Т. Л. Малые РНК Mycobacterium tuberculosis в адаптации к стрессовым условиям, моделирующим инфекцию in vitro Прикл. биохимия и микробиол., 2020, Т. 56, № 4, с. 336–341.

5. Salina E.G., Grigorov A., Skvortsova Y., Majorov K., Bychenko O., Ostrik A. (Martini B.), Logunova N., Ignatov D., Kaprelyants A., Apt A., Azhikina T. MTS1338, A Small Mycobacterium tuberculosis RNA, Regulates Transcriptional Shifts Consistent With Bacterial Adaptation for Entering Into Dormancy and Survival Within Host Macrophages. Front Cell Infect Microbiol. 2019, 9, 405.

Публикации в сборниках и тезисы конференций:

1. Ostrik A. (Martini B.A.), A. Grigorov, E. Salina, T. Azhikina. Small RNAs DrrS and Mcr11 contribute to Mycobacterium tuberculosis persistence within host // Сборник тезисов EMBO Workshop on Tuberculosis 2022 «From innovation to intervention», 2022, c. 230

2. Острик А.А. (Мартини Б.А.), А.С. Григоров, Ю.В. Скворцова, А.С. Капрельянц, Т.Л. Ажикина, Е.Г. Салина. Регуляторные малые некодирующие РНК Mcr11 и DrrS Mycobacterium tuberculosis и их роль во взаимодействии «патоген-хозяин» // Спецвыпуск ActaNaturae, 2021, Т. 2., с. 38-39

3. Григоров А.С., Е.Г. Салина, О.С. Быченко, Ю.В. Скворцова, Острик А.А. (Мартини Б.А.), Е.В. Свирщевская, А.С. Капрельянц, Т.Л. Ажикина Малые некодирующие РНК Mycobacterium tuberculosis MTS1338 и MTS0997 модулируют иммунный ответ при инфекции макрофагов // Спецвыпуск ActaNaturae, 2021, Т. 2., с. 13

4. Быченко О.С., Скворцова Ю.В., Григоров А.С., Асеев Л.В., Острик А.А. (Мартини Б.А.), Салина Е.Г., Ажикина Т.Л. Малая РНК Mycobacterium tuberculosis MTS1338 как фактор вирулентности микобактерий // Спецвыпуск ActaNaturae, 2021, Т. 2., с. 23

5. Острик А.А. (Мартини Б.А.), Григоров А.С., Ажикина Т.Л., Салина Е.Г. Малая РНК МТS1338 – потенциальный фактор вирулентности Mycobacterium tuberculosis // Сборник тезисов XXXIII зимней молодежной научной школы «Перспективные направления физико-химической биологии и

биотехнологии», Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, 2021, с. 60

6. Острик А.А. (Мартини Б.А.), Е.Г. Салина Перспективы использования малых некодирующих РНК М. tuberculosis для диагностики туберкулёзной инфекции // Сборник тезисов конференции «Молекулярная диагностика и биобезопасность-2020», 2020, с. 59 60

7. Скворцова Ю.В., О.С. Быченко, Р.Х. Зиганшин, А.С. Григоров, Е.Г. Салина, Острик А.А. (Мартини Б.А.), Т.Л. Ажикина. Малая РНК МТS1338 Mycobacterium tuberculosis способствует выживанию микобактерий в макрофагах путём замедления созревания фаголизосом // Спецвыпуск ActaNaturae, 2019, Т. 2. с. 26

Личный вклад автора

Все эксперименты, вошедшие в диссертационную работу, были выполнены автором лично, либо при его непосредственном участии. Автор самостоятельно проводила все микробиологические и биохимические эксперименты *in vitro* и *ex vivo*, осуществляла подготовку образцов для транскриптомного анализа, активно участвовала в конструировании рекомбинантных штаммов *M. tuberculosis* и в подготовке культур для экспериментов *in vivo*.

Структура и объем работы

Полный объём диссертации составляет 185 страниц, в том числе 31 рисунок и 3 таблицы. Список литературы содержит 257 наименований.

Описание представляемого исследования включает общую характеристику работы, обзор литературы, результаты и их обсуждение, заключение, выводы, список цитируемой литературы и приложения.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Mycobacterium tuberculosis – возбудитель туберкулёза

Туберкулёз (ТБ) – это повсеместно распространённое заболевание, которое вызывает бактерия *Mycobacterium tuberculosis*. Согласно данным Всемирной организации здравоохранения ежегодно ТБ заболевает около 10 миллионов человек, а летальность находится на уровне примерно 1.5 миллионов человек в год [1]. Кроме того, ТБ часто развивается у лиц со сниженным иммунным статусом, в первую очередь у лиц с ВИЧ-инфекцией [1]. Это отражает ещё один аспект распространённости заболевания: считается, что ¹/₄ популяции Земли являются латентными носителями *M. tuberculosis*, развитие инфекции связывают не с первичным заражением, а с реактивацией покоящихся микобактерий в организме [12].

В Российской Федерации за последние 10 лет отмечается стабильное снижение заболеваемости и смертности от ТБ. В период с 2010 по 2019 годы показатель заболеваемости ТБ в России снизился почти в 2 раза и составил 41,08 на 100 000 населения, а в 2022 году достиг 31,11 на 100 000 населения [1,13]. Наряду с этим в РФ регистрируется высокий уровень ТБ с множественной лекарственной устойчивостью – примерно половина случаев активного ТБ с бактериовыделением [1,13].

ТБ известен с древнейших времён, и давно находится в поле внимания врачей и исследователей. Но, несмотря на внимание к проблеме ТБ, мировое сотрудничество, разработку схем контроля за заболеваемостью, профилактики и лечения и поиск новых лекарственных препаратов, ТБ по-прежнему находится среди 10 самых частых причин смертности в мире и на втором месте по смертности от единственного инфекционного агента (после Covid-19) [1]. Это может быть обусловлено давним сосуществованием возбудителя инфекции и человека. Установлено, что люди болели ТБ ещё 70 тысяч лет назад [14]. Такое длительное сосуществование привело к эволюции *М. tuberculosis* и идеальной приспособленности микроорганизма к пребыванию в организме хозяина.

1.1.1. Общая характеристика Mycobacterium tuberculosis

Mycobacterium tuberculosis относится к типу Actinobacteria, класс Actinobacteria, порядок Corynebacteriales, семейство Mycobacteriaceae, род *Mycobacterium* [15]. В род входит более 120 видов, среди которых есть как паразитические, так и свободноживущие бактерии [15]. Микобактерии внутри рода принято разделять на две группы: медленнорастущие и быстрорастущие, в зависимости от скорости репликации. ТБ у человека и животных способны вызывать несколько видов из группы медленнорастущих микобактерий: *M. tuberculosis*, *M. africanum*, *M. bovis*, *M. microti*, *M. canetti* и др., на основании чего они объединены в «туберкулёзный комплекс» (*Mycobacterium tuberculosis* complex – MTBC). Были найдены генетические обоснования, отличающие этот комплекс от других видов микобактерий [16,17]. *М. tuberculosis* и *М. africanum* являются основными возбудителями ТБ у людей. Генетически эти виды очень близки, однако существующая гетерогенность между штаммами возбудителей привела к делению этих видов (совместно) на 6 филогенетических линий, что имеет значение с точки зрения эпидемиологии заболевания [14,18,19]; в то же время изучается, какое влияние штаммовые различия оказывают на вирулентность бактерий [17].

M. tuberculosis представляют собой короткие, прямые или слегка изогнутые палочки, неподвижные, не формирующие спор и капсул, относятся к аэробам и гетероорганотрофам. *M. tuberculosis* способны к росту на искусственных питательных средах, оптимальная температура роста 37°C, время удвоения составляет 20-24 часа. На плотной агаровой среде формируют непигментированные колонии R-формы.

Отличительной чертой рода *Mycobacterium* является толстая, богатая липидами клеточная стенка, содержащая длинные разветвлённые цепи миколовых кислот, что обеспечивает кислото-спирто-устойчивость бактерий [15,20]. В состав клеточной стенки входит пептидогликан, ковалентно связанный с арабиногалактаном, а также так называемая микомембрана – внешний липидный слой, состоящий из длинноцепочечных миколовых кислот

и их гликозилированных производных, основными из которых являются трегалозодимиколат, трегалозомономиколат, фтиоцерол-димикоцерозат и глицеролмономиколат. Также в состав внешнего слоя микомембраны входят сульфолипиды, фосфатидиоинозитолманнозиды, фенольные гликолипиды и другие липиды [21].

1.1.2. Патогенез туберкулёзной инфекции

При заражении ТБ микобактерии передаются от человека к человеку аэрозольным путём [22]. Заражение не всегда приводит к заболеванию, и у большинства людей симптомы ТБ не развиваются. Однако, микобактерии, попавшие в организм, могут длительное время сохранять жизнеспособность и стать причиной активного заболевания при снижении иммунной защиты организма [23]. У некоторых групп населения наблюдается повышенная чувствительность к ТБ. Исследование этого феномена выявило ряд генов, полиморфизм которых может увеличивать риск тяжёлой ТБ инфекции у людей, а также повысить риск реактивации латентного ТБ. К ним относится ген *пгатр1*, кодирующий трансмембранный белок-переносчик железа [24], а также некоторые гены сигнального пути гамма-интерферона (γ-ИФН) [25].

Попадая в организм человека, клетки M. tuberculosis вступают во взаимодействие иммунной Микобактерии С клетками системы. взаимодействуют с иммунной системой на всех её уровнях, и основная роль в борьбе с инфекцией принадлежит клеточному иммунитету [26–28]. В лёгких микобактерии фагоцитируются альвеолярными макрофагами (МФ), которые первыми из иммунных клеток взаимодействуют с *M. tuberculosis* и представляют первую линию иммунной защиты [27,28]. Однако, фагоцитоз не приводит к гибели микобактерий, так как они способны успешно справляться воздействиями с неблагоприятными внутри фагосом. Микобактерии противостоят воздействию токсичных веществ, таких как антимикробные пептиды, активные радикалы кислорода и азота, оксид азота и металлы [29-31], а также в МФ туберкулёзные микобактерии способны подавлять

аутофагию и передачу межклеточного сигнала, что в конечном итоге приводит к сохранению их жизнеспособности внутри МФ. Таким образом, *M. tuberculosis* используют МФ в качестве основной ниши для длительной персистенции в организме [27,28,31–33].

В очаге инфекции формируется специфическое для ТБ образование гранулёма. Гранулёма – это компактный структурированный агрегат иммунных клеток, формирующийся вокруг очага инфекции в процесссе борьбы иммунной системы с *M. tuberculosis.*, служащий барьером для распространения бактерий [34]. Долгое время считалось, что гранулёмы — это статичные образования, однако их детальное изучение привело к пониманию того, что они являются динамичными системами [35,36]. С одной стороны, они препятствуют диссеминации возбудителя в организме, но также служат и его постоянным резервуаром. Внутри гранулёмы поддерживается баланс между делением и гибелью микобактерий, а при длительном существовании гранулём большая часть клеток *M. tuberculosis* в них переходит в покоящееся состояние [35,36]. Если иммунная защита организма ослабевает, например, при ВИЧ-инфекции, то микобактерии могут пройти через барьер гранулёмы, что приводит к диссеминации микобактерий по организму, а также во внешнюю среду.

1.1.3. Факторы патогенности M. tuberculosis

Многовековая совместная эволюция *M. tuberculosis* и человека привела формированию высокой адаптированности патогена к хозяину. К Микобактерии множество стратегий развили успешного для пересистирования в организме человека [33]. Именно поэтому практически все метаболические пути и процессы жизненного цикла микобактерий можно отнести к факторам патогенности, так как они способствуют их длительному выживанию и размножению в организме. Можно условно разделить эти факторы на несколько групп: факторы, препятствующие фагоцитозу; факторы

защиты от повреждающих агентов; пути центрального метаболизма и их регуляция; и факторы воздействия на иммунную систему хозяина.

MΦ После фагоцитоза непатогенные бактерии подвергаются перевариванию лизосомальными ферментами, которые попадают в фагосому при её слиянии с лизосомой. Также в мембране лизоосом работает К⁺-Na⁺-АТФаза, что приводит к накачиванию протонов и закислению среды внутри этого компартмента. Микобактерии способны избегать переваривания, и используют для этого все возможные приёмы: они блокируют слияние фагосомы с лизосомой, активно защелачивают среду, а также вызывают разрыв стенки фагосомы, чтобы оказаться в цитозоле [37,38]. Выход в цитоплазму обеспечивает система секреции ESX-1 [39]. С помощью этой системы микобактерии секретируют белки EsxA и EsxB. Накопление белка EsxA (ESAT-6) приводит к расщеплению липидного бислоя фагосомы [39]. Было иссследовано, что белок EsxA при низком pH образует центральный домен, состоящий из мотива спираль-поворот-спираль, который внедряется в липидный бислой и образует поры, пронизывающие мембрану [40]. Другим механизмом, останавливающим созревание фаголизосомы, является секреция микобактериями серин-треониновой протеинкиназы PknG, напоминающую протеинкиназу самих МФ [41,42], что, по всей видимости приводит к фосфорилированию неких макрофагальных белков [42]. Также созревание фагосом ингибирует липоарабиноманнан за счёт ингибирования путей Ca²⁺/кальмодулинфосфатидилинозитол-3-киназы МФ Hvps34 [43]. Трегалоза димиколат, самый распространённый гликолипид клеточной стенки, также фагосомой ингибирует слияние лизосомы с за счёт стерического взаимодействия с фосфолиипдным бислоем и формирования барьера слияния. В цитозоле трегалоза димиколат влияет на мембраны митохондрий, приводя к угнетению аэробного дыхания [44]. Кроме того, он ингибирует миграцию полиморфноядерных нейтрофилов [43]. Трегалоза димиколат является выжным компонентом стенки и также называется «корд-фактор», так как способствует образованию кордов. Корды — это скопления микобактерий,

ориентированных продольно по отношению друг к другу, и под микроскопом напоминающие косы или веревки [45]. В этом состоянии микобактерии приклеены друг к другу именно за счёт большого количества трегалоза димиколата в верхнем слое микомембраны, который *M. tuberculosis* активно синтезирует при инфекции. Формирование корд — это тоже способ борьбы с фагоцитозом: МФ просто не способны фагоцитировать корды целиком из-за их размера. Таким образом, микобактерии характеризуются способностью вызывать незавершенный фагоцитоз, модулируя или перепрограммируя созревание фагосом, разрывая стенку фагосомы для выхода в цитоплазму и формируя крупные агрегаты клеток, благодаря компонентам своей клеточной стенки и секретируемым продуктам [41,43].

Во внутриклеточной среде (как в фагосоме, так и в цитоплазме) микобактерии подвергаются действию ряда неблагоприятных факторов, которые включают в себя кислый рН среды, активные промежуточные соединения кислорода и азота, лизосомальные ферменты и токсичные пептиды. Активные соединения азота, такие как оксид азота NO, продуцируемые МФ, являются основными элементами антимикробной активности [46]. *M. tuberculosis* синтезируют различные факторы, нейтрализующие действие этих агентов. Для борьбы с окислительным стрессом, которому микобактерии подвергаются фагосоме, В ОНИ экспрессируют целый ряд ферментов: к ним относятся супероксиддисмутаза SodA, каталаза-пероксидаза KatG, алкилгидропероксидредуктазы AhpC и AhpD и другие. Супероксиддисмутаза SodA содержит медно-цинковый кофактор, и защищает *M. tuberculosis* от действия перикиси водорода и супероксидов [47]. В то же время показана роль этого фермента в модуляции иммунного ответа и ингибировании активности индуцируемой NO-синтазы (Nos2) [48]. Экспрессия каталазы-пероксидазы KatG ассоциирована со способностью к персистированию микобактерий при заражении мышей и морских свинок [49]. Активность KatG опосредует выживание микобактерий в экспериментах с экзогенным добавлением перикиси водорода [50]. KatG

также отвечает за чувствительность микобактерий к изониазиду (главному антитуберкулёзному веществу, которое используется В клинической практике), превращая его В активную форму [51]. Алкилгидропероксидредуктазы AhpC и AhpD восстанавливают органические пероксиды в соответствующие спирты. Наряду с пероксидами, они также могут восстанавливать пероксинитриты, что критически важно для борьбы с действием NO в МФ. Однако, их роль в выживании микобактерий при инфекции остаётся спорной. С одной стороны, показана их высокая каталитическая активность, а с другой – низкий уровень экспрессии в Защиту токсичных инфицированных животных [52]. ОТ пептидов обеспечивают трансмембранные эфлюксные насосы. Известно, ЧТО микобактерии обладают высокой толерантностью действию К антибактериальных веществ, в том числе фенотипической толерантностью, которая развивается в процессе действия антибиотика. В основе этого процесса лежит активный транспорт, с помощью эфлюксных насосов, эффективно выкачивающих токсичные вещества из клетки [53,54]. Таким образом, микобактерии обладают широким арсеналом средств борьбы со стрессом, что позволяет им выживать в их естественной нише.

М. tuberculosis обладает пластичным центральным метаболизмом, способным быстро перестраиваться в зависимости от доступного источника углерода, уровня поступления O_2 и действия различных стимулов, что является критическим для выживания при длительном пребывании в организме [55]. На начальных стадиях инфекции (так же, как при росте в лабораторных условиях) микобактерии преимущественно утилизируют углеводы, а на более поздних стадиях основным источником углерода становятся липиды. Аэробное дыхание является необходимым условием роста и размножения микобактерий, однако, в условиях гипоксии, микобактерии используют альтернативные акцепторы электрона для синтеза $AT\Phi$ [58]. Для длительного выживания в условиях ограничения поступления кислорода и питательных веществ микобактерии используют стратегию перехода в

покоящееся состояние [59]. При этом снижается трансляционная и транскрипционная активность бактерий, а дыхание поддерживается на минимальном уровне. Для этого состояния характерно практически полное отсутствие деления клеток в популяции. Регулятором перехода в покой считается двухкомпонентная система DosR-DosS, активация которой инуцирует экспрессию ряда генов, названных Dos-perynon. В этот регулов входит 48 генов, в том числе необходимые для поддержания окислительновосстановительного баланса нитратредуктазы, белок RafH, стабилизирующий ассоциацию рибосом и другие; функция многих из этих генов ещё не выяснена [59]. Малая PHK DrrS также входит в регулон DosR, из чего можно судить о её возможной роли при переходе в состояние покоя [60].

Обилие и разнообразие липидов клеточной стенки микобактерий обуславливает их высокую устойчивость к внешним воздействиям, а также её антигенные свойства. Клеточная стенка на 60% состоит из липидов, большая часть которых — это миколовые кислоты и их производные [61]. Клеточная стенка микобактерий является важным компонентом взаимодействия патогена и хозяина. Она не только защищает микобактерии, но и в то же время модулирует ответ иммунных клеток, а её состав может динамически изменяться под действием различных стимулов [20]. Необходимость синтеза компонентов клеточной стенки, а также условия пребывания в организме отражает наличие у *M. tuberculosis* большого числа ферментов метаболизма Отличительной особенностью липидов. является наличие двух взаимосвязанных систем синтеза жирных кислот (FAS I и FAS II) [21,62]. В то же время, микобактерии используют липиды в качестве основного источника углерода при инфекции [57]. У *М. tuberculosis* аннотировано около 200 генов, кодирующих ферменты метаболизма жирных кислот, и примерно половина относится к процессам β-окисления [63]. Доказано, что рост микобактерии во время инфекции зависит от возможности утилизировать жирные кислоты и холестерин организма хозяина [56]. Интересно, что при инфекции *M. tuberculosis* $M\Phi$ как раз начинают запасать большое количество жиров,

накапливая их в виде жировых капель, что приводит к фенотипу пенистых МФ. Исследования показали, что этот выгодный для микобактерий фенотип формируется благодаря перепрограммированию лизосом. Для достижения этой цели *M. tuberculosis* секретируют специфический терпен-нуклеозид: 1-туберкулозиниладенозин [57], который аккумулируется в лизосомах, что приводит к накоплению в них холестерола и триацилглицеролов. Этот фактор является одним из ключевых для выживания микобактерий при инфекции, что подтверждается делецией генов его синтеза Rv3377c и Rv3378c [57,64,65]. Таким образом, лизосомы превращаются в богатые питательными веществами вакуоли и становятся доступным источником питания для *M. tuberculosis* [57].

M. tuberculosis способны модулировать иммунный ответ организмахозяина. Микобактерии контролируют продукцию цитокинов в МФ и могут провоцировать или тормозить апоптоз, нарушают презентацию антигенов, что в конечном счёте приводит к наиболее выгодному для патогена длительному Большая белков сосуществованию С хозяином. часть И липидов, экспрессирующихся на поверхности, либо секретируемых микобактериями, оказывает влияние на поведение иммунных клеток. К примеру, белок ESX-1, покидания фагосомы, необходимый для также подавляет иммунную активность М Φ , стимулируемую IFN- γ [39].

Использование различных стратегий ухода от иммунного ответа, защита от повреждающих факторов, адаптированность метаболизма бактерий к внутриклеточному выживанию И перепрограммирование длительному фагоцитов — это основные эволюционно выработанные механизмы, которые обеспечивают успешное существование *M. tuberculosis* в организме человека. Важно отметить, что для организации и согласованного протекания этих процессов микобактерии имеют огромное число регуляторов с разными механизмами, В том числе ингибиторы И активаторы ферментов, транскрипционные регуляторы, а также пост-транскрипционные регуляторы, куда относятся малые некодирующие РНК.

1.1.4. Взаимодействие с иммунной системой и уход *M. tuberculosis* от иммунного ответа

Развитие ТБ в значительной степени связано с реакцией иммунной системы на патоген. Попадая сразу в нижние отделы дыхательной системы, микобактерии минуют первую линию защиты иммунной системы, состоящую из клеток, имеющих высокую бактерицидную активность [66]. В альвеолах микобактерии фагоцитируются альвеолярными МΦ. Показано, что взаимодействие МФ с элементами клеточной стенки приводит к различным эффектам, таким как апоптоз, продукция активных форм кислорода и азота, презентации антигена. При этом патоген-ассоциированные молекулы, расположенные на поверхности бактерии, и которые распознают МФ с помощью толл-подобных рецепторов (TLR), могут быть замаскированы обилием липидов, в первую очередь за счет фтиоцеролдимикоцерозата [66]. Липоманнан. липоарабиноманнан, гликопротеины И липопротеины микобактерий индуцируют формирование гетеродимеров TLR1-TLR6 и TLR1-TLR2, приводят к синтезу *de novo* TLR4. TLR играют важную роль в инициации фагоцитоза *M. tuberculosis*, доказанную в экспериментах с мутантными животными [4,67,68]. Стимуляция TLR2 приводит к экспрессии на поверхности МФ антиген-презентирующего комплекса МНС II. При инфекции *M. tuberculosis* показано снижение активации этого пути, в том числе понижение экспресси генов трансактиваторов, передающих TLRопосредованный сигнал, сниженное количество рецепторов, и понижение способности МФ к презентации антигена [69,70].

Одним из ключевых цитокинов контроля микобактериальной инфекции является фактор некроза опухоли-α (ФНО-α). Отсутвие продукции или рецепции этого фактора, так же, как и его гиперпродукция, в мышиных моделях приводили к невозможности формирования гранулём и высокой летальности [71,72]. Инфицирование микобактериями приводит к программированной клеточной гибели МФ: апоптозу, аутофагии или некроптозу. Апоптоз и аутофагия позволяют организму элиминировать

бактериальное заражение, и эти процессы как раз стимулирует ΦΗΟ-α. Таким образом, апоптоз (и особенно аутофагия) МФ является нежелательным исходом для патогенных микобактерий, поэтому они выработали механизмы, изменяющие такие клеточные реакции, например, посредством усиления экспрессии MΦ мембрано-связанных рецепторов TNFR2. В антиапоптотического белка Mcl-1 и некоторых других [4,73]. В то же время модуляция путей передачи межклеточного сигнала может способствовать развитию апаотоза в других иммунных клетках, окружающих МФ (таких, как Т-лимфоциты), что выгодно сказывается на персистенции микобактерий. Фенольные гликолипиды стимулируют выработку МФ хемокина CCL2 для рекрутинга новых МФ, которые становятся новой нишей для патогена.

Миграция МФ в региональные лимфатические узлы и рекрутинг иммунных клеток зависит от экспрессии цитокинов. Это ещё одно звено иммунного ответа, которое модулируют микобактерии. Длительная стимуляция TLR2 компонетами клеточной стенки приводит к повышению продукции противовоспалительных цитокинов IL-10, IL-4, и TGF- β , которые снижают активацию МФ, стимулируемую γ -ИФН [74]. Также патогенные детерминанты микобактерий активируют продукцию интерферонов I типа, ФНО- α и IL-17, но в то же время она может снижаться под действием секретируемых белков микобактерий.

На мышиных моделях было показано, что ү-ИФН является важнейшим сдерживающим фактором при туберкулёзной инфекции [38]. Преимущественно ү-ИФН синтезируется CD4+ Т-лимфоцитами. Это также объясняет высокую заболеваемость ТБ у ВИЧ-инфицированных, так как у них существенно снижается пул CD4+ Т-клеток [75].

Главным фактором, сдерживающим размножение микобактерий в МФ, считается оксид азота NO [76–78]. Продукцию азота обеспечивает фермент Nos2. Её активность многократно возрастает в альвеолярных МФ при инфекции *M. tuberculosis* [79]. Экспрессия этого фермента в МФ также индуцируется γ-ИФН [77]. Внутриклеточная концентрация NO, по некоторым

данным, может достигать 20 мкм/мл [80]. Преодоление этого стрессового фактора обеспечивает не только ферментативная система микобактерий, но и манипуляция экспрессией генов хозяина. *М. tuberculosis* способны повышать продукцию IL-4/IL-13, что приводит к синтезу в МФ аргиназы Arg1, которая конкурирует с Nos2 за субстрат, тем самым снижая её активность [81].

Подводя итог, можно сказать, что агонисты TLR, присутствующие в толстой клеточной стенке *M. tuberculosis*, вызывают пролонгированную передачу сигналов от этих рецепторов, что приводит к различным механизмам уклонения от иммунитета. Среди этих механизмов преобладающим представляется ингибирование антигенпрезентации комплексом MHC класса II, которое позволяет предотвратить обнаружение микобактерий CD4+ T-клетками [4]. Важную роль играет модуляция экспрессии цитокинов и хемокинов, в результате которой наблюдается нарушение адекватного ответа клеток иммунной системы на инфицирование.

1.2. Бактериальные некодирующие РНК

Для приспособления к быстроменяющимся условиям бактериям необходимы различные механизмы регуляции экспрессии генов. Одним из таких механизмов является регуляция с помощью некодирующих РНК. Данный тип регуляции присутствует у всех видов бактерий и имеет универсальный фундаментальный принцип [82–85]. В большинстве случаев в основе механизма регуляции лежит спаривание комплементарных оснований взаимодействующих молекул РНК. Некодирующие регуляторные РНК изменяют транскрипцию генов, модифицируют мРНК или влияют на их стабильность, а также изменяют уровень трансляции мРНК [83,85].

1.2.1. Регуляция генной экспрессии с помощью некодирующих РНК

Первые идеи о регуляторной сети РНК были высказаны Роем Бриттеном и Эриком Дэвидсоном ещё в 1969 году для объяснения феномена гетерогенных ядерных РНК (незрелых предшественников мРНК) [86]. Однако предложенная ими модель не получила большого распространения.

В дальнейшем первое доказательство того, что РНК функционирует в качестве регулятора экспрессии генов, было получено в опытах с бактериями в 1980-х годах [87]. В дальнейшем было показано, что ген MicF у E. coli является независимым геном, имеет собственный промотор и кодирует небольшую некодирующую РНК, которая комплементарно связывается и ингибирует трансляцию мРНК-мишени в ответ на стрессовые условия окружающей среды. РНК Міс была выделена и секвенирована. Было доказано, что она является самостоятельным транскриптом и не транслируется на рибосоме. Эксперименты *in vitro* показали её связывание с целевой мРНК *отр* [88]. Исследование вторичной структуры выявило несовершенное дуплексное взаимодействие между MicF и её мишенью РНК и присутствие неканонической пары оснований. Несколько факторов транскрипции, включая OmpR, регулируют транскрипцию *MicF* в ответ на факторы окружающей среды [89]. MicF также была обнаружена у других видов бактерий, и были продемонстрированы плейотропные эффекты этой малой РНК: MicF ингибирует экспрессию множества целевых мРНК [89]. Кроме того, было обнаружено, что малая РНК взаимодействует со своими мишенями поразному; она либо ингибирует связывание рибосомы, либо вызывает деградацию матрицы.

Ещё до открытия MicF в *E. coli* были выделены и секвенированы несколько других малых PHK, однако их функция была выяснена уже намного позже. В 1967 году была впервые обнаружена некодирующая PHK 6S [86], её последовательность расшифрована в 1971 году, а функция открыта только в 2000 году. Данная малая PHK примечательна тем, что имеет неклассический механизм действия. Она связывается не с мPHK, а с сигма-фактором PHKполимеразы и тем самым ингибирует транскрипцию зависящих от него генов. В 1981 году открыта малая PHK I (около 108 нуклеотидов длины), предотвращающая репликацию плазмиды ColE1 [90]. Затем в 1983 была обнаружена 70-нуклеотидная РНК, которая транскрибируется с промоторной области pOUT транспозона Tn10 и подавляет трансляцию фермента транспозазы, что в свою очередь блокирует перемещение мобильного элемента в геноме [91].

Первые из открытых некодирующих РНК присутствовали в клетке в большом количестве, кроме того ярко изменяли её фенотип, поэтому могли быть открыты с помощью гель-анализа на ранних этапах изучения биологии вклад многочисленные клетки. В целом распространённость И В физиологические процессы некодирующих РНК было трудно предсказать. До 2001 года было открыто только 11 малых РНК *Е. coli*, транскрибируемых с межгенных участков генома, причем большая часть из них – случайно [8]. Ситуация начала меняться с развитием новых аналитических методов. В 2001– 2002 годах четыре группы учёных сообщили об идентификации многих новых малых РНК с помощью методов систематических компьютерных поисков последовательностей редких промоторов и терминаторов в межгенных областях генома E. coli [92]. Другие РНК удалось обнаружить с применением техник микрочипов, основывающихся на непосредственном связывании выделенных из клеток транскриптов с фиксированной матрицей И последующим многократным усилением сигнала. Для поиска некодирующих С транскриптов были взяты последовательности межгенных участков. накоплением данных секвенирования полных геномов росло и число вновь обнаруживаемых малых регуляторных РНК у разных видов бактерий. Мощным инструментом для анализа транскриптома, в том числе и некодирующих транскриптов, является секвенирование комплементарной ДНК методом RNA-seq. К настоящему времени известно несколько сотен регуляторных РНК бактерий.

Регуляторные некодирующие РНК подразделяют на цис-кодируемые и транс-кодируемые антисмысловые РНК на основании их расположения в геноме относительно своих мРНК-мишеней [8]. Цис-кодируемые антисмысловые РНК кодируются в одном локусе со своей мРНК мишенью, но

на противоположной цепи ДНК, что приводит к их комплементарному связыванию. В большинстве случаев цис-кодируемые малые РНК блокируют трансляцию за счет комплементарного связывания с сайтом посадки рибосомы на мРНК мишени. Транс-кодируемые антисмысловые РНК представляют особенный интерес: они закодированы как отдельные гены, то есть имеют собственный промотор и терминатор, расположены в участках генома, удаленных от местоположения регулируемого гена, их размер варьирует от 50 до 300 нуклеотидов. Часто гены малых РНК локализуются между белоккодирующими генами. Малые РНК обладают стабильной вторичной структурой, что предотвращает их быструю деградацию, а также делает петель возможным формирование с неспаренными основаниями, образующими сайт взаимодействия с мишенью (так называемый seed region) [8].

Таким образом, регуляторные некодирующие РНК связываются со своей мРНК-мишенью, что приводит к изменеию экспрессии гена уже после его транскрипции, то есть они осуществляют посттранскрипционую регуляцию.

1.2.2. Механизмы действия малых РНК

Малые транс-кодируемые РНК (далее – малые РНК) обнаруживают лишь частичную комплементарность с мРНК-мишенями и, следовательно, могут иметь более одной мишени. Действие их на мишень может реализовываться двумя путями: через непосредственное РНК-РНК взаимодействие или через связь с белком-посредником (Hfq или ProQ) [8,93–95].

Взаимодействие малой РНК с мишенью может приводить к прекращению трансляции мРНК за счёт блокировки сайта связывания рибосомы, и этот механизм является самым распространённым для малых РНК [93]. Связывание малой РНК с мишенью не только препятствует посадке рибосомы, но и во многих случаях инициирует расщепление РНК-РНК

дуплекса РНКазами типов J и E. В случае полицистронной мРНК связывание с малой РНК в её 5'-области может привести к Rho-зависимой терминации трансляции на всех участках мРНК [96].

В других случаях малые РНК могут, наоборот, активировать трансляцию белка. 5'- нетранслируемая область (5'-НТО) некоторых мРНК может образовывать шпильку, закрывающую сайт рибосомы. посадки Взаимодействие петли малой РНК с комплементарной цепью мРНК раскрывает такую шпильку, обеспечивая инициацию трансляции [97]. Кроме того, малые РНК могут стабилизировать другие транскрипты. Связывание малой РНК с сайтом рестрикции мРНК-мишени препятствует расщеплению матрицы, при этом увеличивается время полужизни транскриптов [98]. Другим примером активации служит предотвращение внутренней Rhoзависимой терминации в длинной 5'-нетранслируемой области некоторых генов [99].

Среди малых РНК выделен отдельный функциональный класс – РНКспонжи (sponge RNAs). В этот класс входят малые РНК, которые связываются с другими малыми РНК и регулируют их активность. РНК-спонжи обнаружены у энтеробактерий и *В. subtilis* в ходе изучения РНК-РНК взаимодействий. Разнообразие происхождения РНК-спонжей и биологических процессов, в которых они участвуют, свидетельствует о распространённости этого механизма регуляции у бактерий. РНК-спонжи, как и другие малые РНК, могут быть закодированы в отдельном гене, но также могут образовываться из 3' или 5'-концов, или спейсерных участков других генов. РНК-спонж имеет участок комплементарности с другой малой РНК - её мишенью. Формирование дуплекса приводит к секвестрации малой РНК или деградации комплекса. Интенсивность ингибирования варьируется концентрацией малой РНК либо РНК-спонжа, которые, в свою очередь зависят от условий экспрессии [100].

Также найдены малые некодирующие РНК с «двойной функцией»: в этом случае РНК является регулятором, и в то же время матрицей для небольших пептидов. В гене таких малых РНК имеется открытая рамка считывания. К примеру, хорошо изученная малая РНК RNAIII *S. aureus* контролирует экспрессию нескольких генов патогенности, действуя по классическому механизму малой РНК: она связывается с мРНК-мишенями за счёт наличия seed region в одной из петель вторичной структуры. Кроме этого, RNAIII кодирует белок δ-гемолизин, повреждающий мембраны клеток организма-хозяина [101].

Таким образом, малые некодирующие РНК представляют собой мощнейший регуляторный инструмент для адаптационного ответа на быстро меняющиеся внешние условия, так способны быстро и без больших энергетических затрат изменять экспрессию необходимых генов.

1.2.3. Особенности взаимодействия «патоген-хозяин», осуществляемые посредством малых РНК

Исследования последних лет указывают на важность бактериальных РНК в патогенезе. Для многих патогенных бактерий изучены механизмы участия некодирующих регуляторных РНК в проявлении их вирулентных свойств, что подробно рассмотрено в недавнем обзоре [102]. Например, показано, что малая РНК SsrS активирует экспрессию многих секреторных факторов вирулентности у бактерий рода *Legionella*, и делеция этого гена приводит к значительной аттенуации, а малая РНК IhtA способствует регуляции клеточного цикла *Chlamydia trachomatis* и переходу от вегетативной формы к инфекционной.

Установлено, что малые РНК RyhB и SgrS, обнаруживаемые у целого ряда бактерий, и подробно изученные на модельных организмах, также являются важными факторами патогенности и способствуют выживанию бактерий при инфекции. Известно, что SgrS регулирует поступление сахаров в клетку и важна для нормального роста бактерий в условиях повышенной концентрации внеклеточной глюкозы [103]. Хотя её функция сходна у разных представителей энтеробактерий (включая *E. coli, Salmonella, Y. pestis, K. pneumoniaeu* др.), у бактерии *Salmonella enterica* SgrS входит в

экспрессию кластер патогенных генов В хромосоме И подавляет секретируемого белка SopD, который является важным фактором вирулентности Salmonella при инфекции мышей [104]. Малая РНК RyhB снижает экспрессию железо-связывающих белков – при попадании бактерий в низким содержанием железа это способствует «экономии» среду с дефицитного ресурса. У Pseudomonas aeruginosa, S. enterica, E. coli EHEC, Shigella flexneri, S. sonnei, S. dysenteriae и Yersinia pseudotuberculosis доказана связь данной малой РНК с вирулентностью [102].

Интересно отметить, что у таких возбудителей, как Yersinia pestis, *Pseudomonas aeruginosa, Vibrio cholera* и Listeria monocytogenes найдены так называемые РНК-термометры – рибопереключатели, реагирующие на температуру окружающей среды. При попадании в организм хозяина (и, соответственно, повышении температуры до 37°С) они включают экспрессию генов, связанных с вирулентностью.

Малые РНК могут секретироваться в цитоплазму иммунных клеток после фагоцитоза бактерии и влиять на протекание её метаболических процессов, подвергаясь процессингу подобно микроРНК. Эта идея впервые была высказана в 2014 году, и продемонстрирована именно для микобактерий [105], однако мишени малой РНК не были выявлены. Затем в 2016 году Вестерман и соавторы детально описали секрецию малой РНК Salmonella, которая секретируется во внутриклеточную среду и процессируется как микроРНК [106]. На данный момент взаимодействие секретируемых транскриптов бактерий с геномом хозяина становится все более обсуждаемой идеей. Установлено, что РНК бактерий стимулирует врождённый иммунитет в клетках организма-хозяина через взаимодействие с рецепторами группы TLR [107]. МикроРНК-подобные малые РНК бактерий могут секретироваться BO внешнюю среду с помощью микровезикул, которые затем транспортируются в эукариотические клетки, в следствие чего происходит изменение профиля экспрессии цитокинов [108]. РНК *M. tuberculosis* является одним из ключевых факторов взаимодействия патогена и хозяина. После

фагоцитоза бактерии выделяют РНК, которую узнают рецепторы, экспрессирующиеся на внутренней стороне мембраны фагосом: TLR8, TLR7 и TLR3 [109].

Поиск и идентификация функции малых РНК у *M. tuberculosis* является важной и актуальной задачей для понимания развития туберкулезной инфекции и взаимодействия бактерий с макроорганизмом.

1.3. Малые некодирующие РНК микобактерий

Длительное сосуществование *М. tuberculosis* и его хозяина позволило патогену выработать набор стратегий, позволяющих эффективно бороться с системами иммунной защиты. Среди них некодирующие РНК, которые в совокупности со своими мишенями составляют сложные регуляторные сети, позволяющие патогену адаптировать свой метаболизм на различных стадиях развития инфекции [7]. На сегодняшний момент установлено, что малые некодирующие РНК, являющиеся наиболее многочисленной группой регуляторных РНК, играют важнейшую роль в приспособлении *М. tuberculosis* к паразитическому образу жизни [7,110].

1.3.1. Поиск малых РНК микобактерий

К настоящему моменту у *M. tuberculosis* обнаружено около 2000 регуляторных РНК, относящихся некодирующих различным К функциональным классам, к малым транс-кодируемым РНК отнесено примерно 560 из них [7,111–114]. Экспериментально при помощи гибридизации по Нозерну и/или анализа на микрочипах было подтверждено свыше 20 малых транс-кодируемых РНК *M. tuberculosis*, при этом только 8 малых некодирующих РНК *M. tuberculosis* на сегодняшний момент охарактеризованы достаточно подробно [111,112].

Некоторые малые некодирующие РНК, обнаруженные у бактерии *M. tuberculosis*, встречаются у всех представителей рода *Mycobacterium*, например, малая РНК В11 (MTS2822). А другие, в том числе, Mcr11 (MTS0997) DrrS (MTS1338), И обнаружены только патогенных y микобактерий. Следует отметить, что у *M. tuberculosis* не обнаружены гомологи белков-шаперонов Hfq и ProQ, опосредующих взаимодействие малых РНК с мРНК-мишенями [7,112]. Тем не менее, предполагается, что в *M. tuberculosis* всё-таки может существовать некий клетках белок. опосредующий работу малых РНК. Кандидатами на эту роль являются, в частности, РНК-связывающие белки CspA и CspB из обширного семейства белков холодового шока [7,115].

РНК Безусловно, задача обнаружения малых некодирующих микобактерий привлекает пристальное внимание исследователей. Так, еще в 2006 году с помощью компьютерной программы sRNAPredict2 в геноме M. tuberculosis было предсказано 56 некодирующих РНК [116]. Поиск основывался на сравнительном анализе последовательностей в межгенных участках у разных видов бактерий, учитывалась гомология и характерные черты малых РНК, однако тогда существование обнаруженных таким способом малых РНК не было подтверждено экспериментально. Поскольку на тот момент времени было обнаружено не так много бактериальных малых регуляторных РНК, причем большинство из них было обнаружено в Грам-отрицательных организмах, отличающихся значительно ОТ существенно микобактерий, обнаружения ЭТО снижало вероятность микобактериальных некодирующих РНК.

Следующий подход к обнаружению малых РНК *M. tuberculosis* был предпринят несколькими годами позднее [9] путём секвенирования библиотек кДНК низкомолекулярной фракции РНК (20-75нт). Обнаруженные малые РНК были подтверждены при помощи Нозерн-блоттинга, а их точные границы определены методом RACE-анализа (rapid amplification of cDNA ends), всего было обнаружено 5 транс-кодируемых малых РНК: B11, B55, C8, F6 и G2. В это же время были предприняты первые попытки охарактеризовать физиологическое значение этих малых РНК. Так, C8 была отнесена к структурной РНК, гомологичной 4.5S РНК.

Позднее в клетках в *M. bovis BCG* были найдены 34 малые PHK [117]. В данной работе исследователи объединили два подхода: компьютерное предсказание на основе межвидовой гомологии и клонирование короткоцепочечных кДНК. Все найденные малые PHK были подтверждены с помощью Нозерн-блоттинга. Из 34 малых PHK 20 были также обнаружены у *M. tuberculosis*, и три из них, а именно F6, C8, B11, совпали с найденными в предыдущем исследовании [9].

В результате анализа транскриптома *M. tuberculosis* методом PHKсеквенирования (RNA-seq) [118] было обнаружено 15 малых некодирующих PHK, 11 из них были подтверждены Нозерн-блоттингом, включая 5 ранее открытых малых PHK [9]. Кроме того, в этой работе авторы представили более детальную характеристику трёх малых PHK: MTS2823, MTS1338 и MTS0997 [118].

В дальнейшем был разработан новый алгоритм для предсказания некодирующих РНК [119], который включал комбинацию двух подходов: анализа данных РНК-секвенирования и данные о консервативности определённого участка генома, полученные методом сравнительной геномики. Применительно к M. tuberculosis с помощью данного алгоритма было предсказано 1948 некодирующих РНК, из них 977 отнесены к транскодируемым. В данный список вошли все обнаруженные ранее малые РНК. При введении дополнительных критериев (минимальное расстояние до близлежащего гена, минимальная свободная энергия вторичной структуры) список транс-кодируемых РНК-кандидатов сократился до 59. Анализ 1373 из предсказанных некодирующих РНК на микрочипах [120] подтвердил наличие 258 соответствующих транскриптов. 22 из них были отнесены к транскодируемым малым РНК и 4 из них, названные авторами #149, #161, #224 и #1096, были дополнительно подтверждены при помощи Нозерн-блоттинга.

В 2016 году был опробован еще один алгоритм поиска малых РНК у *M. tuberculosis* [121], основанный на тех же принципах: наличие консервативных высоко экспрессирующихся последовательностей в
транскриптоме бактерии. Библиотеки кДНК для секвенирования в этом случае строились отдельно для разных фракций РНК, выделенных из культур в логарифмической фазе роста. Алгоритм RNAz, использованный В эксперименте, включал несколько параметров поиска, среди них: консервативность нуклеотидов последовательности у представителей рода *Mycobacterium*, их консервативная вторичная структура и стабильность молекулы. Кроме малых РНК, найденных и подтверждённых в предыдущих исследованиях, было предложено 192 новые потенциальные малые РНК, 14 из них были выбраны для подтверждения с помощью Нозерн-блоттинга и 13 дали положительный результат [121].

Недавно при анализе генома *M. tuberculosis* методом насыщенного транспозонного мутагенеза было найдено 62 потенциальные малые РНК из разных функциональных категорий, мутации в 7 из них приводили к нарушению скорости роста клеток [122]. Данный подход позволяет найти гены, необходимые для роста бактерий по частоте мутаций, индуцированных вставкой транспозона. Исследователи разработали программу *BS_finder* для предсказания регуляторных малых РНК по данным РНК-секвенирования, которая сканирует транскриптом по принципу «скользящего окна» и находит небольшие транскрипты, полностью или частично закодированные в межгеннной области, имеющие чёткие 5'- и 3'- границы и большую глубину прочтения по сравнению с соседними участками.

Следует подчеркнуть, что все использованные ранее методы поиска малых РНК основывались на анализе транскриптомов бактерий, выращенных при стандартных условиях в богатых питательных средах. При этом могли быть не выявлены многие малые РНК, участвующие в адаптации к стрессовым условиям, так как они экспрессировались в данных условиях на очень низком уровне. Геррик и соавторы провели поиск малых РНК с помощью программы *BS_finder* в транскриптомах бактерий, подвергавшихся воздействию различных стрессовых факторов [123]. Они обнаружили 189 потенциальных малых некодирующих РНК, 103 из которых не были детектированы ранее.

Также авторы отмечают, что уровень экспрессии этих потенциальных малых РНК различался в зависимости от условий культивирования. Одна из малых РНК, MrsI, обнаруженная и подтвержденная впервые в этом исследовании, была детально проанализирована.

Идея анализа транскриптомов клеток *M. tuberculosis*, полученных при различных условиях культивирования, была позднее развита Ами и соавторами [124]. Авторы проанализировали депонированные в базах данные РНК-секвенирования M. tuberculosis в логарифмической фазе роста с использованием метода «скользящего окна». По результатам поиска было выделено 65 межгенных участков, относящихся к вероятным транскодируемым малым РНК (этот список включал и четыре малые РНК, подтверждённые ранее: ncRv11147Ac, ncRv2395, экспериментально ncRv11534A и MrsI). Экспрессия генов потенциальных малых РНК была основе метода анализа ДНК-белковых взаимодействий. изучена на основанных на иммунопреципитации хроматина (ChIP) и высокоэффективном секвенировании ДНК (ChIP-seq) с белком RNAP (PHК-полимераза) и белком NusA (входящем в состав транскрипционного комплекса и участвующем в терминации и антитерминации транскрипции) в *M. tuberculosis* в различных условиях роста: логарифмическая и стационарная фаза, покой, реактивация и стрессовые воздействия (всего 15 состояний). Оказалось, что эти межгенные значительной степени связывались с транскрипционными участки в комплексами. Также была обнаружена дифференциальная экспрессия 24 из подтверждённых ранее малых РНК.

1.3.2. Малые РНК *M. tuberculosis* с установленным механизмом действия

Несмотря на многочисленные попытки по изучению функциональной роли малых РНК *M. tuberculosis*, эти усилия на протяжении длительного времени имели весьма ограниченный успех. Однако последние годы ознаменовались целым рядом успешных исследований: на сегодняшний

момент проведена функциональная характеристика для 8 малых РНК *M. tuberculosis*, и для 4 из них найдены мишени.

<u>Mcr7 (MTB000067)</u>

Малая некодирующая РНК Мсг7 исходно была обнаружена в клетках *Mycobacterium bovis* ВСG путем анализа библиотек кДНК и подтверждена при помощи Hoseph-блоттинга, после чего ее гомолог был найден в клетках *M. tuberculosis* [117]. Мсг7 – это первая малая РНК *M. tuberculosis*, для которой была установлена ее функция [125]. Экспрессия Мсг7 регулируется двухкомпонентной сигнальной системой PhoPR, которая играет важнейшую роль в вирулентности микобактерий и контролирует экспрессию примерно 2% всех генов *M. tuberculosis*, включая гены системы секреции ESX1.

В свою очередь, малая РНК Мсг7, являясь мишенью белка PhoP, модулирует трансляцию гена tatC, связываясь с его мРНК, и влияет на активность секреторного комплекса Tat *M. tuberculosis*, компонентом которого является tatC. Комплекс Tat осуществляет секрецию белков со специфической сигнальной последовательностью, содержащей два остатка аргинина (twin-arginine мотив), в число которых входит иммунодоминантный комплекс Ag85 [126] и бета-лактамаза BlaC [127].

MrsI (MTB000142, ncRv11846)

В 2018 г Геррик и соавторы опубликовали результаты исследования, посвящённого поиску малых РНК, характерных для различных стрессовых состояний [123]. Бактерии подвергали воздействию одного из стрессовых факторов: 1) отсутствие железа в среде культивирования, 2) окислительный стресс, 3) повреждение мембран, 4) кислые значения pH среды, 5) недостаток питательных веществ. Секвенирование библиотек кДНК, полученных из соответствующих образцов РНК с последующим отбором транскриптов, с наибольшей вероятностью подходящих на роль малых РНК, и сравнение их уровня экспрессии с уровнем экспрессии в контрольном образце клеток выявило 82 потенциальных малых РНК, имеющих дифференциальную экспрессию хотя бы в одном из этих стрессовых состояний. Малая РНК ncRv11846 характеризовалась наибольшим увеличением уровня экспрессии в условиях отсутствия железа в среде культивирования, а также высоко экспрессировалась при повреждении мембран. Её последовательность является консервативной для семейства *Mycobacteriaceae* и близкого ему семейства *Nocardiaceae*, a ее гомолог был ранее описан у *M. smegmatis* [128]. Она была выбрана авторами исследования для подробного изучения и в результате названа MrsI (mycobacterial regulatory sRNA in iron) [123]. Для малой PHK MrsI была предсказана стабильная вторичная структура, а также вероятный сайт связывания, состоящий из 6 нуклеотидов в апикальной петле. Делеция гена малой РНК влияла на жизнеспособность бактерии только в условиях низкого содержания железа в среде. При протеомном И транскриптомном анализе такого штамма было обнаружено повышенное железосвязывающих белков И содержание ИХ транскриптов. Биоинформатический показал возможность взаимодействия анализ найденных транскриптов с предполагаемым seed region. Одна из мишеней мРНК гена bfrA, кодирующего белок бактериоферритин, участвующий в запасании железа. На связь MrsI с регуляцией метаболизма железа указывало также обнаружение сайта связывания транскрипционного фактора IdeR, который активируется у микобактерий при дефиците железа [129]. Таким образом, малая PHK MrsI по своей функции оказалась аналогична малой PHK RyhB в E. Coli [130]. При понижении концентрации железа малая PHK MrsI подавляет трансляцию белков, способных связывать ионы железа, но не играющих роли для выживания бактерии, тем самым устанавливается более экономный расход железа в клетке.

<u>B11 (ncRv13660c, MTS2822, 6C)</u>

Малая РНК В11 содержит 6С-мотив в виде двух шпилек, содержащих по 6 последовательно расположенных остатков цитозина в петле, найдена Арнвиг и соавторами в 2009 г при скрининге кДНК библиотек низкомолекулярной фракции РНК *M. tuberculosis* [9]. Данная малая РНК очень консервативна среди бактерий рода *Mycobacterium*, ее гомологи обнаруживаются также у

бактерий рода *Streptomyces* и *Corynebacterium*. Экспрессия B11 индуцируется в условиях окислительного стресса и сниженных значений pH среды [9]. Гиперэкспрессия данной малой PHK в клетках *M. tuberculosis* приводила к летальному фенотипу, а в клетках *M. smegmatis* – к замедлению скорости роста [9].

Малая РНК В11 имеет стабильную вторичную структуру, в которую входят три петли. Две из них содержат seed region, представляющий собой 6 7 идущих подряд цитозинов. Комплементарная или этому участку последовательность гуанинов встречается в 5'-лидерной области многих генов микобактерий. Позднее было показано, что наличие обеих петель и сохранность цитозиновой последовательности в транскрипте малой РНК В11 является критической для реализации её функции [131]. Транскриптомный выявил изменение (преимущественно понижение) экспрессии анализ значительного количества генов, у мРНК 47 генов был обнаружен потенциальный сайт взаимодействия с малой РНК В11. Из этих 47 геновкандидатов было выбрано 15 потенциальных мишеней (среди которых гены panD, dnaB, espE, espF, eccA1, PE35, MTB84 и mycP1), для которых взаимодействие было экспериментально подтверждено. Во всех случаях повышение экспрессии малой РНК В11 в *M. smegmatis* приводило к ингибированию трансляции мРНК гена-мишени. Подавление трансляции гена *dnaB*, кодирующего репликативную ДНК-хеликазу, было определяющим для формирования характерного фенотипа гиперэкспрессии В11. Любопытно, что взаимодействие малой РНК В11 с мРНК-мишенью происходит напрямую, что было проверено при помощи EMSA-анализа и методом транспозонного мутагенеза [131].

Исследование функции малой РНК В11 было продолжено в клетках *Mycobacterium kansasi* [132]. Исследователями был получен штамм с мутацией в 5'-области гена малой РНК, которая приводила к полному подавлению её экспрессии, но не затрагивала экспрессию соседних генов. Штамм *M. kansasii* с "выключенной" малой РНК В11 имел дефект роста на плотных питательных

средах. Оказалось, что такие микобактерии не были способны к образованию биоплёнок, хотя их планктонный рост не отличался от роста штамма дикого типа (wt). Несмотря на то, что молекулярные мишени в данном исследовании не были предложены, такая физиологическая характеристика расширяет спектр возможной регуляторной роли малой РНК В11.

<u>F6 (ncRv10243, MTS194, MTB000051)</u>

Малая РНК F6 была обнаружена путём секвенирования кДНК библиотек низкомолекулярной фракции РНК *M. tuberculosis* [9] и подтверждена Нозерннайдена как у патогенных представителей блоттингом. Она рода Mycobacterium, так и у M. smegmatis. При попытке охарактеризовать ее физиологическую роль было обнаружено повышение экспрессии F6 в условиях окислительного стресса, гипоксии, низких значений рН среды, при инфекции МФ, но наиболее сильное повышение экспрессии отмечено в условиях ограничения поступления питательных веществ [9.133]. Обнаружено, что гиперэкспрессия малой РНК F6 отрицательно сказывалась на скорости роста клеток *M. tuberculosis* [9], при этом ни гиперэкспрессия, ни делеция гена малой РНК F6 не оказывала влияния на рост клеток *M. smegmatis* [9]. Делеция F6 в *M. tuberculosis* оказывала негативное влияние на выход *M. tuberculosis* из покоящегося состояния в модели гипоксии Вейна [133], а делеция F6 в *M. smegmatis* приводила к невозможности формирования покоящегося состояния в модели с дефицитом калия [134]. Анализ транскрипционного профиля штамма *M. tuberculosis* с делецией малой PHK F6 в условиях недостатка питательных веществ выявил повышение уровня экспрессии 4 генов: Rv0440 (groEL2), Rv3418c (groES), Rv0990c и Rv0991c. Все эти гены входят в один регулон и находятся под контролем транскрипционного репрессора HrcA (Rv2374c), который активируется при мРНК hrcA тепловом шоке. В 5'-области формируется шпилька, препятствующая трансляции этой матрицы, так как она частично закрывает последовательность Шайна-Дальгарно. На комплементарной цепи также имеется сайт связывания с малой РНК F6. При связывании F6 эта шпилька

42

раскрывается, делая доступным сайт связывания с рибосомой и инициируя трансляцию. Как следствие активации трансляции репрессора HrcA в клетке снижается продукция шаперонов GroEL/S [133]. В *M. smegmatis* было показано связывание малой РНК F6 с мРНК гена *MSMEG_4640*, кодирующего фактор выхода из покоящегося состояния RpfE2 [134].

MTS2823 (MTB000078)

Данная малая РНК была впервые описана в 2011 году [118]. В стационарной фазе роста и в хронической фазе инфекции мышей концентрация данной малой РНК в клетках микобактерий очень высока и почти достигает уровня рибосомальных РНК. Высокий уровень экспрессии также обнаруживается в покоящемся состоянии [11] и при воздействии стрессов *in vitro* [124]. При гиперэкспрессии MTS2823 в *M. tuberculosis* сильно понижается экспрессия многих генов, кодирующих ферменты центрального метаболизма [118].

MTS2823 высококонсервативна среди бактерий рода Mycobacterium и найдена также у других представителей актинобактерий. Предсказанная вторичная структура малой РНК представляет собой двухцепочечную шпильку со "вздутием" в середине и двумя небольшими петлями на концах. Такая структура имитирует ДНК во время транскрипции и может связываться с РНК-полимеразой. Малая РНК 6S E. coli имеет такое же строение и выполняет ингибитора транскрипции. MTS2823 роль является функциональным аналогом 6S, хотя и имеет некоторые отличия. Механизм действия малой РНК был изучен у *M. smegmatis*, имеющий её гомолог Ms1 [135]. Ms1 связывается с РНК-полимеразой (RNAP) до её связывания с сигмафакторами. Чем больше фермента находится в комплексе Ms1-RNAP, тем ниже общий уровень транскрипции в клетке. Такой комплекс нестабилен и быстро распадается, поэтому эффективность секвестирования фермента и, следовательно, замедления транскрипции, напрямую зависит от концентрации малой РНК. В экспоненциальной фазе роста малая РНК Ms1 активно подвергается деградации при помощи фермента полинуклеотидфосфорилазы

43

(PNPase). В стационарной фазе роста бактерии концентрация PNPase падает, малая PHK Ms1 накапливается и более эффективно секвестирует PHKполимеразу, подавляя общий уровень транскрипции. Также обнаружено, что малая PHK положительно влияет на экспрессию β и β' -субъединиц PHKполимеразы. При делеции малой PHK Ms1 концентрация PHK-полимеразы снижалась, из-за чего в мутанте не наблюдалось драматического повышения уровня транскрипции. В диком типе *M. smegmatis* в стационарной фазе концентрация PHK-полимеразы остаётся высокой, но активность фермента снижена. Это позволяет бактерии быстро вернуться к активному состоянию транскрипции при благоприятствующих условиях [135].

<u>ncRv12659 (MTS2048)</u>

Малая РНК ncRv12659 найдена в транскриптоме *M. tuberculosis* в 2011 году методом RNA-seq [118]. Изучение экспрессии выявило накопление этой малой РНК в модели мышиной инфекции и при голодании [136]. Гиперэкспрессия малой РНК приводила к замедлению роста бактерий и изменениям транскрипции порядка 50 генов. Делеция гена малой РНК не приводила к снижению выживаемости *M. tuberculosis* в нормальных или стрессовых условиях, а также при инфицировании клеточной линии МФ [136]. Мишени данной малой РНК на данный момент обнаружить не удалось.

Ген ncRv12659 закодирован в профаге PhiRv2, который встречается не во всех изолятах *M. tuberculosis*. Малая PHK кодируется на участке противоположной цепи гена Rv2660, который на протяжении некоторого времени считался иммуногенным белком, перспективным для создания вакцины [137]. Но при детальном изучении профиля транскрипции методом RNA-seq, полученном с учётом специфичности цепи и проведённом в разных физиологических состояниях бактерии, было показано, что сигнал мPHK, соответствующий гену Rv2660 в клетках *M. tuberculosis* отсутствует, что наиболее вероятно означает, данный белок в принципе не существует [136].

1.3.3. Малые РНК Mcr11 и DrrS

Mcr11 (MTS0997, MTB000063)

Малая РНК Mcr11 была впервые найдена в 2010 году в транскриптоме клеток *Mycobacterium bovis* ВСG логарифмической фазы роста методом РНК-секвенирования (RNA-seq) и подтверждена при помощи Нозерн-блоттинга [117]. Ген малой РНК Mcr11 также присутствует у *M. tuberculosis*, и её экспрессия была подтверждена экспериментально, при этом у непатогенных микобактерий гомологи Mcr11 не были обнаружены.

Было установлено, что уровень экспрессии Mcr11 нарастает при переходе в стационарную фазу роста (как в *M. tuberculosis*, так и в *M. bovis*). Экспрессия Mcr11 заметно усиливается в модели инфекции мышей [10,118] и в покоящемся состоянии *M. tuberculosis* [11]. Анализ профилей экспрессии показал повышение транскрипции малой РНК в клетках в условиях недостатка питательных веществ и понижение экспрессии при кислых значениях рН среды, а также обнаружил зависимость экспрессии от уровня цАМФ [138]. Гиперэкспрессия Mcr11 приводила к замедлению роста культуры клеток *M. tuberculosis* [11]. Было показано, что транскрипцию Mcr11 регулирует белок AbmR, закодированный в смежном с Mcr11 гене [139]. Промоторная область белка AbmR (ATP-binding mcr11 regulator) и малой PHK Mcr11 частично перекрываются. AbmR обладает ауто-ингибирующей активностью, специфически связываясь со своей промоторной областью в присутствии АТФ. В штамме с делецией белка AbmR не наблюдалось изменений концентрации малой РНК, зависимых от фазы роста. Вероятно, экспрессия Mcr11 зависит от концентрации АТФ в клетке и регулируется АТФсвязывающим транскрипционным фактором AbmR [139]. С помощью программы для поиска мишеней TargetRNA было предсказано связывание малой РНК Mcr11 с мРНК генов *lipB* (кодирует липоат-протеин лигазу B, необходимую для биосинтеза липоата), Rv3282 (кодирует белок, вероятно участвующий в построении септы деления) и *fadA3* (кодирует β-кетоацил коэнзим А тиолазу) [140]. Поскольку ранее была показана связь этих генов с

метаболизмом липидов, исследователи оценили рост штаммов *M. tuberculosis* и *M. bovis BCG* с мутацией в гене Mcr11 в условиях дефицита жирных кислот в среде культивирования. Оказалось, что рост мутантных штаммов в среде, где отсутствовали экзогенные источники олеата, был нарушен. При этом экспрессия предсказанных генов-мишеней повышалась в штаммах с мутацией по сравнению с контрольным wt. Исследователи пришли к выводу о том, что малая PHK Mcr11 контролирует экспрессию трёх оперонов: 1) *dlaT*-Rv2216-*lipB*, 2) *accD5-accE5*-Rv3282 и 3) *fadA3*, но также может иметь и другие мишени, вовлечённые в регуляцию липидного обмена микобактерий [140].

DrrS (MTS1338, MTB000077)

Малая PHK DrrS, так же как и Mcr11, присутствует только у патогенных микобактерий туберкулёзного комплекса и была найдена методом RNA-seq в полном транскриптоме *M. tuberculosis* [118]. Экспрессия этой малой РНК возрастает по мере перехода бактерий в стационарную фазу роста [118]. Экспрессия DrrS регулируется геном DosR, который является ключевым регулятором при переходе в покоящееся состояние и воздействии стрессовых условий, в первую очередь гипоксии, то есть, малая PHK DrrS является частью DosR-регулона [60]. DrrS имеет в промоторной области специфическую последовательность, узнаваемую регулятором DosR, и при нокаутировании DosR накопление малой РНК в стационарной фазе роста значительно снижается, хотя и не полностью пропадает [60]. По этой причине малая РНК DrrS и получила своё название (от DosR Regulated sRNA). DrrS имеет стабильную вторичную структуру, время полужизни транскрипта составляет 6 ч [60]. Значительное накопление малой РНК происходит при инфекции (в мышиных моделях и при инфекции клеточной линии МФ) [10,118]. В покоящихся клетках M. tuberculosis концентрация малой PHK MTS1338 почти достигает уровня 16S рРНК, и является вторым по величине экспрессии нетранслируемым транскриптом [11]. Гиперэкспрессия этой малой РНК

приводит к замедлению роста микобактерий, что было ранее продемонстрировано в нашей лаборатории [11].

Активный синтез малых PHK DrrS и Mcr11, их высокая экспрессия в фазе инфекции, а также наличие генов этих малых PHK лишь у микобактерий туберкулёзного комплекса свидетельствуют о том, что они играют важную роль в патогенезе бактерии и приспособлении к жизни внутри инфицированного организма, что и побудило нас к детальному исследованию их функции.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Объект исследования и условия культивирования

Бактерии Mycobacterium tuberculosis штамм H37Rv, полученные из коллекции ЦНИИ туберкулеза, инокулировали из замороженных аликвот, хранящихся в 50% глицерине при –70°С в жидкую среду Сотона [141] (состав г/л бидистиллированной воды: L-аспарагин – 4, $KH_2PO_4 - 0.5$, $MgSO_4 - 1.4$, 0.05, железо лимоннокислое аммиачное _ натрий лимоннокислый трехзамещенный – 2, ZnSO₄ – 0.001, глицерин – 60 мл, pH 7.0) в присутствии 10% ростовой добавки альбумин-декстроза-каталаза (АДК) («HiMedia», Индия), содержащей бычий сывороточный альбумин (5 г/л), глюкозу (2 г/л) и каталазу (0.003 г/л). и 0.05% твина-80 при 37°С и перемешивании 200 об./мин. После 7 суток культивирования по достижении средней логарифмической фазы роста (оптическая плотность ОП₆₀₀ = 1–1,5) бактерии пересевали в свежую среду для проведения экспериментов. В зависимости от эксперимента использовали жидкую или агаризованную (1,5%) среду Сотона, жидкую или агаризованную среду Миддлбрука («НіМеdia», Индия) [142] (состав г/л дистиллированной воды: L-глутамат – 0.5, KH₂PO₄ – 1, Na₂HPO₄ – 2.5, (NH₄)2SO4 - 0.5, MgSO₄ - 0.05, железо лимоннокислое аммиачное - 0.04, натрий лимоннокислый трехзамещенный -0.1, ZnSO₄ -0.001, CaCl₂ -0.0005, CuSO₄ – 0.001, пиридоксин – 0.001, биотин – 0.0005, глицерин – 4 мл, pH 7.2), либо модифицированную среду Сотона R (состав г/л дистиллированной воды: L-аспарагин – 0.4, KH₂PO₄ – 0.05, MgSO₄ – 0.14, железо лимоннокислое аммиачное – 0.005, натрий лимоннокислый трехзамещенный – 0,2, ZnSO₄ – 0.0001, глицерин – 6 мл, рН 7.0). Во всех случаях культивирование присутствии ростовой проводилось в добавки АДК, а В случае культивирования на жидких средах дополнительно вносили твин-80.

Все среды стерилизовали автоклавированием при 121°С 20 мин, затем добавляли 10% ростовой добавки АДК («HiMedia», Индия), содержащей бычий сывороточный альбумин (5 г/л) глюкозу (2 г/л) и каталазу (0,003 г/л). В качестве детергента в жидкие среды добавляли твин-80 (0,05%) или

тилоксапол (0,025%), в зависимости от условий эксперимента. При выращивании штаммов, содержащих плазмидную вставку с геном устойчивости к антибиотику, в среду добавляли антибиотик канамицин в концентрации 50 мкг/мл. Культивирование бактерий проводили в термостате при 37°C и перемешивании 200 об./мин.

Рост бактерий оценивали по изменению ОП₆₀₀ относительно стерильной среды в стандартной кювете (длина оптического пути 1 см) с помощью спектрофотометра или при помощи высевов соответствующих 10-кратный разведений бактериальных культур на плотные питательные среды с подсчетом числа колониеобразующих единиц (КОЕ).

2.2. Световая микроскопия

Световую микроскопию микобактерий проводили с помощью микроскопа Eclipse E4000 («Nikon», Япония) с приставкой для фазового контраста, флуоресцентной приставкой и цифровой камерой Camedia C-4040 («Olimpus», Япония) для документирования результатов, увеличение составляло 1000 раз.

2.3 Получение компетентных клеток *M. tuberculosis* и их трансформация

Штамм *M. tuberculosis* H37Rv выращивали до средней логарифмической фазы (ОП₆₀₀=2-5) в объеме 100-200 мл, клетки отмывали от среды 10% раствором глицерина, концентрировали в объёме 2-5 мл. Для создания штаммов с гиперэкспрессией к 400 мкл полученных компетентных клеток добавляли очищенную планмиду, (300-400 нг для создания штаммов с делециями) и электропорировали в приборе Gene Pulser Xcell («Віо-Rad», США). Режим электропорации: сопротивление 1000 Ом, напряжение 2.5 кВ, электрическая ёмкость 25 мкФ [143].

Клетки после электропорации помещали в среду Сотона на 24 ч, затем высевали на чашки со средой Миддлбрука («HiMedia», Индия) с добавлением 10% АДК и 50 мкг/мл канамицина. Полученные колонии проверяли на наличие плазмидной вставки методом ПЦР.

2.4. Создание штаммов *M. tuberculosis*, гиперэкспрессирующих малые PHK Mcr11 и DrrS

Штамм *M. tuberculosis* H37Rv трансформировали посредством электропорации [143] плазмидой pMV-261, содержащей вставку с геном малой PHK Mcr11 (Mcr11 over) или малой РНК DrrS (DrrS over), под микобактериальным промотором rrnB. Также *M. tuberculosis* H37Rv трансформировали немодифицированной плазмидой без вставки pMV-261 для создания контрольного штамма (wt empty). Плазмиды были получены, как описано ранее [11]. Гиперэкспрессия была подтверждена методом количественной ПЦР, сопряженной с обратной транскрипцией (ОТ-ПЦР).

2.5. Создание штаммов с делециями малых РНК Mcr11 и DrrS и двойной делецией

Фланкирующие последовательности участка генома *M. tuberculosis* были синтезированы методом ПЦР с использованием ДНК-полимеразы Q5 («New England Biolabs», США), и амплификатора LightCycler 480 («Roche», Швейцария). Условия амплификации: 30 с при 95°С, 30 с при 55°С, 180 с при 72°С, 30 циклов.

Последовательности праймеров для клонирования FR1 и FR2 для малой PHK <u>Mcr11</u>:

Mcr11_FR1_For: 5' ATCggatccTGCAGTCGCCCGCTCGTTTTT 3' Mcr11_FR1_Rev: 5' GTAtctagaTACCGGTGTGCCTGCCTACGG 3' Mcr11_FR2_For: 5' AGTtctagaGCCTGCTTCGATACCAAAAATA 3' Mcr11_FR2_Rev: 5' ATAgcggccgcCAAGGTTGCTGGGGCCCGG 3' Последовательности праймеров для клонирования FR1 и FR2 для малой PHK <u>DrrS</u>:

DrrS_FR1_For: 5' TAGagtactAGAATGCCTTTGGTCACCAA 3' DrrS_FR1_Rev: 5' CAGggatccTTCCCCGGTATCACCAATAC 3' DrrS_FR2_For: 5' ATCggatccAGATCCTCATCCTGTTACTGCG 3' DrrS_FR2_Rev: 5' ACGgcggccgcTCTGTACGTCGCTGTCGGCA 3'

Векторы p2NIL (Plasmid #20188) и pGOAL (Plasmid #20190) для создания конструкции для гомологичной рекомбинации были получены из банка плазмид («AddGene», США). Для рестрикции использовали ферменты Scal, BamHI, NotI, XbaI и PacI («NEB», США); для лигирования фрагментов ДНК использовали Т4-ДНК лигазу («Promega», США) в соответствии с рекомендациями производителя.

После трансформации микобактерий полученными конструкциями проверку получения делеции генов осуществляли методом ПЦР со следующими праймерами:

Для малой РНК DrrS:test_d1338_forTGGGGACGTCGGTCACGAATtest_d1338_revCATCGCGGCGCGCTGTTCTTДля малой РНК Mcr11:test_d0997_fortest_d0997_forTCCGGGGTGACGTCAGGCTTtest_d0997_revAGCGAAACGTGACACCGGTT

Клоны, прошедшие два этапа рекомбинации и имевшие положительный результат проверки методом ПЦР, были отобраны для работы. Эти клоны (по 1 клону для каждого нового штамма ΔMcr11, ΔDrrS и ΔΔMcr11_DrrS) дополнительно были проверены методом полногеномного секвенирования на наличие делеции целевых генов и отсутствие случайных мутаций в геноме.

2.6. Создание штамма с комплементацией делеции генов малых РНК Mcr11 и DrrS

Для клонирования был использован вектор pMV-306hsp («Addgene», США. Plasmid #26155), который является интегративным (встраивается в геном) и суицидным для микобактерий (не имеет микобактериального ориджина репликации).

Создание конструкции для комплементации

Последовательности участка генома *M. tuberculosis*, содержащие гены малых PHK Mcr11 и DrrS и их собственные промоторные и терминаторные области, были синтезированы методом ПЦР с использованием ДНК-полимеразы Q5 («New England Biolabs», США) и амплификатора LightCycler 480 («Roche», Швейцария) на матрице геномной ДНК *M. tuberculosis*. Условия амплификации: 10 с при 98°C, 15 с при 68°C, 15 с при 72°C, 30 циклов. Полученные ПЦР-продукты (отдельно для каждого гена малых PHK Mcr11 и DrrS) были очищены и клонированы в вектор pMV-306hsp, обработанный рестриктазой HpaI («NEB», США) с последующим дефосфорилированием концов щелочной фосфатазой SAP («Affymetrix», США) в соответствии с рекомендациями производителя. Лигирование проводили с помощью T4 ДНК лигазы («Promega», США).

Для наработки плазмид клетки *E. coli* штамма dH5α трансформировали полученной лигазной смесью методом термического шока. Клетки, содержащие вставку, отбирали на плотной среде культивирования, содержащей канамицин для селекции целевых клонов.

Полученные клоны были проверены методом ПЦР на наличие вставки и её ориентацию в плазмиде. Были отобраны клоны, где терминатор транскрипции, изначально присутствующий в плазмиде, находился после клонированного фрагмента (промотор-DrrS-терминатор или промотор-Mcr11терминатор). Выделение и очистку плазмид проводили с помощью набора PlasmidMiniPrep («Evrogen», Россия).

52

Затем фрагмент промотор-Мсг11-терминатор, клонированный в pMV-306hsp, был снова амплифицировали с праймерами, достраивающими сайт рестрикции HpaI. Полученный продукт был заново лигирован с линейной дефосфорилированной плазмидой pMV-306hsp и трансформирован в *E. coli* для размножения плазмиды. Затем были отобраны клоны, где лигирование произошло с изменением ориентации фрагмента промотор-Mcr11-терминатор в плазмиде, что вносило в конструкцию дополнительный терминатор транскрипции. В результате терминаторы транскрипции присутствовали как до, так и после фрагмента. Таким образом получили вектор pMV-306hsp_Mcr11.

Аналогично, фрагмент промотор-DrrS-терминатор, клонированный в pMV-306hsp, был снова амплифицировали с праймерами, достраивающими сайт рестрикции XbaI. Полученный продукт был лигирован с линейным вектором pAL-TA («Evrogen», Россия), полученной лигазной смесью трансформировали *E. coli* для размножения плазмиды. После выделения, плазмиду pAL-TA с фрагментом промотор-DrrS-терминатор подвергали тандемной рестрикции рестриктазами XbaI и EcoRV («NEB», CША), в результате чего получался линейный фрагмент, содержащий фрагмент промотор-DrrS-терминатор и терминатор, имеющий липкий и тупой конец. Этот фрагмент клонировали в вектор pMV-306hsp, который предварительно обрабатывали ферментами рестрикции XbaI и HpaI. Таким образом получили плазмиду pMV-306_DrrS, содержащую содержащий фрагмент промотор-DrrS-терминатор, ограниченный двумя терминаторами и не содержащую промотор hsp.

Далее получали вектор pMV-306_DrrS_Mcr11. Для этого амплифицировали фрагмент 'промотор-DrrS-терминатор', ограниченный двумя терминаторами, из вектора pMV-306_DrrS и клонировали его в плазмиду pMV-306hsp_Mcr11, предварительно обработанную рестриктазами XbaI и HpaI. В результате получилась плазмида pMV-306_DrrS_Mcr11, не содержащая промоторную область hsp, и содержащая оба гена малых PHK Mcr11 и DrrS с противоположной ориентацией друг относительно друга, каждый из которых ограничен собственным промотором и терминатором, а также дополнительными терминаторами с обеих сторон.

Правильность сборки конструкции была подтверждена секвенированием по Сэнгеру.

<u>Создание комплементированного штамма ΔΔMcr11 DrrS comp</u>

Штамм ΔΔMcr11_DrrS трансформировали посредством электропорации плазмидой pMV-306_DrrS_Mcr11. Полученные клоны были проверены методом ПЦР на наличие плазмиды, экспрессия малых PHK Mcr11 и DrrS была подтверждена методом ОТ-ПЦР. Также дикий тип *M. tuberculosis* H37Rv и ΔΔMcr11_DrrS трансформировали пустой плазмидой pMV-306hsp для создания контрольных штаммов. Наличие плазмидной вставки было проверено методом ПЦР.

2.7. Действие стрессовых агентов

Клетки M. tuberculosis были собраны в логарифмической И В стационарной фазе роста путём центрифугирования при 21°С и 4000g. Осадки отмывали 10 мМ фосфатно-солевым буферным раствором рН 7.4 (ФСБР). Культуры логарифмической фазы роста разводили в свежей среде Сотона с добавлением 10% ростовой добавки АДК («HiMedia», Индия) до ОП₆₀₀=0.2, после чего добавляли пероксид водорода («Merck», Германия) до конечной концентрации 5 мМ для создания условий окислительного стресса, донор оксида азота – диэтилентриамин-NO (ДЕТА-NO) («Sigma», США) до конечной концентрации 500 мкМ для создания нитрозативного стресса. Для создания кислотного стресса клетки разводили в свежей среде Сотона с добавлением 10% ростовой добавки АДК («HiMedia», Индия) и рН 5.5 до оптической плотности 0.2 (ОП₆₀₀). Для создания условий ограничения питательных веществ бактерии разводили в ФСБР до ОП₆₀₀=0.2. Культуры стационарной фазы роста разводили до $O\Pi_{600}=0.2$ в собственном супернатанте с добавлением стрессовых агентов: H₂O₂ (конечная концентрация 10 мМ) или ДЕТА-NO (конечная концентрация 500 мкМ). Для кислотного стресса отмытые культуры разводили в свежей среде Сотона с добавлением 10% ростовой добавки АДК («HiMedia», Индия) и 0.05% твина-80, с рН 5.5 до ОП₆₀₀=0.2. Для создания условий ограничения питательных веществ бактерии разводили в ФСБР до ОП₆₀₀=0.2.

Бактерии инкубировали со стрессовыми агентами в течение 24ч и 48 ч при 37°С и перемешивании (200 об./мин). Для создания условий ограничения питательных веществ бактерии инкубировали в ФСБР в течение 28 сут при 37°С в статическом режиме.

2.8. Включение радиоактивно меченного урацила в клетки *M. tuberculosis*

1 мкл 5,6,-[³H]-урацила (1 мкКи) («Изотоп», Россия) добавляли к 1 мл культуры и инкубировали 20 ч при 37°С и перемешивании. Затем 200 мкл культуры помещали в 7%-ный раствор уксусной кислоты на 15 мин при 0°С, после чего осаждали фильтрованием на стекловолоконном микрофильтре («Whatman», США). Осажденные клетки промывали 3 мл 7%-ной уксусной кислоты и 3 мл 96%-ного этанола. Фильтр помещали в сцинтилляционную жидкость Ultima Gold («PerkinElmer», США), подсчет числа импульсов за минуту осуществляли с помощью жидкостного сцинтилляционного счетчика LS analyser («Beckman Instruments Inc.», США). Изменение транскрипционной активности клеток в результате действия стрессовых факторов расчитывали как долю импульсов, регистрируемых за минуту, в культурах после воздействия стрессового фактора (24 ч или 48 ч) от числа импульсов, регистрируемых в минуту до воздействия стрессового фактора.

2.9. Переход в состояние покоя («некультивируемости») и реактивация в метаболически активное состояние

Штаммы Δ Mcr11, Δ DrrS, $\Delta\Delta$ Mcr11 DrrS и контрольный штамм H37Rv (wt) выращивали в жидкой среде Сотона с добавлением 10% ростовой добавки АДК («HiMedia», Индия) в присутствии твина-80 (0,05%) до поздней $(O\Pi_{600}=4),$ логарифмической фазы роста затем инокулировали В модифицированную среду Сотона, не содержащую калия [144] (состав г/л бидистиллированной воды: L-аспарагин – 4, NaH₂PO₄ – 0.5, MgSO₄ – 1.4, аммиачное – 0.05, натрий лимоннокислый лимоннокислое железо трехзамещенный -2, ZnSO₄ -0.001, глицерин -60 мл, pH 7.2), с добавлением 10% АДК («HiMedia», Индия) и твина-80. На 17 день культивирования в среду был добавлен рифампицин в концентрации 5 мкг/мл для подавления делящейся субпопуляции клеток. На протяжении эксперимента каждые 3-4 дня из культур делались высевы на плотную питательную среду Сотон с 10% АДК («HiMedia», Индия), спустя 21 день инкубирования чашек Петри при 37°С в статическом режиме производили подсчет числа КОЕ, среднее из трёх повторов.

Для определения количества жизнеспособных «некультивируемых» клеток проводили процедуру их реакивации. Для этого в среде Сотона для реактивации готовили серии 10-кратных бактериальных разведений клеток в состоянии покоя и помещали их в стерильные в 48-луночные планшеты. Спустя 28 дней культивирования при 37°C в статическом режиме подсчитывали количество лунок с видимым бактериальным ростом, наиболее вероятныое число реактивировавшихся бактерий (НВЧ) определяли с помощью синтетических таблиц [145].

56

2.10. Выделение РНК и ДНК M. tuberculosis

Выделение РНК

Тотальную РНК из клеток *M. tuberculosis* выделяли методом фенолхлороформной экстракции [146,147]. Клетки бактерий быстро охлаждали на льду, центрифугировали при 4°С и 4000g и удаляли супернатант. Клеточный осадок ресуспендировали в 1 мл тризола (Invitrogen, CША), затем разрушали с помощью кремний-циркониевых бус на дезинтеграторе BeadBeater («BioSpec Products», США). Клеточный экстракт отделяли центрифугированием и смешивали с 200 мкл хлороформа. Центрифугировали при 4°C и 12000g 15 минут для разделения фаз. Водную фазу отделяли и смешивали с половинным объёмом кислого фенола, затем добавляли такой же объём хлороформа и интенсивно перемешивали. Центрифугировали при 4°C и 12000g 15 минут, затем проводили повторную экстракцию хлороформом. Водную фазу отбирали и смешивали с равным объёмом изопропанола для осаждения РНК. Инкубировали во льду 40 минут. Центрифугировали при 4°С и 12000g 1час, удаляли изопропанол и промывали осадок холодным 80% этанолом. Центрифугировали при 4°С и 12000g 10 минут, подсушивали на воздухе, затем растворяли осаждённую РНК в стерильной бидистиллированной воде mQ.

После выделения РНК образцы обрабатывали ДНКазой I Turbo DNase («Life Technologies», США) для удаления примеси геномной ДНК. Сохранность РНК определяли методом электрофореза в 1% агарозном геле по наличию полос, соответствующих 23S и 16S рРНК на электрофореграме. Концентрацию выделенной РНК определяли спектрофотометрическим методом (λ=260 нм).

В случаях выделения РНК из эукариотических клеток при инфекции мышиных макрофагов (МФ), выделение проводили тем же образом, исключая стадию разрушения с помощью кремний-циркониевых бус на дезинтеграторе.

Выделение ДНК

ДНК из клеток *M. tuberculosis* выделяли методом фенол-хлороформной экстракции [147]. Клетки бактерий осаждали центрифугированием при 4°С и

4000g и удаляли супернатант. Клеточный осадок ресуспендировали в 1 мл буфера для разрушения (50 мМ Tris-Cl pH 8.0, 10 мМ ЭДТА, 100 мМ NaCl, РНКаза («Promega», США) в конечной концентрации 200 мкг/мл) и разрушали с помощью кремний-циркониевых бус на дезинтеграторе BeadBeater («BioSpec Products», США). К лизату клеток добавляли раствор натриевой соли додецилсульфата натрия (ДДС-Na) до конечной концентрации 1% и протеиназу-К до конечной концентрации 100 мкг/мл и инкубировали 1 ч при 55°С. Затем добавляли половинный объём фенола, интенсивно перемешивали и затем центрифугировали при 12000g 15 минут для разделения фаз. Водную фазу отделяли и смешивали с половинным объёмом фенола, затем добавляли такой же объём хлороформа и интенсивно перемешивали. Центрифугировали 12000g 5 минут, затем проводили повторную экстракцию хлороформом. Водную фазу отбирали и смешивали с равным объёмом изопропанола и 0.1 объёма 3 М ацетата натрия (рН 5.2) для осаждения ДНК. Инкубировали во льду 1 ч. Центрифугировали при 12000g 30 мин, удаляли изопропанол и промывали осадок холодным 70% этанолом. Подсушивали на воздухе, затем растворяли осаждённую ДНК в стерильной бидистиллированной воде mQ.

2.11. Количественная ПЦР с обратной транскрипцией

Оценку уровня экспрессии отдельных генов проводили методом количественной ПЦР с обратной транскрипцией [148]. Комплементарную ДНК (кДНК) синтезировали по матрице мРНК, используя для этого образцы тотальной РНК, выделенной из бактерий.

Для синтеза кДНК использовали 1 мкг тотальной РНК, гексануклеотидные праймеры Random(dN)6 и обратную транскриптазу SuperScript III («Life Technologies», США) в соответствии с протоколом изготовителя.

Количественную ПЦР проводили с использованием смеси реагентов qPCRmix-HS SYBR («Evrogen», Россия) и амплификатора LightCycler 480 («Roche», Швейцария). Условия амплификации: 10 сек. при 95°С, 10 сек. при 60°С, 10 сек. при 72°С, 40 циклов.

Данные ПЦР в реальном времени обсчитывали с помощью программ LightCycler480, LC480 Conversion, LinRegPCR и Microsoft Excel. Уровень экспрессии генов малых РНК нормировали по референсному гену 16S рРНК.

2.12. Транскриптомный анализ методом RNA-seq.

<u>Подготовка библиотек для NGS</u>

Поскольку тотальная РНК в полученных образцах содержит до 90% рибосомальной РНК, на первом этапе подготовки библиотек была проведена деплеция pPHK с помощью набора RiboMinusTM Transcriptome Isolation Kit, bacteria («Invitrogen», США). В ряде экспериментов деплецию рРНК проводили по адаптированной методике с помощью РНКазы Н [149]. Для этого на первом этапе методом ПЦР были синтезированы ДНК-ампликоны 16S и 23S рРНК гена микобактерий с использованием тотальной ДНК *M. tuberculosis* в качестве матрицы, а также 5'-фосфорилированных прямых праймеров. Затем ампликоны были очищены с помощью колонки и проинкубированы с λэкзонуклеазой, которая расщепляет только цепи ДНК, фосфорилированные на 5'-конце. Таким образом были получены одноцепочечные ампликоны ДНК, 16S и 23S рРНК. Образцы тотальной РНК были комплементарные проинкубированы с пробами ампликонов формирования для комплементарных ДНК-РНК дуплексов, после чего обработаны РНКазой Н («Thermo Scientific», США), которая расщепляет цепи РНК только в составе ДНК-РНК дуплексов, за счёт чего было достигнуто удаление рРНК из проб. Внесённые в пробы ДНК-ампликоны были удалены при помощи обработки ДНКазой I. РНК была очищена с помощью магнитных бус, затем использована для подготовки библиотек. Для деплеции эукариотической рРНК использовали коммерческий набор NEBNext rRNA Depletion Kit («New England BioLabs», США) в соответствии с рекоммендациями производителя.

Библиотеки для секвенирования бактериальной РНК были подготовлены с использованием набора pearentroв NEBNext Ultra II Directional RNA Library Prep Kit («NEB», США). Для эукариотической РНК использовали набор создания библиотек кДНК только для поли-А фракции РНК NEBNext Poly(A) mRNA Magnetic Isolation Module Directional RNA Library Prep Kit («NEB», США) в соответствии с протоколом производителя. Секвенирование было произведено на платформе Illumina NovaSeq в формате 100-нуклеотидных прочтений с сохранинием ориентации транскрипта.

<u>Анализ данных NGS</u>

После оценки контроля качества и удаления некачественных прочтений, библиотеки были картированы на геноме *M. tuberculosis* (AL123456.3, http://www.ncbi.nlm.nih.gov/) с помощью программы Bowtie2 [150]. В случае эукариотического транскриптома картирование проводили на геном Mus musculus (GRCm39, http://www.ncbi.nlm.nih.gov/). Выравнивание было выполнено с опцией «-local», которая позволяет оставить 5'- и 3'- концы прочтений не нанесенными на карту. Расчет отображенных прочтений для всех генов был выполнен с использованием программы featureCounts [151], встроенной в авторский скрипт. Визуализация профилей транскрипции была проведена с использованием геномного браузера Artemis [152]. Программа идентифицировала дифференциально экспрессируемые гены с помощью DESeq2 [153]. Гены считались дифференциально пакета программ экспрессированными, если значение р было меньше 0.05, величина ожидаемых ложных отклонений (FDR) была не выше чем 0.1, и модуль изменения экспрессии $(\log_2 FC)$ был более 1.5 для транскриптома *M. tuberculosis*, а для транскриптома мышиных МФ модуль изменения экспрессии (log₂FC) был более 1. Дальнейшее распределение генов по функциональным категориям выполнялось с помощью баз данных Mycobrowser (https://mycobrowser.epfl.ch/), STRING (https://string-db.org/) Ensembl И (https://www.ensembl.org/).

2.13. Инфицирование макрофагов

Заражение макрофагов клеточной линии ТНР-1

Для экспериментов по заражению МФ использовали культуру клеток моноцитов человека ТНР-1 (АТСС #ТІВ-202). Клеточная линия была предоставлена Копниным П.Б. (НИИ Канцерогенеза «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, лаборатория цитогенетики). Моноциты высевали в 24луночные планшеты («Costar», США) и дифференцировали в МФ в присутствии 100 нг/мл форбол-12-меристат-13-ацетата («Sigma-Aldrich», США) в течение 48 ч в среде RPMI-1640 («Gibco BRL», США), с 10% фетальной телячьей сыворотки («Gibco BRL», США) при 5%-ном CO₂, 37°С.

Штаммы *M. tuberculosis* для заражения МФ выращивали до ранней логарифмической фазы роста (ОП₆₀₀=0.5–1) в жидкой питательной среде Миддлбрука с добавлением 10% ростовой добавки АДК («HiMedia», Индия) и твином-80 (0.05%). Бактериальные клетки осаждали центрифугированием при 4000g и отмывали ФСБР, затем ресуспендировали в среде RPMI-1640 («ПанЭко», Россия) и добавляли к МФ, находящимся в лунках планшета, и инкубировали планшеты в течение 4 ч при 37°С. Кратность инфицирования (соотношение числа клеток микобактерий к числу клеток МФ, MOI) составляла 0.5 и 2, объем среды RPMI-1640 с 10% фетальной телячьей сыворотки в каждой лунке планшета составлял 500 мкл.

После фагоцитирования МФ отмывали от непоглощенных микобактерий ФСБР 3 раза, добавляли свежую среду RPMI-1640 с 10% фетальной телячьей сыворотки, далее через 4, 24, 48, и 72 ч от начала инфекции МФ отмывали от среды и проводили лизис 0.05%-ным раствором ДДС-Na в течение 30 мин при 37°С, после чего высевали лизат на плотную среду Миддлбрука с 10% АДК для оценки выживаемости микобактерий в серии 10-кратных разведений. Чашки инкубировали при 37°С в течение 20–22 сут и подсчитывали число КОЕ как среднее из 3 независимых высевов.

Заражение первичных костномозговых макрофагов мыши

Для экспериментов по заражению МФ *ex vivo* использовали нативные костномозговые МФ (КММФ), выделенные из мышей резистентной к ТБ линии C57BL/6, предоставленные Свирщевской Е. В. (ИБХ РАН). В ряде случаев за 24 ч до заражения проводили активацию КММФ гамма-интерфероном 100 U/ml, («Sigma», США).

Штаммы *M. tuberculosis* выращивали до ранней логарифмической фазы роста (ОП₆₀₀=0.5-1) в жидкой питательной среде Миддлбрука с 10% АДК («HiMedia», Индия) твином-80 (0.05%).Клетки И осаждали центрифугированием при 4000g и отмывали ФСБР, затем ресуспендировали в среде RPMI-1640 с 10% фетальной телячьей сыворотки. Заражение проводили в стерильных одноразовых флаконах (площадь поверхности 25 см²), используя кратность инфицирования МОІ 2 и 10 при 37°С в течение 4 ч. После фагоцитирования КММФ отмывали от непоглощенных микобактерий ФСБР 3 раза и добавляли свежую среду RPMI-1640 с 10% фетальной телячьей сыворотки. Заражённые КММФ инкубировали 24 ч при 37°С в СО₂-инкубаторе (содержание CO_2 в атмосфере 5%). Затем отмывали от среды и проводили лизис КММФ 0.05%-ным раствором ДДС-Na в течение 30 мин при 37°С и высевали лизат на плотную среду Миддлбрука с 10% АДК для оценки выживаемости микобактерий в серии 10-кратных разведений. Для анализа транскриптомного ответа КММФ на инфекцию *M. tuberculosis* их омывали от среды роста и ресуспендировали в 1 мл Тризола («Invitrogen», США) для последующего выделения РНК.

2.14. Восстановление вирулентности штаммов *M. tuberculosis*

Для восстановления вирулентности штаммов *M. tuberculosis* клетки выращивали в стандартных условиях культивирования на среде Сотона с добавлением 10% АДК («HiMedia», Индия) и 0.05% твина-80 до фазы среднего логарифмического роста (ОП₆₀₀=1), отмывали от среды и ресуспендировали в физиологическом растворе (0.9% NaCl). Полученную суспензию использовали

для заражения мышей линии C57BL/6, резистентных к ТБ, с целью восстановления вирулентных свойств бактерий *M. tuberculosis* (доза 10⁵ бактерий/мышь, внутривенный способ инфицирования).

Через 21 день после инфицирования мышей выводили из эксперимента, готовили гомогенаты селезенок и высевали их на плотные питательные среды Сотона и Миддлбрука в присутствии 10% ростовой добавки АДК («HiMedia», Индия). Полученные единичные колонии с восстановленной вирулентностью пересевали в жидкую питательную среду Сотона_R с добавлением 10% АДК («HiMedia», Индия) и 20% RPMI, и культивировали при 37°C и 200 об/мин. По достижении ОП₆₀₀=2–4 готовили аликвоты замороженных культур в 50% глицерине, которые хранили при -70° C.

2.15. Инфицирование мышей

Штаммы *M. tuberculosis* восстановленной вирулентностью выращивали в стандартных условиях культивирования на среде Миддлбрука с добавлением 10% АДК («HiMedia», Индия) и 0.05% твина-80 до фазы раннего логарифмического роста (ОП₆₀₀=0.7), отмывали от среды и ресуспендировали в физиологическом растворе (0.9% NaCl), и использовали полученную суспензию для заражения мышей (доза 10⁶ бактерий/мышь, внутривенный способ инфицирования). Заражение мышей чувствительных к ТБ линий C3H.JK и I/st и резистентной к ТБ линии C57BL/6 проводили в ЦНИИ Туберкулёза в строгом соответствии с этическими нормами обращения с животными, принятыми Европейской конвенцией по защите позвоночных животных, используемых для исследовательских и иных научных целей (European Treaty Series, № 123). Регистрировали продолжительность жизни мышей после инфицирования.

2.16. Анализ сдвига электрофоретической подвижности (EMSA)

Малая РНК DrrS и два фрагмента 5'-НТО мРНК гена Rv3679 (seed1 и seed2) для анализа были синтезированы при помощи транскрипции *in vitro* на матрице ДНК *M. tuberculosis* с помощью РНК-полимеразы T7 (RiboMAXTM). Для удаления матрицы ДНК реакционную смесь инкубировали с ДНКазой (1 ЕД на мкг матричной ДНК) при 37°C 15 мин. Затем проводили дефосфорилирование концов РНК с помощью фосфатазы Antarctic phosphatase ("NEB", США) (50 ЕД на мкг РНК) при 37°C в течение 30 мин, затем инактивировали фермент при 65°C в течение 5 мин.

Биотинилированный цитидиндифосфат и малую РНК DrrS лигировали при помощи Т4 РНК-лигазы по протоколу коммерческого набора Pierce RNA 3' END Biotinylation kit («Thermo Scientific», CIIIA). Анализ сдвига электрофоретической подвижности проводили с использованием набора PierceTM Magnetic RNA-Protein Pull-Down Kit («Thermo Scientific», США) по протоколу производителя. Биотинилированную РНК инкубировали 60 мин при +4°С с фрагментами seed1 и seed2 и проводили электрофорез в 6% полиакриламидном геле при +4°C. Затем осуществляли перенос продуктов из геля на нейлоновую мембрану по протоколу Bulletin 1714 («Bio-Rad», США). Перенос осуществляли полусухим методом в камере для вертикального электрофореза в трис-боратном буфере (45 мМ Трис, 45 мМ борной кислоты, 1 мМ ЭДТА, рН 8.3). Далее РНК была зафиксирована на мембране с помощью УФ-облучения в трансиллюминаторе при длине волны 312 нм, 10 мин. Проявку осуществляли набором Chemiluminescent Nucleic Acid Detection Module («Thermo Scientific», США) по протоколу производителя.

2.17. Статистика

Статистическую обработку данных проводили с помощью непарного tтеста Стьюдента. За статистически достоверные принимались значения с p < 0.05.

ГЛАВА З. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1. Изучение штаммов, гиперэкспрессирующих малые PHK Mcr11 и DrrS

Штаммы *M. tuberculosis* с гиперэкспрессией малых PHK Mcr11 (Mcr11over) и DrrS (DrrS-over) имеют задержку роста при культивировании *in vitro* на стандартной жидкой среде Сотона в сравнении с контрольным штаммом, трансформированным вектором pMV261, не содержащим вставки (wt_empty), которая выражается в удлинении лаг-периода, а также увеличении времени удвоения микобактерий. Этот фенотип был описан ранее в работах нашей лаборатории [11], а также подтверждён мной при работе с данными штаммами, которые были заново получены в ходе выполнения данной работы методом трансформации *M. tuberculosis* соответствующими конструкциями [11].

Рис 1. Кривые роста штаммов Mcr11-over, DrrS-over и wt_empty *M. tuberculosis* на среде Сотона.

3.1.1. Устойчивость штаммов, гиперэкспрессирующих малые РНК Mcr11 и DrrS, к стрессовым воздействиям *in vitro*

В цитоплазме макрофагов (М Φ) в организме хозяина микобактерии подвергаются целому ряду стрессовых воздействий: кислая среда, окислительный и нитрозативный стрессы, нехватка питательных веществ. Нами было изучено влияние данных стрессовых факторов на культуры *M. tuberculosis in vitro*.

Были смоделированы следующие стрессовые воздействия:

• кислая среда – pH среды снижен до 5.5;

• окислительный стресс – добавление в среду H₂O₂ до конечной концентрации 5 мМ;

нитрозативный стресс – добавление донора оксида азота
DETA-NO до конечной концентрации 500 мкМ;

нехватка питательных веществ – длительное инкубирование
бактерий в 10 мкМ фосфатно-солевом буфере (ФСБР).

Действие стрессовых агентов испытывали на штаммах Mcr11-over, DrrSover в логарифмической и в стационарной фазе роста *in vitro*. В качестве контроля использовался штамм wt_empty.

Стрессовое воздействие на клетки логарифмической фазы роста оценивали по двум параметрам: выживаемость клеток и их транскрипционная активность. У клеток стационарной фазы роста оценивали только изменение транскрипционной активности. Выживаемость оценивали путём высева на плотную питательную среду и подсчета КОЕ, и сравнения с величинами КОЕ контрольного образца клеток, не подвергавшегося стрессовому воздействию (рис. 2). Транскрипционную активность клеток оценивали по уровню включения радиоактивно меченного ³Н-урацила (рис. 3). Для штаммов, не подвергавшихся стрессовым воздействиям, уровень включения урацила был принят за 100%. Клетки подвергались стрессу в течение 48 часов, за исключением голодания – в этом случае время воздействия было 28 суток.

Рис. 2. Выживаемость клеток штаммов Mcr11-over, DrrS-over и wt_empty *M. tuberculosis*, взятых в логарифмической фазе роста при действии на них стрессовых факторов: кислой среды, перекиси водорода и голодания.

Сравнение величин КОЕ обнаружило, что низкие значения рН среды и длительное голодание в фосфатно-солевом буферном растворе негативно влияли на выживаемость бактерий логарифмической фазы роста. Оказалось, РНК Mcr11 что гиперэкспрессия малой положительно влияла на выживаемость бактерий при голодании - штамм Mcr11_over в несколько раз лучше переживал ограничение поступления питательных веществ по сравнению с DrrS_over и в сравнении с контрольным штаммом wt_empty. В кислой среде выживаемость всех штаммов снижалась примерно одинаково. Перекись водорода не оказывала существенного действия на выживаемость клеток контрольного штамма и штаммов с гиперэкспрессией Mcr11 и DrrS.

Рис. 3. Изменение транскрипционной активности штаммов Mcr11-over, DrrS-over и wt_empty *M. tuberculosis*, взятых в логарифмической (А) и стационарной (Б) фазе роста под действием стрессовых факторов.

В логарифмической фазе роста все три штамма демонстрировали снижение уровня включения 3 H-урацила в присутствии H₂O₂, однако штамм с гиперэкспрессией DrrS был наименее подвержен действию окислительного стресса – уровень включения ³Н-урацила был сравним с таковым в отсутствие стресса (рис. 3А). Наиболее выраженное воздействие на все исследуемые штаммы M. tuberculosis оказывал оксид азота (II), однако штамм DrrS-over был более устойчив к действию NO, чем контрольный штамм, при этом статистически достоверных различий между штаммом, гиперэкспрессирующим Mcr11, под действием NO и контрольным штаммом выявлено. При инкубировании бактерий в кислой среде не было транскрипционная активность всех трех штаммов M. tuberculosis падала, что подтверждается снижением уровня включения урацила, однако DrrS-over был более устойчив к закислению среды. В условиях длительного голодания штамм с гиперэкспрессией малой РНК DrrS также демонстрировал значительную устойчивость по сравнению с контрольным штаммом.

При оценке изменения транскрипционной активности клеток стационарной фазы роста, как и ожидалось, обнаружили, что все исследуемые штаммы M. tuberculosis были более устойчивы к воздействию стрессовых факторов по сравнению с клетками логарифмической фазы роста (рис. 3Б). Интересно, что культивирование в среде с низким значением рН приводило к активации роста клеток и их делению, в результате транскрипционная активность штаммов с гиперэкспрессией малых РНК, взятых в стационарной фазе роста, спустя 48 ч пребывания в стрессовых условиях была значительно выше исходных значений (до воздействия стресса), что более выражено для штамма DrrS-over. Вероятно, активация деления и роста при закислении pH среды связана с нейтрализацией щелочной реакции среды роста, которая наблюдается из-за продукции микобактериями ионов аммония в стационарной фазе роста в результате работы таких ферментов, как аспарагиназа (Rv1538c), моноаминоксидаза (Rv3170) или деаминаза (Rv0828c) [154], и, в итоге, формированием благоприятных для роста условий.

69

Таким образом, гиперэкспрессия малой РНК DrrS приводила к повышенной устойчивости клеток *M. tuberculosis* при различных стрессовых воздействиях *in vitro*, моделирующих условия пребывания бактерий в МФ после фагоцитирования, особенно ярко это проявляется для клеток логарифмической фазы роста.

3.1.2. Выживаемость бактерий при инфекции клеток линии ТНР-1

Чтобы оценить вклад малых РНК в способность микобактерий приспосабливаться к внутриклеточному существованию, проводили инфекцию MΦ *M. tuberculosis* H37Rv. человека штаммами гиперэкспрессирующими малые PHK DrrS и Mcr11. Культуру клеток THP-1, дифференцированную в МФ, инфицировали бактериями с MOI 2 и 0,5, и определяли выживаемость бактерий в разных временных точках, высевая их на плотную питательную среду и подсчитывая число КОЕ в динамике (рис. 4).

Для штамма Mcr11-over не было выявлено достоверной разницы выживаемости бактерий при инфекции эукариотических клеток по сравнению контрольным штаммом wt_empty, при этом гиперэкспрессия DrrS С положительно влияла на выживаемость поглощенных микобактерий во всех временных точках, наиболее ярко этот эффект проявился при MOI 2. Ранее было обнаружено, что клетки непатогенной бактерии *M. smegmatis* с гетерологической экспрессией DrrS также характеризовались большей устойчивостью при внутриклеточном выживании при инфекции ими МФ линии RAW 264.7, кроме того, бактерии штамма DrrS-over M. smegmatis вызывали снижение уровня экспрессии провоспалительных цитокинов у МФ по сравнению с контрольным штаммом *M. smegmatis* без гиперэкспрессии [155]. Снижение уровня экспрессии провоспалительных цитокинов является *M. tuberculosis* для патогенной бактерии И, наоборот, характерным нехарактерно для непатогенных бактерий. Суммируя, можно сделать вывод, что малая PHK DrrS повышает устойчивость *M. tuberculosis* при инфекции макроорганизма, обеспечивает его лучшую выживаемость, и выполняет роль фактора вирулентности.

70

Б

А

Рис. 4. Выживаемость *M. tuberculosis* штаммов DrrS_over, Mcr11_over и контрольного штамма (wt_empty) при инфекции клеток линии THP-1, дифференцированных в M Φ , при MOI=0.5 (A) и MOI=2 (Б); *p<0.05, **p<0.01, ***p<0.001.

3.1.3. Транскриптомный анализ штаммов, гиперэкспрессирующих малые PHK Mcr11 и DrrS

В главе 1 подробно говорилось о том, что механизм действия малых РНК основан на пост-транскрипционной регуляции. Как правило, это выражается в изменении концентрации целевых транскриптов в клетке, что можно оценить с использованием транскриптомного анализа.

Мы провели полный транскриптомный анализ методом RNA-seq штаммов с гиперэкспрессией малых PHK Drrs (DrrS-over) и Mcr (Mcr11-over) в логарифмической и в стационарной фазе роста. Были определены дифференциально экспрессированные гены (ДЭГ) в штаммах с гиперэкспрессией по отношению к контрольному штамму, содержещему плазмиду без вставки (wt_empty). Дифференциально экспрессированными считались гены, экспрессия которых изменялась по модулю больше, чем в 3 раза, $|\log_2FC| > 1.5$. Число ДЭГ в транскриптоме клеток обоих штаммах, взятых в логарифмической и стационарной фазе роста, приведено в табл. 1.

Таблица 1. Число ДЭГ в штаммах с гиперэкспрессией малых РНК по сравнению с wt_empty, |log₂FC|>1.5.

	DrrS-over		Mcr11-over	
	логарифмичес	стационарная	логарифмичес	стационарная
	кая фаза	фаза	кая фаза	фаза
повышение	55	13	16	24
экспрессии				
понижение	5	14	1	-
экспрессии				
всего ДЭГ	60	27	17	24
Транскриптомный анализ штамма DrrS-over

В транскриптоме клеток штамма DrrS-over, взятых из логарифмической фазы роста, было обнаружено 60 ДЭГ (прил. 1) по сравнению с клетками логарифмической фазы роста контрольного штамма wt_empty, подавляющее число из них были индуцированы (55 генов), и только у 5 генов экспрессия была снижена.

Повышался уровень экспрессии генов различных транскрипционных регуляторов, входящих в семейство ArsR: Rv2034, Rv2642 и репрессора CmtR. Ген Rv2034 кодирует ArsR-репрессор, чувствительный к тяжёлым металлам и вызывает активацию стресс-индуцированных оперонов, репрессированных в нормальных условиях [156,157], кроме того, Rv2034 также активирует гены phoP и dosR [157]. PhoP, в свою очередь, является одним из ключевых регуляторов экспрессии факторов вирулентности M. tuberculosis [125,158], а DosR регулирует адаптацию микобактерий к условиям гипоксии и «запускает» программу перехода в состояние персистенции [159,160]. Ген Rv2035, экспрессия которого также повышена, формирует токсин-антитоксиновую пару вместе с геном Rv2034 [161]. Ген Rv2641 (cadl) входит в один оперон с геном Rv2642 и кодирует кадмий-индуцируемый белок CadI, также чувствительный к другим катионам двухвалентных металлов: цинку и меди [162–164], при этом Rv2642 контролирует экспрессию гена *cadl* [165]. Также показана роль гена Rv2642 и Rv2643 в индукции гамма-интерферонового пациентов с латентным туберкулёзом (TE) [166]. CmtR ответа у функционирует как редокс-сенсор и значительно активируется при окислительном стрессе [167]. Считается, что этот белок защищает бактерии от стресса, передавая сигнал другим регуляторам (например, Zur), и показана его роль для выживания бактерий в МФ и лёгких заражённых мышей [167]. Также повышена экспрессия транскрипционного фактора *furA*, который регулирует импорт железа и других катионов. Индукция *furA*, как правило, указывает на наличие окислительного стресса [168]. В транскриптоме DrrS-over также представлены другие гены гомеостаза металлов, такие как ген arsC,

кодирующий интегральный мембранный белок из семейства Ars, транспортирующий катионы металлов (экспорт) [169].

Повышенной оказалась экспрессия гена транскрипционного регулятора whiB6 и генов, кодирующих белки теплового шока clpB и Hsp, часто активирующихся при стрессовых воздействиях [170]. Кроме ЭТОГО повышается экспрессия mpt70 гена основного секретируемого иммуногенного белка *M. tuberculosis*. Продукция Mpt70 индуцируется в микобактериях в ответ на действие гамма-интерферона (у-ИФН), гипоксию и голодание [171–173]. Кроме того, была показана функциональная связь Mpt70 и DosR регулоном, находящимся под контролем регулятора DosR (dormancy survival regulator). Интересно, что, как было показано ранее нашими экспрессия РНК британскими коллегами, малой DrrS тоже может регулироваться DosR [60]. Также повышена экспрессия генов PE20 РРЕ27,29,37,39, которые кодируют белки семейства РЕ-РРЕ, важные для патогенности микобактерий [174].

Снижена экспрессия гена *acpA*, который кодирует ацилтранспортирующий белок AcpA. Этот белок играет ключевую роль в синтезе миколовых кислот, основного компонента клеточной стенки микобактерий [175]. Снижена экспрессия генов *yrbE1B* и *mce1A*, входящих липидотранспортирующий комплекс микобактерий, играющий важную роль в вирулентности *M. tuberculosis* [176].

Таким образом, в штамме DrrS-over в логарифмической фазе роста повышена экспрессия генов, кодирующих транскрипционные регуляторыметаллосенсоры и другие белки, связанные с регуляцией гомеостаза двухвалентных металлов. Как известно, гомеостаз металлов играет важнейшую роль в обеспечении вирулентности штамма *M. tuberculosis* и поддержании жизнеспособности бактерий при инфекции [33,177]. Кроме того, в транскриптоме штамма DrrS-over в логарифмической фазе активируются гены, кодирующие белки стрессового ответа и факторы патогенности *M. tuberculosis*.

В транскриптоме штамма DrrS-over в стационарной фазе роста обнаружена дифференциальная экспрессия 27 генов по сравнению с транскриптомом контрольного штамма роста wt_empty в стационарной фазе, из них экспрессия 13 генов повышалась, а 14 – понижалась (прил. 2). Среди генов с повышенной экспрессией можно выделить 3 оперона: Rv0079-Rv0081, Rv0082-Rv0087, и Rv1620c-Rv1622c. Гены Rv0079-0081 относится к регулону DosR, который активируется при персистировании *M. tuberculosis* [159]. Известно, что гомолог белка Rv0081 в *E. coli* значительно ингибирует рост бактерий за счёт ингибирования процесса трансляции [178]. Оперон Rv0082-Rv0087 регулируется белком Rv0081, но не входит в DosR-регулон. Этот локус кодирует пируват-[NiFe]-гидрогеназу, которая активируется в анаэробных условиях [179]. Оперон Rv1620c-Rv1622c (*cydCDB*) вовлечён в биогенез цитохром-bd-оксидазы и входит в состав аэробной дыхательной цепи. Считается, что он необходим для приспособления бактерий к росту в условиях гипоксии [55].

Гены со сниженным уровнем экспрессии принадлежат к различным функциональным категориям. Три из них кодируют белки-шапероны (GroEL2, HupB, WhiB2), снижена экспрессия гена *leuD*, кодирующего фермент 2-й стадии синтеза лейцина. Почти в 7 раз снижена экспрессия гена порина PPE51. При анализе с помощью баз данных, оказалось, что эти гены коэкспрессируются с генами, участвующими в процессе трансляции и биогенезе рибосом [180].

Исходя из результатов транскриптомного анализа клеток с гиперэкспрессией DrrS, взятых в стационарной фазе роста, можно сделать вывод об угнетении в них процессов трансляции, что может быть причиной значительного замедления скорости роста DrrS-over при росте на стандартных лабораторных средах [11]. Также наблюдалась активация генов, необходимых для приспособления к переживанию условий гипоксии и персистированию клеток, в первую очередь, генов регулона DosR.

Транскриптомный анализ Mcr11-over

Транскриптом штамма Mcr11-over в логарифмической фазе роста культуры представлен 17 ДЭГ, 16 из которых индуцированы и 1 репрессирован (прил. 3). Большая часть ДЭГ относится к генам, кодирующим фаговые белки и мобильные генетические элементы, а также гипотетические белки с неизвестной функцией. Кроме того, обнаруживается повышение экспрессии гена *prpD*, кодирующего метилцитратдегидрогеназу – фермент метилцитратного цикла, который осуществляет ассимиляцию и детоксикацию пропионил-КоА [181]; генов Rv3201c-Rv3202c, кодирующих хеликазу, участвующую в репарации ДНК [182]; и гена *esxQ*, который кодирует белок семейства ESAT-6, определяющий вирулентность микобактерий туберкулеза [183].

В стационарной фазе роста штамма Mcr11-over дифференциально экспрессированы 24 гена и все из них индуцированы (прил. 4). Наибольшее повышение экспрессии отмечено для генов, которые относятся к категории инсерционных и фаговых последовательностей: Rv3637, Rv1588c, Rv1583c, Rv0094c, Rv3467, Rv3640c, Rv2886c. Также, как в логарифмической фазе роста, повышена экспрессия генов, кодирующих АТФ-зависимой ДНКхеликазу (Rv3202c), секретируемый белкок EsxQ и метилцитратдегидрогеназу PrpD. Также повышение экспрессии отмечено для *lexA*, кодирующего регулятор «SOS-ответа» на повреждение ДНК [184]. Многие дифференциально экспрессированные гены, обнаруженные в транскриптоме клеток стационарной фазы роста Mcr11-over, кодируют белки с неизвестной функцией, некоторые из которых идентифицированы в мембранной фракции микобактерий. Стоит отметить, что для некоторых генов, обнаруженных в транскриптоме Mcr11-over показана их связь с вирулентностью бактерии. Так, известно, что гены prpD (Rv1130), Rv3074 и Rv3395c экспрессируются в *M. tuberculosis* только при инфекции [185].

В целом, транскриптом клеток штамма Mcr11-over характеризуется стабильностью, слабо зависящей от фазы роста. Небольшое число ДЭГ

представлено генами, кодирующими фаговые белки и мобильные генетические элементы, а также некоторые белки из системы репарации ДНК и относящиеся к вирулентности микобактерий.

Для дальнейшего изучения регуляторной роли малых PHK Mcr11 и DrrS мы поставили задачу получения штаммов *M. tuberculosis* с делецией генов малых PHK Δ Mcr11 и Δ DrrS.

3.2. Создание штаммов *M. tuberculosis* с делецией генов малых PHK DrrS и Mcr11

Одним из приёмов изучения функции гена у бактерий является его «нокаутирование», knock-out) делеция (или ОТ англ. В геноме. Предпочтительным методом делеции гена в *M. tuberculosis* является метод гомологичной рекомбинации, с помощью которого в хромосому бактерии вносится мутация с полной или частичной делецией гена. Делеции белоккодирующих генов у *M. tuberculosis* давно являются рутинной процедурой, при этом делеции генов малых РНК к моменту начала данной работы еще никем не были получены, хотя уже существовал положительный опыт получения штаммов Escherichia coli и Salmonella enterica с делециями малых РНК.

Нами был выбран метод гомологичной рекомбинации, в результате которого получается мутантный штамм с делецией изучаемого гена, не содержащий чужеродных генов-маркеров, таких как гены резистентности к антибиотикам [186]. Преимущество метода получения немаркированной делеции заключается в создании штамма, растущего в тех же условиях, что и исходный (родительский) штамм, что делает возможным проведение более сравнения их фенотипических характеристик, корректного a также возможность проведения длительных экспериментов на модельных животных, поскольку отсутствуют опасения потери плазмиды при репликации бактерий *in vivo*.

3.2.1. Получение конструкций для делеции генов малых РНК

Основой для создания конструкции для гомологичной рекомбинации был выбран вектор p2NIL [186], который не способен реплицироваться в клетках *M. tuberculosis* («суицидная плазмида»). В клетке бактерий между участком хромосомной ДНК и комплементарным ему участком плазмиды может происходить гомологичная рекомбинация, но вероятность такого события крайне мала. Для увеличения вероятности прохождения

рекомбинации комплементарные участки ДНК в плазмиде должны быть достаточно протяженными — не менее 1000 п.н. Поэтому в вектор p2NIL были клонированы участки генома *M. tuberculosis*, фланкирующие последовательность, выбранную для делеции, названные нами фрагмент 1 и фрагмент 2 (далее FR1 и FR2). Участок делеции представляет собой последовательность «зрелой» малой PHK (рис. 5), для малой PHK DrrS это 117 п.н., для Mcr11 – 131 п.н.

Для создания конструкции p2NIL__ΔDrrS (для делеции DrrS) FR1 представляет собой последовательность нуклеотидов слева от гена DrrS протяженностью 3076 п.н. с введенными сайтами рестирикции ScaI и BamHI. FR2 – последовательность нуклеотидов справа от гена DrrS протяженностью 1112 п.о. с введенными сайтами рестрикции BamHI и NotI. Полученные фрагменты были последовательно клонирование в вектор p2NIL по соответствующим сайтам рестрикции (рис. 6).

Аналогично, для делеции Mcr11 были синтезированы FR1 и FR2 протяженностью 1298 и 2736 п.о., с введенными сайтами рестрикции BamH1 и XbaI, и XbaI и NotI, соответственно. Далее производилось лигирование FR1 и FR2 между собой по сайту XbaI. Затем суммарный фрагмент протяженностью 3034 п.н. был клонирован в вектор p2NIL по сайтам рестрикции BamH1 и NotI (рис. 7).

A.

Рис. 5. Фрагмент генома *M. tuberculosis*, содержащий гены DrrS (A) и Mcr11 (Б). Показаны участки делеции и фланкирующие последовательности FR1 и FR2, клонированные в вектор p2NIL.

Рис. 6. Получение конструкции $p2NIL_FR1_FR2_DrrS$ для гомологичной рекомбинации. 1) Фрагменты FR1 и FR2 были клонированы из генома *M. tuberculosis* с использованием праймеров, достраивающих сайты рестрикции. 2) Вектор p2NIL разрезан по сайтам ScaI и BamHI и лигирован с FR1. 3) Полученный вектор p2NIL_FR1 разрезан по сайтам BamHI и NotI и лигирован с FR2, и получен вектор p2NIL_FR1_FR2_DrrS.

Рис. 7. Получение конструкции p2NIL_FR1_FR2_Mcr11 для гомологичной рекомбинации. 1) Фрагменты FR1 и FR2 были клонированы из генома *M. tuberculosis* с использованием праймеров, достраивающих сайты рестрикции. 2) Фрагменты FR1 и FR2 лигированы между собой. 3) Вектор p2NIL разрезан по сайтам BamHI и NotI и лигирован с общий фрагментом FR1+FR2, в результате получен вектор p2NIL_FR1_FR2_Mcr11.

На финальном этапе сборки конструкции в каждый вектор была клонирована кассета из вектора pGOAL19, содержащая гены устойчивости к антибиотику гигромицину HygR, а также ген токсичности сахарозы *sucB* и ген β -галактозидазы *lacZ*, необходимые для последующего отбора целевых вариантов рекомбинации. Плазмида pGOAL19 содержит 2 сайта рестрикции *PacI*, окружающие кассету с маркерными генами. Кассета была выделена и лигирована с полученным ранее вектором p2NIL_FR1_FR2 по сайту *PacI*. Таким образом были получены конструкции для делеции гена DrrS – «p2NIL_ Δ DrrS» и гена Mcr11 – «p2NIL_ Δ Mcr11» (Puc. 8).

3.2.2. Получение штаммов **ΔDrrS** и **ΔMcr11 с** делециями генов малых РНК

Штамм дикого типа *M. tuberculosis* H37Rv (wt) был выращен на стандартной среде Сотона с ростовой добавкой ADC, в присутствии твин-80 (0,05%) до фазы среднего логарифма и трансформирован методом электоропорации вектором для делеции p2NIL_ $\Delta DrrS$ либо p2NIL $\Delta Mcr11$.

После трансформации *M. tuberculosis* у части бактерий, получивших плазмиду, происходит встраивание этой плазмиды в геном в результате гомологичной рекомбинации с одним из участков, фланкирующих ген DrrS/Mcr11 и гомологичным участком в плазмиде (FR1 или FR2) (Puc. 9A). Вставка содержит мутантный аллель гена и маркерные гены, необходимые для селекции. Такие клетки получили способность расти в присутствии антибиотика и утилизировать X-gal с образованием окрашенного продукта голубого цвета.

Бактерии были посеяны на плотную питательную среду, содержащую хромогенный субстрат X-gal и гигромицин в бактерицидной концентрации (40 мкг/мл) для селекции. Клоны, в которых произошла рекомбинация (1-й кроссовер), формируют на чашках колонии голубого цвета.

Рис. 8. Получение конструкции p2NIL_ Δ DrrS (и аналогично p2NIL_ Δ Mcr11) для гомологичной рекомбинации. Модифицированно из [186]. 1) Рестрикция плазмиды pGOAL19 по сайту *PacI*, выделение кассеты с маркерными генами. 2) Рестрикция вектора p2NIL_FR1_FR2 по сайту *PacI*. 3) Лигирование кассеты и вектора с получением вектора p2NIL_ Δ DrrS (либо p2NIL_ Δ Mcr11 соответственно).

Рис. 9. Схема получения немаркированного штамма с делецией гена малой PHK DrrS (или Mcr11) *M. tuberculosis*. FR1 и FR2 – участки генома, фланкирующие ген DrrS (или Mcr11). Реализация первого кроссовера: последовательность плазмиды встраивается в геном в результате гомологичной рекомбинации с FR1 (равновероятна рекомбинация по FR2). Второй кроссовер: потеря участка, содержащего плазмиду с маркёрами (выделен пунктирной линией). В результате гомологичной рекомбинации по FR2 формируется мутантный генотип (вариант A), а при рекомбинации по FR1 возвращается начальный генотип (вариант Б).

Полученные колонии были протестированы с помощью ПЦР с праймерами, ограничивающими участок гена малой РНК в геноме бактерии *M. tuberculosis*. Положительные клоны, полученные в результате 1-го кроссовера, имеют в геноме оба варианта последовательности: исходный ген малой РНК и встроенные фланкирующие последовательности без гена, поэтому результатом ПЦР целевых клонов являются 2 продукта на электрофореграмме (Рис. 10).

Рис. 10. ПЦР-скрининг клонов, полученных в результате первичного кросс-овера. Положительные клоны характеризуются двумя продуктами на электрофореграмме: «геномным» (большего размера) и «плазмидным» (меньшего размера) – показаны стрелочками.

Полученные в результате рекомбинации клоны первого кроссовера *M. tuberculosis* культивировали до фазы среднего логарифма в стандартной среде Сотона с ростовой добавкой ADC в присутствии твин-80 (0,05%), не содержащей антибиотик. Микобактерии способны к спонтанной потере встроенного участка плазмиды: в отсутствие антибиотика в среде не происходит селекции клеток с устойчивостью, и популяция становится гетерогенной: часть бактерий содержат плазмидную вставку, а у части клеток происходит потеря плазмиды. В результате в геноме остаются или фланкирующие последовательности без гена между ними (конструкция,

которая была исходно реализована в плазмиде) – таким образом, происходит делеция гена DrrS и образуется штамм ΔDrrS, либо происходит возврат к генотипу wt с сохранным геном DrrS (Рис. 9Б).

Для дифференциации клонов с потерей вставки производится второй бело-голубого чашечного теста. Культуру раунд клеток рассевали параллельно на плотную питательную среду Миддлбрука с АДС и с добавлением X-gal и 2% сахарозы и параллельно на среду Миддлбрука с ADC с канамицином. Целевые клоны образуют в присутствии X-gal белые колонии, растущие в присутствии сахарозы на среде без антибиотиков, и не могут расти на среде с 50 мкг/мл канамицина, а бактерии, сохранившие гены-маркёры, не могут расти в присутствии сахарозы, из-за присутствия гена sucB, но сохраняют способность расти в присутствии 50 мкг/мл канамицина, а также образуют голубые колонии в присутствии X-gal (Рис. 11).

Рис. 11. Схема поиска клонов с делецией после второго кроссовера. Целевые клоны растут без антибиотика, формируют белые колонии и не чувствительны к сахарозе.

Рис. 12. ПЦР-скрининг полученных целевых клонов ΔDrrS и ΔMcr11. В случае делеции гена видно меньший размер продукта ПЦР на электрофореграмме по сравнению со штаммами, которые вернулись к генотипу wt и сохранили ген малой РНК.

Следует отметить, что часть бактериальной популяции, которая вернулась к изначальному генотипу – с сохранением гена, то есть без делеции, фенотипически не отличается от популяции с делецией. Поэтому далее для поиска штаммов с делецией гена малой PHK DrrS и Mcr11 был проведён ПЦРскрининг отобранных колоний (Рис. 12). Праймеры, использованные для скрининга (последовательности приведены в методах), давали продукт разной длины в случае генотипа wt (307 п.н. для гена DrrS и 335 п.н. для гена Mcr11) и в случае генотипа с делецией (215 п.н. для делеции гена DrrS и 222 п.н. для делеции гена Mcr11).

Таким образом были получены штаммы *M. tuberculosis* с немаркированной делецией генов малых PHK Mcr11 и DrrS.

3.2.3. Получение штамма *M. tuberculosis* △△DrrS_Mcr11 с двойной делецией генов малых PHK DrrS и Mcr11

Создание штамма с двойной делецией проводили по той же схеме, что и создание штаммов ΔDrrS и ΔMcr11, но в качестве исходного штамма был взят штамм ΔMcr11 (с делецией гена малой PHK Mcr11), и в нём произвели делецию гена DrrS.

Штамм *M. tuberculosis* Δ Mcr11 был выращен на стандартной среде Сотона с ростовой добавкой ADC, в присутствии твин-80 (0,05%) до фазы среднего логарифма и трансформирован методом электоропорации плазмидой p2NIL_ Δ DrrS.

Наличие вставки было проверено в первом раунде бело-голубого чашечного теста и подтверждено ПЦР-анализом (Рис. 13).

Рис. 13. ПЦР-скрининг клонов, полученных в результате первичного кросс-овера. Положительные клоны характеризуются двумя продуктами на электрофореграмме: «геномным» (большего размера) и «плазмидным» (меньшего размера).

Вторичный кроссовер был получен при культивировании бактерий в среде без антибиотика, а затем отобран при проведении второго раунда белоголубого чашечного теста (Рис. 14).

2 27 28.01.19 28.01

Рис. 14. Параллельный рассев бактерий для поиска клонов второго кроссовера. Слева среда содержит канамицин, и целевые клоны не образуют на ней колонии. Справа среда содержит сахарозу и X-gal, и целевые клоны образуют на ней белые колонии.

Дифференциация клонов с делецией гена от клонов, вернувшихся к исходному фенотипу была проведена методом ПЦР (Рис. 15). Также была проведена ПЦР-проверка эти клонов на сохранность начальной делеции – в гене Mcr11 (Рис. 16).

Таким образом был получен новый штамм ∆∆DrrS_Mcr11, содержащий делеции генов DrrS и Mcr11.

Рис. 15. ПЦР-скрининг полученных целевых клонов ΔΔDrrS_Mcr11 на делецию гена DrrS. Меньший размер продукта ПЦР соответствует генотипу делеции, а больший – сохранению гена DrrS.

Рис. 16. Подтверждение сохранности делеции гена Mcr11 в клонах с ΔΔDrrS_Mcr11. Все полученные штаммы с делециями генов малых РНК были проверены с помощью полногеномного секвенирования, геномы мутантных штаммов депонированы в базе данных NCBI SRA и могут быть найдены по номеру: ID PRJNA701202.

В результате проведенной работы впервые были получены штаммы *M. tuberculosis* с делециями генов малых РНК. Эти штаммы Δ DrrS, Δ Mcr11 и $\Delta\Delta$ DrrS_Mcr11 не имеют чужеродных геномных вставок и не требуют внесения селектирующих факторов в среды культивирования, то есть могут использоваться в тех же условиях, что и wt *M. tuberculosis*, в том числе для моделирования хронической инфекции у животных.

3.3. Характеристика мутантных штаммов △DrrS, △Mcr11 и △△DrrS_Mcr11

3.3.1. Рост на стандартных средах культивирования

Была проанализирована динамика роста полученных мутантных штаммов в стандартных жидких средах для культивирования микобактерий: среде Сотона и среде Миддлбрука. Регистрировали изменение оптической плотности культуры каждые 24 ч с момента засева стартового инокулята с ОП=0,001.

Было обнаружено, что кривые роста штаммов Δ Mcr11, Δ DrrS и $\Delta\Delta$ Mcr11_DrrS были аналогичны кривой роста штамма дикого типа *M. tuberculosis* H37Rv (wt), взятого в качестве контроля (рис. 17). Таким образом, при росте на стандартных средах заметных различий в динамике роста как штаммов с однократной делецией малых PHK Δ Mcr11 и Δ DrrS, так и штамма с двойной делецией $\Delta\Delta$ Mcr11_DrrS по сравнению со штаммом wt *M. tuberculosis* выявлено не было.

Из литературных данных известно, что при культивировании *M. tuberculosis in vitro* нативная экспрессия малых PHK Mcr11 и DrrS в логарифмической фазе роста низкая [9], их накопление происходит в стационарной фазе. Этим может объясняться отсутствие влияния делеции малых PHK Mcr11 и DrrS на характер роста *M. tuberculosis*, а также замедление роста *M. tuberculosis*, наблюдаемое нами ранее при гиперэкспрессии.

Рис. 17. Динамика роста штаммов wt, ΔDrrS, ΔMcr11 и ΔΔMcr11_DrrS *M. tuberculosis* на средах Сотона (А) и Миддлбрука (Б) с добавлением ростовой добавки ADC и твин-80.

3.3.2. Способность переходить в покоящееся состояние in vitro

Штаммы Δ Mcr11 и Δ DrrS были проанализированы в модели покоящегося состояния при инкубации *M. tuberculosis* в среде с дефицитом калия [144]. Δ Mcr11, Δ DrrS и контрольный штамм H37Rv выращивали в жидкой среде Сотона до средней логарифмической фазы роста (OП₆₀₀=1), затем инокулировали в среду Сотона без калия (гидрофосфат калия в составе среды заменён на гидрофосфат натрия), с добавлением ростовой добавки ADC и твина-80. На 17 день инкубации в среду культивирования был добавлен рифампицин в концентрации 5 мкг/мл для подавления делящейся субпопуляции клеток.

На протяжении всего эксперимента каждые 3-4 дня из культур делались высевы на плотную питательную среду Сотона. Было зарегистрировано снижение культивируемости клеток Δ Mcr11, Δ DrrS и wt приблизительно на 6 порядков (Рис. 18). Для определения возможности реактивации клеток, начиная с 26 дня культивирования бактерии помещали в среду для реактивации Сотон-R в 48-луночных планшетах с приготовлением серии 10кратных разведений. Спустя 28 дней подсчитывали количество лунок, в которых начался рост бактерий, и определяли число жизнеспособных клеток с помощью статистического метода наиболее вероятных чисел (НВЧ). В результате наблюдалась картина реактивации клеток в жидкой среде культивирования, что свидетельствует о переходе микобактерий из состояния сниженной культивируемости (покоя) в состояние активного деления и роста. В результате проведенного эксперимента нами не было зафиксировано достоверных различий между исследуемыми штаммами, а значит делеция генов малых PHK Mcr11 и DrrS не влияла на способность M. tuberculosis переходить в покоящееся состояние в условиях дефицита калия, а также выходу из него в состояние активного деления и роста.

Рис. 18. Снижение числа КОЕ при выращивании штаммов *M. tuberculosis* wt, ΔMcr11 и ΔDrrS в среде с дефицитом калия.

3.3.3. Выживаемость штаммов при инфекции макрофагов

Так же, как и для штаммов с гиперекспрессией малых PHK Mcr11 и DrrS, было проведено заражение клеточной линии THP-1, дифференцированных в МФ, мутантными штаммами ΔMcr11 и ΔDrrS, в качестве контроля использовали штамм wt (рис. 19). Не было выявлено достоверных различий в выживаемости штаммов с делецией малых PHK Mcr11 и DrrS между собой и по сравнению с wt в различных дозах (MOI=0,5 и MOI=2), и временных точках: через 4 ч, 24 ч, 48 ч и через 72 ч после инфекции.

Таким образом, при росте мутантных штаммов с делециями Δ Mcr11 и Δ DrrS *in vitro* в стандартных условиях, действии антибиотиков, условиях перехода в покоящееся состояние и при инфекции МФ не было обнаружено достоверной разницы со штаммом wt.

Рис. 19. Выживаемость *M. tuberculosis* штаммов Δ Mcr11, Δ DrrS и контрольного штамма внутри МФ при MOI = 0,5 (A) и MOI = 2 (Б)

3.3.4. Транскриптомный анализ штаммов **ΔDrrS** и **ΔMcr11**

Был проведен полный транскриптомный анализ методом RNA-seq штаммов *M. tuberculosis* с делециями малых PHK ΔMcr11, ΔDrrS и wt в качестве контроля в логарифмической и стационарной фазе роста. Общее число ДЭГ, обнаруженных в ходе транскриптомного анализа, приведено в таблице 2.

Табл. 2. Число ДЭГ в штаммах с делециями малых РНК по сравнению со штаммом wt, $|\log_2 FC| > 1.5$.

	ΔDrrS		ΔMcr11	
	логарифмичес	стационарная	логарифмичес	стационарная
	кая фаза	фаза	кая фаза	фаза
повышение	19	112	6	53
экспрессии				
понижение	27	150	9	94
экспрессии				
всего ДЭГ	46	262	15	147

<u>Транскриптомный анализ штамма ΔDrrS</u>

В штамме с делецией гена малой РНК DrrS в логарифмической фазе роста было выявлено 46 ДЭГ по сравнению со штаммом wt. 19 генов имели повышенный уровень экспрессии, а 27 генов – пониженный (прил. 5). Выявленные гены с дифференциальной экспрессией можно разбить на несколько функциональных категорий: преимущественно это гены, связанные с патогенностью бактерии и гены, кодирующие белки, участвующие в формировании клеточной стенки.

Так, сниженной оказалась экспрессия 8 генов из семейства PE-PGRS. Семейство белков PE-PGRS является характерным для *M. tuberculosis*, в ее геноме присутствует около 70 соответствующих генов. Эти белки, как правило, обнаруживаются в мембранной фракции микобактерий и ассоциированы с их вирулентностью [187]. В клетках штамма ΔDrrS в

логарифмической фазе роста также наблюдалось снижение уровня экспрессии генов уникальных для патогенных микобактерий секретируемых белков EspA, EspD и Rv3613c – компонентов системы секреции VII типа ESX-1, которые объединены в оперон *espACD-Rv3613c-Rv3612c*. Транскрипция этого оперона регулируется сразу несколькими транскрипционными регуляторами, среди которых наиболее важным является PhoP [188,189]. Ген *lipQ*, кодирующий карбоксилэстеразу, имеет максимальный уровень снижения экспрессии по отношению к клеткам контрольного штамма wt (в 5,23 раза). Известно, что карбоксилэстераза LipQ является высокоиммуногенным белком, который вызывает значительное снижение продукции провоспалительных цитокинов, таких, как фактор некроза опухоли-α (ΦΗΟ-α) и γ-ИΦΗ, и повышение продукции противовоспалительных цитокинов, таких, как интерлейкин-4 (IL-4) и интерлейкин-10 (IL-10) в инфицированных МФ [190], что является одной из ключевых стадий адаптации микобактерий в организме хозяина. LipQ также ингибирует экспрессию индуцируемой NO-синтазы (Nos2), толл-подобного рецептора 2 типа (TLR-2) и универсального фактора транскрипции NF-kB, контролирующего экспрессию генов иммунного ответа в инфицированных MΦ [190].

Повышается экспрессия гена, кодирующего изоцитратлиазу Icl1 – ключевого фермента глиоксилатного цикла, которая катализирует расщепление изоцитрата на глиоксилат и сукцинат. Глиоксилатный цикл альтернативой традиционному циклу лимонной кислоты, и является преимущественно используется микобактериями при инфекции, а также при переходе в покоящееся состояние, когда основным источником углерода служат жирные кислоты [191,192]. Также увеличена экспрессия генов, кодирующих белки AhpC и AhpD – алкилгидропероксидредуктазы, которые участвуют в ответе клетки на окислительный стресс [193].

Среди генов с повышенным уровнем экспрессии обращает на себя внимание ген, кодирующий белок PPE51, экспрессия которого увеличивается в 4,5 раза. Белок PPE51 располагается во внешней мембране *M. tuberculosis* и участвует в транспорте питательных веществ внутрь клетки [194,195]. Интересно, что ранее в нашей работе (см. раздел 3.1.3.) мы обнаружили, что экспрессия PPE51 в штамме DrrS-over, наоборот, уменьшалась в 7 раз.

Таким образом, в штамме $\Delta DrrS$ снижалась экспрессия генов, ассоциированных с вирулентностью *M. tuberculosis*: *lipQ*, *espA*, *espD* и *Rv3613c*, а также кодирующих белки PE-PGRS. Повышалась экспрессия генов, характерных для перехода в состояние персистенции, а также борьбы с окислительным стрессом.

Транскриптомный анализ штамма *ΔDrrS* в стационарной фазе роста выявил 262 ДЭГ, из них 112 генов имели повышенный уровень экспрессии по сравнению с контрольным штаммом wt, и 150 генов имели сниженный уровень экспрессии (прил. 6). Большее количество дифференциально экспрессированных генов по сравнению с логарифмической фазой может быть объяснено усилением гетерогенности внутри бактериальной популяции при переходе в стационарную фазу роста, а также тем, что именно в стационарной фазе возрастает экспрессия DrrS у штамма wt [9], а соответственно, её отсутствие в этой фазе будет более заметно для клетки. Обнаруженные ДЭГ относятся к разным функциональным категориям, что отражено на рис. 21 и 22A.

Было обнаружено снижение экспрессии генов, кодирующих гены аэробной дыхательной цепи и энергетического обмена. Так, снижался уровены экспрессии генов *пиоА-N*, кодирующих протон-транспортирующую НАДНдегидрогеназу I типа, сопряженную с дыхательной цепью, и генов *atpB*, *D*–*H* кодирующих субъединицы АТФ-синтазы. Эти ферменты центрального метаболизма используются микобактериями при активном росте в аэробных условиях, а их супрессия указывает на недостаток кислорода и/или переход в состояние персистенции и гипобиоза [11,196,197]. При этом была повышена ndh, кодирующего НАДН-дегидрогеназу Π экспрессия гена типа. несопряженную с дыхательной цепью, и генов *суdAB*, кодирующих

субъединицы цитохром-bd-оксидазы. Оба этих фермента активируются в условиях гипоксии, обеспечивая альтернативный транспорт электронов, что микобактериях используется В покоящихся туберкулеза И при персистировании [198-200]. Кроме того, повышалась экспрессия генов нитратного дыхания: nirB, nirD, narX, narK3, narU, narK2, кодирующих нитрит-нитратный экспортёр, нитритредуктазу, И что может свидетельствовать о переключении дыхательной цепи M. tuberculosis в отсутствие DrrS на альтернативные акцепторы электронов [201] (рис 20). Активация нитратного дыхания также характерна для анаэробиоза и персистенции *M. tuberculosis* [202].

Рис. 20. Гипотетическая схема угнетения аэробного и активации нитратного дыхания в клетках штамма ΔDrrS *M. tuberculosis* (по данным RNA-seq). Синим цветом обозначены ингибированные комплексы ферментов, красным – активированные.

Снижена экспрессия генов *leuC* и *leuD*, кодирующих субъединицы фермента 3-изопропилмалат дегидратазы, катализирующей 2-ю стадию синтеза лейцина. Известно, что экспрессия этих генов падает при голодании клетки, поэтому их можно рассматривать как маркёры стресса [203]. В 4,45 раза снижена экспрессия гена белка-шаперона GroEL2 и в 2,94 раза – транскрипционного регулятора WhiB2. Интересно, что экспрессия этих же генов также была снижена в стационарной фазе штамма с гиперэкспрессией DrrS (см. раздел 3.1.3.).

Повышалась экспрессия гена *whiB6*, кодирующий транскрипционный регулятор WhiB6, который регулирует экспрессию белков системы секреции ESX-1, которая экспортирует основные вирулентные факторы *M. tuberculosis* и необходима для выживания микобактерий в МФ [204].

В транскриптоме штамма ΔDrrS в стационарной фазе обнаружено повышение экспрессии регулятора DosR (Rv3133c, также называемый DevR), который считается ключевым регулятором покоя *M. tuberculosis* в условиях гипоксии [205–207], а также большинства генов, входящих в DosR-регулон, Известно, что гены Dos-регулона также индуцируются не только в ответ на гипоксию, но и на присутствие оксида азота в статической культуре, а также при инфекции МФ мышей и в модели инфекции морских свинок [196,208,209].

Суммарно в транскриптоме Δ DrrS по отношению к wt повышена экспрессия 30 из 48 генов DosR-регулона. Среди них ген Rv3131, который кодирует нитроредуктазу. Данный фермент стимулирует провосполительный ответ в инфицированных МФ через сигнальный путь TLR2 [210]. Нитроредуктазы *narX* и *narK2* также относятся к DosR-регулону. Также к генам регулона DosR, которые активированы в мутантном штамме Δ DrrS в стационарной фазе роста, относится оперон Rv0079-Rv0081, продукт гена Rv0079 участвует в ингибировании процессов трансляции [178]. Ген *otsB1*, кодирует трегалозафосфатазу, *tgs1* — триацилглицеролсинтазу, необходимую для запасания липидов в клетке. Гены универсальных стрессовых белков Rv2028c, Rv1996, *hrp1*, Rv2624c, *hspX* (белок теплового шока) и *fdxA* (электрон транспортный белок многих биохимических реакций, содержащий железосерный кластер [211]) также были активированы. Значительная часть генов регулона DosR, обнаруженных нами среди ДЭГ, кодирует консервативные белки, функция которых ещё не изучена.

Помимо этого, в мутантном штамме $\Delta DrrS$ снижена экспрессия генов, кодирующих рибосомальные белки: *rpsN2* и *rpsR2* (30S субъединицы), *rpmB1* и *rpmB2* (50S субъединицы). Высокий уровень экспрессии в мутантном штамме имел ген гемоглобина-N (*glbN*, повышение экспрессии в 45 раз), обеспечивающий устойчивость клетки к NO-стрессу [212]. Самый высокоэкспрессированный ген в стационарной фазе $\Delta DrrS$ (в 58 раз) – это Rv2627с, кодирующий консервативный белок с неизвестной функцией, присутствующих в мембранной фракции *M. tuberculosis*.

Кроме того, в стационарной фазе роста ΔDrrSбыл понижен уровень экспрессии генов, кодирующих белки комплекса Mce1 (mce1ABCDER; yrbE1A-B). Этот белковый комплекс обеспечивает транспорт липидов через клеточную стенку микобактерий, а также обеспечивает выживаемость *M. tuberculosis* внутри МФ [176]. Связанный с этим комплексом ген fcoT, кодирующий тиоэстеразу длинноцепочечных жирных кислот, играет роль в вирулентности микобактерий, и также имеет сниженную экспрессию в Сниженной $\Delta DrrS$ [213]. оказалась экспрессия штамме гена *fadA*, кодирующего ацетил-КоА ацетилтрансферазу – секретируемого фермента, который превращает ацил-КоА из клетки хозяина в ацето-ацетил-КоА, в результате чего уровень ацетил-КоА снижается, что приводит к угнетению воспалительного ответа МФ за счёт понижения уровня ацетилирования гистонов [214].

Повышена экспрессия гена *oxyS* – было показано, что повышение экспрессии этого гена понижает активность оксидоредуктаз и повышает чувствительность микобактерий к окислительному стрессу [215]. Экспрессия гена оксидоредуктазы *ahpC* при этом также оказалась повышенной.

В целом, можно сделать вывод о том, что транскриптом штамма $\Delta DrrS$ *M. tuberculosis* указывает на угнетение центральных метаболических процессов: аэробного дыхания, синтеза АТФ и трансляции, и активацию несопряженной НАДН-дегидрогеназы II типа, альтернативных акцепторов электронов, DosR-регулона и самого белка DosR – ключевого регулятора Подобный *M. tuberculosis.* транскриптомный покоя ответ ранее обнаруживался не только в условиях гипоксии [196,197], но и в покоящихся «некультивируемых» клетках *M. tuberculosis*, полученных в аэробных условиях [11]. Кроме того, в транскриптоме штамма $\Delta DrrS$ нами была обнаружена активация маркёров окислительного и нитрозативного стресса, а также белков стрессового ответа. При этом была снижена экспрессия генов, кодирующих белки, необходимые для вирулентности M. tuberculosis и взаимодействии с клетками иммунной системы макроорганизма.

Возможно, при отсутствии DrrS, которая, как мы показали в предыдущих разделах работы, обеспечивает устойчивость микобактерий к различным видам стрессового воздействия и обеспечивает их выживаемость, клетки *M. tuberculosis* переживают дисбаланс метаболических реакций, и не в состоянии эффективно противостоять стрессовому воздействию, что может отрицательно сказываться на их жизнеспособности и вирулентности.

Рис. 21. Распределение ДЭГ в транскриптоме штаммов $\Delta DrrS$ (A) и $\Delta Mcr11$ (Б) *М. tuberculosis* в стационарной фазе роста по функциональным категориям в соответствии с базой данных Mycobrowser [216]. Величина столбиков соответствует доли ДЭГ в категории от общего числа ДЭГ. Синим цветом обозначено понижение экспрессии, красным – повышение экспрессии.

<u>Транскриптомный анализ ΔMcr11</u>

В транскриптоме Δ Mcr11 в логарифмической фазе роста было найдено 15 генов с достоверно изменённой экспрессией (прил. 7). Снижение экспрессии было зафиксировано для 4 генов белков семейства PE_PGRS, для 3 генов из категории мобильных генетических элементов (Rv2657с – ген белка профага PhiRv2, Rv1199c и Rv2666 – гены транспозаз). Ген Rv3109, экспрессия которого повышается, кодирует фермент синтеза молибденового кофактора MoaA1. Повышена экспрессия гена изониазид-индуцируемого белка IniB и гена транскрипционного регулятора WhiB6, который регулирует экспрессию генов, кодирующих субстраты системы ESX-1 которая, в свою очередь, необходима для патогенеза микобактерий *M. tuberculosis* [189]. Остальные 5 генов с дифференциальной экспрессией кодируют белки с неизвестной функцией (Rv3424c, Rv3074, Rv3108, Rv1158c, Rv1066).

Как и в случае ΔDrrS, в стационарной фазе роста ΔMcr11 менялась экспрессия гораздо большего числа генов по сравнению с логарифмической фазой: было обнаружено 147 ДЭГ, из которых 53 гена были экспрессированы сильнее по сравнению с контрольным wt, и экспрессия 94 генов была снижена (прил. 8).

В стационарной фазе роста штамма Δ Mcr11 среди генов с дифференциальной экспрессией многие гены относятся к категориям промежуточного метаболизма и дыхания, процессов формирования клеточной стенки и семейству белков PE_PGRS (рис. 21Б и 22), что свидетельствует о значительных изменениях в метаболизме *M. tuberculosis*.

Была обнаружена дифференциальная экспрессия многих генов, кодирующих ферменты центральных метаболических путей *M. tuberculosis*. К примеру, наблюдалась индукция гена *pfkB*, кодирующего фосфофруктокиназу – ключевой фермент гликолиза. У микобактерий данный фермент представлен в двух изоформах: PfkA и PfkB, и они работают в разных условиях. PfkB активируется в *M. tuberculosis* при попадании в гипоксические условия [217],

а ген *pfkB* входит в оперон Rv2028c-Rv2031c, кодирующий ряд белков, предположительно тоже участвующих в метаболизме углеводов, а также синтезе нуклеотидов. Этот оперон регулируется геном *hspX*, кодирующим универсальный белок стрессового ответа [218], который, как и гены Rv2028c-Rv2031c, входит в регулон DosR, который активируется при гипоксии, в присутствии NO, а также при инфекции МФ мышей и в модели инфекции морских свинок [196,209].

Также нами была обнаружена индукция генов lipU (липаза), lipQ(карбоксилэстераза) и Rv2780 (L-аланин дегидрогеназа). Известно, что Уровень экспрессии *aroK*, кодирующего шикиматкиназу, *pabB* кодирующего парааминобензоатсинтазу, prpC и prpD, кодирующих метилцитратсинтазу и метилцитратдегидротазу, соответственно, наоборот Как снижался. известно, PabB катализирует начальные реакции синтеза менахинона – переносчика электронов в дыхательной цепи микобактерий [219]. AroK катализирует пятую стадию биосинтеза хоризмата, биосинтез которого лежит в основе биосинтеза ароматических аминокислот и является жизненно для необходимым метаболическим процессом микобактерий [220]. Метилцитратсинтаза (PrpC) является ключевым ферментом метилцитратного который используется для энергопродукции при утилизации цикла. пропионил-КоА – основного продукта окисления жирных кислот с нечётным числом атомов углерода [181].

В то же время в транскриптомном профиле Δ Mcr11 среди ДЭГ выделяется целая группа генов, кодирующих белки клеточной стенки или относящихся к процессам её формирования, причём их экспрессия в основном снижена. К таким генам относятся *kasA* (синтез миколовых кислот), *ppsB* и *ppsA* (биосинтез фенолфтиоцерола и фтиоцерол димикоцерозата), *pks1* (поликетидсинтаза), *ldtB* (синтез пептидогликана), *lprP* и *lpqS* (липопротеины), *rpfE* и *rpfA* (пептидогликангидролазы, факторы выхода из покоящегося состояния). Известно, что синтез компонентов клеточной стенки и экспрессия на её поверхности определённых белков и липидов определяет ее
вирулентность *M. tuberculosis*. Так, семейство гидрофобных липидов фтиоцеролдимикоцерозатов является одним из основных факторов вирулентности микобактерий туберкулеза [221], кроме того, они защищают клетки *M. tuberculosis* от действия реактивных промежуточных соединений азота, продуцируемых МФ, и модулирует ранний иммунный ответ на инфекцию [222]. Pks1 принимает участие в синтезе фтиоцерол димикоцерозата и фенол-гликолипида [223].

Среди генов с пониженной экспрессией также присутствуют гены семейств PE_PGRS и PE/PPE, ассоциированные с патогенностью микобактерий и вирулентностью бактерий [174] (рис. 22).

Снижена экспрессия генов, кодирующих ион-транспортирующие белки: транспорт ионов калия – *kdpA*, *B*, *C*, и магния – *mgtE*. Повышена экспрессия гена *kgtP*, отвечающего за транспорт дикарбоксилатов (рис. 22).

Изменяется экспрессия генов некоторых регуляторных белков (например, trcR и trcS), белков, связанных с синтезом ДНК DnaN и ответом на стресс, в том числе, альфа-кристаллина *HspX*, ферредоксина FdxA, и TB31.7, которые входят в состав регулона dosR. Повышение экспрессии гена TB31.7 было практически самым сильным в штамме △Mcr11 (log2FC=5.92). Данный ген кодирует универсальный белок стрессового ответа ТВ31.7, который регулирует рост микобактерий, а также может быть необходим для перехода в персистирующее состояние [224]. ТВ31.7 взаимодействует с белком Rv1747 -АТФ-связывающим транспортёром, который экспортирует липоолигосахариды, и, по-видимому, регулирует его функцию [225]. При делеции гена ТВ31.7 в M. tuberculosis усиливается продукция фосфотидилмио-инозитол маннозидов и штамм становится гипервирулентным, а при делеции Rv1747 – наоборот, повышается продукция фосфотидил-миоинозитол маннозидов и снижается вирулентность микобактерий [225].

Максимальное повышение экспрессии зарегистрировано для гена Rv1733c (log2FC=6.17). Rv1733c также входит в DosR-регулон и кодирует белок с неизвестной функцией, однако высокая иммуногенность данного белка доказана [226,227]. Наряду с известными иммуногенными белками ESAT-6 и CFP-10, белок Rv1733c способен стимулировать выработку ИНФ-ү и интерлейкина-2 (IL-2) МФ, что используется для диагностики ТБ у людей с помощью квантиферонового теста. Причём, реакция на белок Rv1733c позволяет достоверно выявить именно латентную ТБ инфекцию, то есть является маркёром скрытой формы ТБ [228].

Таким образом, сравнение профиля транскрипции штамма Δ Mcr11 с профилем транскрипции штамма wt указывает на значительные изменения в клетке *M. tubercuosis*, протекающие на уровне базовых метаболических дифференциальная процессов. Так. наблюдается экспрессия генов, кодирующих белки-участники центральных метаболических процессов, белки-транспортеры различных молекул и ионов через цитоплазматическую мембрану молекул и ионов и белки стрессового ответа. Кроме того, транскриптомный профиль $\Delta Mcr11$ указывает на активацию процессов ремоделирования клеточной стенки, подавления биосинтеза липидов – факторов вирулентности *M. tuberculosis* и изменение экспрессии белков семейств PE PGRS и PE/PPE, которые также определяют вирулентность микобактерий.

3.4. Изучение фенотипа штаммов **ΔMcr11**, **ΔDrrS**, **ΔMcr11_DrrS** после пассирования *in vivo*

По результатам транскриптомного анализа можно сделать вывод, что изучаемые малые РНК действительно вовлечены в процессы биохимической регуляции взаимодействия патогена *M. tuberculosis* и макроорганизма при инфекции, и могут оказывать значительное влияние как на успешную адаптацию патогена и сохранение его жизнеспособности при инфекции, так и определять характер течения инфекции для организма-хозяина. Поэтому была поставлена задача восстановить вирулентный потенциал мутатитных штаммов $\Delta DrrS$, $\Delta Mcr11$, $\Delta \Delta Mcr11$ DrrS, полученных нами *in vitro*, а также штамма wt *M. tuberculosis*. Считается, что в целом при длительном культивировании в лаборатории микобактерии туберкулёза могут снижать свою вирулентность [229]. Поэтому для проведения исследований in vivo бактерии предварительно пассируют в живых организмах. Одной из принятых стратегий восстановления сниженной вирулентности является однократное заражение мышей немодифицированных линий, которые имеют врождённую устойчивость к туберкулёзу. После выделения бактерий из органов животных микобактерии обладают большим вирулентным потенциалом, который не теряется при краткосрочном культивировании *in vitro*. Такие штаммы используются для проведения экспериментов *ex vivo* и *in vivo* [229].

3.4.1. Получение мутантных штаммов с «восстановленной вирулентностью»

Нами было проведено восстановление вирулентности штаммов Δ Mcr11, Δ DrrS, $\Delta\Delta$ Mcr11_DrrS и wt. Штаммы были выращены в стандартных условиях культивирования до фазы среднего логарифмического роста (OП₆₀₀=1), отмыты от среды и ресуспендированы в физиологическом растворе. Полученную суспензию использовали для заражения мышей линии C57BL/6, резистентных к ТБ (инфицирующая доза 10⁵, внутривенный способ инфицирования). Через 21 сутки были приготовлены гомогенаты селезёнок

заражённых мышей, после чего из гомогенатов был сделан высев на плотные питательные среды.

3.4.2. Зависимость роста мутантных штаммов *in vitro* от состава среды

При параллельном высеве на плотные среды разного состава (среда Сотона и среда Миддлбрука), было замечено, что при сохранении нормального роста на агаризованной среде Миддлбрука нокаутные штаммы медленнее вырастают на агаризованной среде Сотона по сравнению с wt *M. tuberculosis*. Торможение роста было более выраженным у штамма с двойной делецией $\Delta\Delta$ Mcr11_DrrS, где рост почти полностью отсутствовал (рис. 23).

Колонии, полученные после высева гомогенатов селезенок инфицированных мышей линии B6, были пересеяны на жидкую среду для дальнейшей дифференциации. Оказалось, что штаммы с делецией малой PHK ΔMcr11, малой PHK ΔDrrS и двух малых PHK ΔΔMcr11_DrrS после пассирования *in vivo* были не способны расти на стандартной среде Сотона, и при этом хорошо росли на среде Миддлбрука (рис 24 A, Б). Для штамма wt заметной разницы в росте на этих двух средах не наблюдалось.

Основным отличием в составе сред является различная концентрация глицерина, которая в среде Сотона составляла 6 об. %, а в среде Миддлбрука - всего 0.5 об.%. В связи с этим, было выдвинуто предположение о токсичном действии глицерина на рост штаммов с делецией малых PHK Δ Mcr11, Δ DrrS и $\Delta\Delta$ Mcr11 DrrS. И действительно, при выращивании данных штаммов в среде Сотона со сниженной в 10 раз концентрацией глицерина (0.6%, среда ΔDrrS возобновлялся Сотон R) рост штамма после незначительно увеличенного лаг-периода (рис. 24 В). Рост штаммов ΔΔMcr11 DrrS и особенно Δ Mcr11 среде Сотон R характеризовался на значительно увеличенным лаг-периодом, однако позднее также возобновлялся.

Рис. 23. Сравнение характера роста штаммов *M. tuberculosis* wt (a), Δ Mcr11 (б), Δ DrrS (в) и $\Delta\Delta$ Mcr11_DrrS (г) на плотной среде Сотона (1) и на среде Миддлбрука (2).

Рис. 24 Динамика роста штаммов с восстановленной вирулентностью на лабораторных средах различного состава после пассирования *in vivo*: среда Миддлбрука (А), среда Сотона (Б), среда Сотон_R (В).

3.4.3. Исследование фенотипа повышенной чувствительности к глицерину.

Анализ литературы показал, что сходный фенотип, связанный сугнетением роста *M. tuberculosis* на плотных питательных средах в присутствии высоких концентраций глицерина наблюдался при делеции генов Rv3679-3680, кодирующих белковый комплекс с ATΦ-азной функцией [230], и, что особенно интересно, этот фенотип тоже проявлялся только после пассирования мутантных клеток *in vivo*. Авторы исследования показали, что при понижении концентрации глицерина в среде рост мутантных штаммов восстанавливался, подобно нашим экспериментам с мутантными штаммами ΔMcr11, ΔDrrS и ΔΔMcr11_DrrS.

Малые РНК, как известно, часто осуществляют регуляторную функцию посредством связывания с мРНК гена-мишени, что ингибирует или активирует его трансляцию. Была поставлена задача поиска возможного связывания малых РНК Mcr11 и DrrS с мРНК генов Rv3679 и Rv3680. Согласно биоинформатическим расчетам на основании алгоритма CopraRNA [231] у обеих малых РНК были обнаружены десятки потенциальных мишеней, ранжированных по величине минимальной энергии связывания с малой РНК (чем меньше энергия, тем больше вероятность связывания). Было обнаружено, что в число 10 наиболее вероятных мишеней малой РНК DrrS входит ген Rv3679 (рис. 25А), а мРНК гена Rv3679 в 5'-нетранслируемой области (5'-HTO) содержит 2 потенциальных участка связывания с малой РНК DrrS: seed1 (рис. 25Б) и seed2. Это позволило предположить, что Rv3679 может являться мишенью DrrS, a DrrS, соответственно, является потенциальным регулятором глицеринового метаболизма *M. tuberculosis*. При этом мРНК генов Rv3679 и Rv3680 не содержат потенциальных участков связывания с малой РНК Mcr11.

А									
Rank	CopraRNA p-value	CopraRNA fdr value	Locus Tag	Gene Name	Energy [kcal/mol]	IntaRNA p-value	Position mRNA	Position sRNA	Annotation
1	0	0	rv1733c	N/A	-155.39	0.000000	5 121	1 117	transmembrane protein
2	0.0002008	0.3728	rv1484	inhA	-19.21	0.001124	8 43	34 64	NADH-dependent enoyl-[ACP] reductase
3	0.0004704	0.4446	rv2045c	lipT	-17.40	0.002718	34 82	38 91	carboxylesterase LipT
4	0.0004789	0.4446	rv0786c	N/A	-17.46	0.002632	346 378	28 68	
5	0.0008015	0.5893	rv1567c	N/A	-16.58	0.004071	22 50	31 61	membrane protein
6	0.001248	0.5893	rv0053	rpsF	-15.95	0.005540	355 375	72 90	30S ribosomal protein S6
7	0.001272	0.5893	rv2442c	rpIU	-16.33	0.004602	208 234	29 56	50S ribosomal protein L21
8	0.001299	0.5893	rv <mark>3679</mark>	N/A	-16.29	0.004677	231 257	31 68	anion transporter ATPase
9	0.001679	0.5893	rv3908	mutT4	-14.93	0.009173	178 218	33 68	mutator protein MutT
10	0.001735	0.5893	rv3779	N/A	-15.85	0.005839	364 379	31 45	transmembrane protein
Б									
				230 I					258 I
5'-CGUUUAUC CCGGU									
mRNA GGUCGGACUGG ACCCGCUC CGCUCAGC :: : :									
3.	3	'-UUG.	GCCA	U.U.	000660	CACAU	GUA I	UUA	UGAAGCCA-5'
	Ŭ			1					1
				69					30

Рис. 25. Предсказание мишени малой РНК DrrS с помощью алгоритма CopraRNA. Показаны 10 мишеней мРНК с наибольшей вероятностью взаимодействия (А) и отображено связывание комплементарных оснований малой РНК и мРНК гена Rv3679 в участке seed1 (Б).

3.4.4 Подтверждение взаимодействия DrrS и мРНК гена Rv3679

С помощью *in vitro* транскрипции были синтезированы малая PHK DrrS и два фрагмента 5'-HTO мPHK гена Rv3679, содержащие потенциальные участки связывания с DrrS seed1 и seed2. Малая PHK DrrS была биотинилирована для визуализации в геле. С помощью метода анализа сдвига электрофоретической подвижности было обнаружено, что DrrS образует комплекс с фрагментом seed1, что вызывает торможение ее подвижности в геле. В случае seed2 торможения DrrS не происходило. Таким образом, мы обнаружили связывание малой PHK DrrS с одним из предсказанных участков мPHK гена Rv3679 (рис. 26).

Рис. 26. Анализ изменения электрофоретической подвижности DrrS в присутствии фрагментов seed1 и seed2 5'-НТО мРНК гена Rv3679.

Таким образом, Rv3679 является потенциальной мишенью малой PHK DrrS. Хотя функция белка Rv3679 не установлена, известно, что гены Rv3679 и Rv3680, находящиеся в одном опероне, кодируют белковый комплекс с ATФазной активностью. Из исследования Whitaker и соавт. [230] известно, что этот белок играет важную роль в метаболизме глицерина *M. tuberculosis*. При делеции этих генов и после восстановления вирулентности штаммов путем пассирования в мышах наблюдался дозозависимый рост *M. tuberculosis* на средах с глицерином. Также делеция генов Rv3679-80 приводила к повышению чувствительности *M. tuberculosis* к оксиду азота в среде, содержащий глицерин, и к повышению чувствительности к метилглиоксалю. Метилглиоксаль – токсичный для микобактерий промежуточный продукт метаболизма глицерина, образующийся из глицеральдегидтрифосфата. При внесении мутации в ген глицеролкиназы (Rv2370c) этот токсичный эффект снижался.

Следовательно, DrrS может являться одним из регуляторов метаболизма глицерина у *M. tuberculosis*.

3.4.5. Выживание мутантных штаммов при инфекции костномозговых макрофагов мыши

Штаммы с восстановленной вирулентностью были исследованы при инфекции *ex vivo*. Для инфекции были выбраны макрофаги, дифференцированные из первичных клеток красного костного мозга мышей C57BL/6. Было проведено заражение костномозговых макрофагов (КММФ) штаммами wt, $\Delta DrrS$, $\Delta Mcr11$ и $\Delta \Delta Mcr11_DrrS$ *M. tuberculosis* и оценивали выживаемость бактерий.

Было проведено два эксперимента, в одном из них КММФ были предварительно активированы γ -ИФН, а в другом КММФ заражали без предварительной активации. Использовали две дозы заражения: MOI=2 и MOI=10. Выживаемость штаммов оценивали по изменению КОЕ при высеве из лизата КММФ в разных временных точках после заражения. В случае активированных КММФ были сделаны высевы в точке 4ч, 24ч, 48ч и 72ч, а в случае не активированных МФ – 4ч, 24ч и 48ч. В обоих случаях выживаемость мутантных штаммов достоверно не отличалась от контрольного wt (рис. 27).

КММФ без активации, МОІ 10

Активированные КММФ, MOI 10

Рис. 27. Выживаемость микобактерий Δ Mcr11, Δ DrrS, $\Delta\Delta$ Mcr11_DrrS и wt при заражении КММФ *ex vivo*.

3.4.6. Анализ эукариотического транскриптома инфицированных макрофагов.

Был проанализирован транскриптомный ответ КММФ, активированных γ -ИФН и зараженных различными мутантными штаммами через 24 часа после инфекции. Методом RNA-seq были получены транскриптомные профили поли-А фракции РНК заражённых клеток. Сравнили ответ КММФ на заражение штаммами с делециями малых РНК с ответом на заражение wt. При инфицировании штаммами Δ DrrS и Δ Mcr11 было обнаружено сравнительно небольшое число ДЭГ: 32 и 21 ген соответственно (таблица 3, см. также прил. 9 и 10). Однако при заражении штаммом с двойной делецией $\Delta\Delta$ Mcr11_DrrS транскриптомный профиль КММФ значительно отличался от профиля КММФ, заражённых wt *M. tuberculosis*, и был выявлен 191 ДЭГ (прил. 11).

Таблица 3. Число ДЭГ КММФ, заражённых мутантными штаммами *M. tuberculosis*, по отношению к КММФ, заражённых штаммом wt.

	ΔDrrS	∆Mcr11	$\Delta\Delta$ Mcr11_DrrS	
Число генов с	1.4	Q	91	
индуцированной экспрессией	14	0		
Число генов с подавленной	10	12	100	
экспрессией	10	13		
Суммарное число генов с	30	21	191	
измененной экспрессией	52	21		

Максимальное снижение экспрессии в КММФ, инфицированных штаммом ΔΔMcr11 DrrS по сравнению с инфекцией wt отмечено для гена Gm5537 (log₂FC= -12,34). Интересно, что этот ген также имеет самое выраженное понижение экспрессии и у КММФ, заражённых штаммами *M. tuberculosis* PHK: Δ Mcr11 с однократными делециями малых $(\log_2 FC =$ -11.51) $\Delta DrrS$ $(\log_2 FC =$ -12,32). И Gm5537 является транскрибируемым псевдогеном, его функция на данный момент не известна. Транскрипт гена *Gm5537* был обнаружен во внеклеточных везикулах КММФ

среди мРНК, которые транспортируются и служат для передачи информации между макрофагальными клетками [232].

Также при заражении КММФ каждым из трёх мутантных штаммов падала экспрессия гена *nos*2, кодирующего индуцируемую NO-синтазу (в 2–3 раза). Nos2 продуцирует оксид азота (II), являющийся, в свою очередь, молекулой–мессенджером с широким спектром функций в организме. В МФ NO опосредует противоопухолевые и бактерицидные реакции. Nos2 активируется в МФ под действием γ -ИФН [75,233]. В свою очередь Nos2 катализирует превращение L-аргинина в L-цитруллин с высвобождением молекулы NO. Оксид азота действует на микобактерии напрямую, либо превращаясь в пероксинитрит (ONOO⁻) под действием супероксид-аниона (O₂⁻) [234], что приводит к их гибели. Кроме того, NO действует и на сами МФ, снижая воспалительные реакции через ингибирование активности NF-kB [235]. Активация Nos2 в МФ считается важнейшим из механизмов, контролирующим инфекцию *M. tuberculosis* [234–238].

Кроме этого в КММФ при заражении каждым из трёх мутантных штаммов *M. tuberculosis* по сравнению с заражением wt повышалась экспрессия гена 9930111J21Rik2 (в 2–3 раза), кодирующего некий мембранный белок с ГТФ-связывающей активностью, функция которого пока не известна.

В КММФ зараженных каждым из мутантных штаммов изменялась экспрессия генов, опосредующих иммунные реакции при инфекции. Это гены цитокинов, интерлейкинов и хемокинов.

К ним, в первую очередь, относится ФНО-а. Мы обнаружили, что в КММФ, инфицированных штаммом $\Delta\Delta$ Mcr11_DrrS, снижена не только экспрессия ФНО-а (log₂FC= -1,36), но также наблюдается изменение экспрессии лигандов этого фактора (Tnfsf11 и Tnfsf15 – понижение экспрессии, Tnfsf10 – повышение экспрессии) (прил. 11). Известно, что компоненты клеточной стенки *M. tuberculosis* стимулируют выработку ФНО-а. Как известно, ФНО-а является важнейшим компонентом врожденного иммунитета к патогенам, при этом он может играть важную роль и в развитии

патологии некоторых заболеваний, включая ТБ. ТБ является ярким примером того, что ΦΗΟ-α может служить обоюдоострым оружием, поскольку, выполняя важнейшую роль в контроле инфекции M. tuberculosis с одной стороны, с другой он также может вызывать и серьезное повреждение тканей, демонстрируя сложную разветвленную сеть взаимодействий, в которых он принимает участие [239–241]. Как известно, при ТБ защитные воспалительные иммунные реакции и патологические последствия хронического воспаления в значительной степени зависят от баланса экспрессии цитокинов. Следует отметить, что при инфекции КММФ штаммом ΔMcr11 также наблюдалось понижение экспрессии лиганда Tnfsf15, но не самого ΦΗΟ-α. При инфекции $\Delta\Delta$ Mcr11 DrrS подавлялся транскрипционный фактор Twist2, который репрессирует экспрессию провоспалительных цитокинов (ΦΗΟ-α И интерлейкина-1b (IL-1b)).

Мы наблюдали изменение экспрессии интерлейкинов при инфекции КММФ мутантными штаммами по сравнению с инфекцией штаммом wt. Так, в КММ Φ , инфицированных штаммом $\Delta\Delta$ Mcr11 DrrS, отмечалась сниженная экспрессия интерлейкинов IL-11 и IL-27 (log₂FC -1,52 и -1,44, соответственно). Следует отметить, что снижение экспрессии IL-11 наблюдалась также при инфекции КММФ штаммом ΔDrrS, а при инфекции штаммом ΔMcr11 наблюдалось снижение экспрессии IL-27 и IL-12b, которое не наблюдалось инфекции мутантными IL-11 при другими штаммами. является полифункциональным цитокином, физиологическая роль которого в легких при ТБ легких изучена недостаточно. Тем не менее, известно, что блокирование IL-11 уменьшает гистопатологические проявления И нейтрофильную инфильтрацию легочной ткани у генетически восприимчивых мышей, инфицированных *M. tuberculosis*. Эти результаты указывают на патогенную роль IL-11 при развитии ранней стадии заболевания, вызванного *M. tuberculosis*, у генетически предрасположенного хозяина [242] IL-27 известен своим глобальным действием при экспериментальной инфекции *M. tuberculosis*: отсутствие опосредованной IL-27 передачи сигналов, с одной

122

стороны, способствует лучшему контролю роста микобактерий, но с другой приводит к хроническому гипервоспалению и иммунопатологическим проявлениям на поздних стадиях инфекции [243]. IL-12b способствует инициации и поддержанию *M. tuberculosis* специфических эффекторных ответов, формируя устойчивость к инфекции [244]. Кроме того, наблюдалось понижение экспрессии интерлейкин-1-подобного рецептора 1 (Il1rl1) в КММФ, инфицированных ΔΔMcr11 DrrS и ΔDrrS (прил. 11 и 9). II1rl1 IL-33, который, является рецептором как известно, способствует провоспалительным реакциям на бактериальную и вирусную инфекцию дыхательных путей, а его блокирование может в целом ослабить тяжесть течения инфекции дыхательных путей [245]. Уровень экспрессии II13ra2, альфа-субъединицу IL-13 кодирующего рецептора KMMΦ, В инфицированных $\Delta\Delta$ Mcr11 DrrS оказался понижен (log₂FC= -1,31), a Il2ra, кодирующего альфа-субъединицу рецептора IL-2 – наоборот, повышен $(\log_2 FC = 1,32)$ (прил. 11). Как известно, IL-2Ra является одним из наиболее точных биомаркеров для дифференциальной диагностики активного и латентного ТБ [246]. Также была снижена экспрессия бета-субъединицы специфического рецептора онкостатина М (Osmr) в КММФ, инфицированных $\Delta\Delta$ Mcr11 DrrS. Osmr accoциирует с II31ra с образованием рецептора IL-31.

При заражении штаммом $\Delta\Delta$ Mcr11_DrrS в КММФ менялась экспрессия генов хемокинов и хемокиновых рецепторов (прил. 11). Мы обнаружили, что уровень экспрессии хемокина Cxcl2 был понижен в случае инфекции КММФ штаммом $\Delta\Delta$ Mcr11_DrrS и Δ DrrS по сравнению с КММФ, инфицированными штаммом wt; уровень экспрессии хемокина Cxcl1 в КММФ был также понижен, но только в случае инфекции штаммом $\Delta\Delta$ Mcr11_DrrS. В КММФ, зараженных $\Delta\Delta$ Mcr11_DrrS, повышен уровень экспрессии хемокинов Cx3cr1, Ccr3, Ccl12, и понижен уровень экспрессии Ccl20. Хемокины, как известно, являются важными компонентами иммунной системы, направляющими иммунные клетки в очаг инфекции и во многом формирующие характер течения заболевания. Кроме того, хемокины, наряду с цитокинами, могут являться биомаркерами величины микобактериальной нагрузки при ТБ легких. Известно, что уровень хемокинов Ccl1, Ccl3, Cxcl1, Cxcl2, Cxcl9 и Cxcl10 в плазме у людей, больных ТБ легких, существенно повышен по сравнению с больными латентным ТБ, а также у больных, подвергшихся терапии, и здоровых добровольцев [247]. Подавлялся ген белка Hilpda (hypoxia inducible lipid droplet associated), который способствует аккумуляции липидных капель при гипоксии, сопровождающей воспаление, и положительно регулирует продукцию некоторых цитокинов [248].

Таким образом, при инфекции КММФ *M. tuberculosis* мутантными штаммами, и особенно ΔΔMcr11_DrrS, наблюдается дисбаланс экспрессии интерлейкинов и хемокинов, что свидетельствует о нарушении клеточного сигналинга.

В КММФ, инфицированных штаммом $\Delta\Delta$ Mcr11 DrrS, наблюдается снижение экспрессии металлопептидаз mmp3, mmp10, mmp13 (прил. 11). Также снижена экспрессия тканевого ингибитора металлопротеиназ timp-1. Матриксные металлопротеиназы (ММП) представляют собой эндопептидазы, способные расщеплять все компоненты легочного внеклеточного матрикса. Хорошо известно, что инфекция *M. tuberculosis* приводит к усилению продукции ММП, а также вызывает нарушение баланса между ММП и тканевыми ингибиторами металлопротеиназ. ММП вызывают деградацию внеклеточного матрикса и вносят свой вклад в формирование гранулем. Последние данные свидетельствуют о том, что *M. tuberculosis* может использовать свои факторы вирулентности для стимуляции образования гранулемы. Как известно, образование гранулем является отличительным признаком ТБ лёгких, и они традиционно рассматриваются как защитные структуры организма. Интересно, что ингибирование ММП в модели ткани, инфицированной *M. tuberculosis*, уменьшало как образование гранулем, так и бактериальную нагрузку. Инфекция вызвала повышенную регуляцию нескольких ММП (mmp 1, 3, 9 и 12), и это было подтверждено при исследованиии биоптатов легких пациентов с внеполостным ТБ. Данные этого

исследования показывают, что активация ММП способствует раннему формированию туберкулезной гранулемы, что позволяет предположить, что вмешательство, направленное на ММП хозяина, можно рассматривать как дополнительный терапевтический подход в лечении ТБ [249]. В целом, ММП являются ферментами хозяина, имеющим решающее значение для разрушения тканей при воспалительных заболеваниях. При инфекции *M. tuberculosis* секреция mmp10 из первичных МФ человека увеличивалась в 29 раз [250]. Недавние исследования продемонстрировали иммуномодулирующую роль ММП в патогенезе *M. tuberculosis* [249].

Также мы обнаружили снижение экспрессии металлопептидаз adamts1,5,9, adam22 в КММФ, инфицированных $\Delta\Delta$ Mcr11_DrrS (прил. 11). Adamts представляет собой семейство многофункциональных протеиназ, обнаруженных как у беспозвоночных, так и у млекопитающих и играют решающую роль в расщеплении протеогликанов матрикса и процессинге молекулы проколлагена [251].

Обычно при инфекции *M. tuberculosis* уровень экспрессии протеиназ, в том числе ММП, увеличивается, тем самым увеличивается степень деструкции ткани. Ингибирование ММП является одним из терапевтических приёмов, направленным на уменьшение диссеминации *M. tuberculosis*. В случае инфекции КММФ $\Delta\Delta$ Mcr11_DrrS мы наблюдали уменьшение экспрессии ММП, следствием которого может быть уменьшение деструкции тканей хозяина при заражении, а также нарушение формирования гранулёмы.

Активация путей иммунной защиты в МФ обусловлена действием молекул патогена на распознающие их рецепторы, в первую очередь TLR и нуклеотидсвязывающие доменоподобные рецепторы олигомеризации (NLR), и другие. При инфекции КММФ штаммом $\Delta\Delta$ Mcr11_DrrS мы обнаружили повышение экспрессии генов *fcrl5* и *tlr9* (прил. 11). *fcrl5* кодирует Fc-подобный рецептор, а *tlr9* кодирует рецептор TLR-9, который распознаёт бактериальную ДНК и является одним из ключевых компонентов врожденного и адаптивного иммунитета. Стимуляция этих рецепторов также

приводит к активации NF-kB и последующему формированию инфламосомы [252]. При заражении КММФ штаммом ΔΔMcr11 DrrS нами было также обнаружено усиление экспрессии генов, кодирующих рецепторы семейства NLR: Nlrp1c (log₂FC= 7,08) и Nlrp1b (log₂FC= 1,49) (прил. 11). Рецепторы семейства NLR играют важную роль в начальных стадиях развития воспалительного ответа клетки, инициируя или регулируя формирование сигналов, ведущих к активации про-воспалительных каспаз и NF-kB [253]. Активация этих факторов ведёт к формированию инфламосомы и запуску программмы апоптоза в клетках, что является важной частью врождённого иммунитета. При заражении вирулентными штаммами M. tuberculosis, в МФ этот баланс смещается в сторону развития некроза. Авирулентные штаммы *M. tuberculosis* вызывают апоптоз $M\Phi$, ЧТО приводит дисбалансу К нормального ответа МФ на инфекцию [253].

Кроме этого, при инфекции КММФ штаммом ΔΔMcr11 DrrS менялась экспрессия других генов, имеющих значение при инфекции. Был индуцирован супрессор активации T-клеток Vsir, содержащий иммуноглобулиновый домен V-типа (прил. 11). Это иммунорегуляторный рецептор, подавляющий Тклеточный ответ, который может способствовать дифференцировке эмбриональных стволовых клеток путем ингибирования ВМР4-сигналинга, а также стимулировать ММР14-опосредованную активацию ММР2 [254]. Подавлялся CavI – белок кавеолин-1, индуцирующий пролиферацию Т-клеток. CavI участвует ко-стимуляторном сигнале, необходимом В ДЛЯ опосредованной Т-клеточным рецептором активации Т-клеток [255]. Снижена экспрессия транскрипционного фактора Nr4a3, который играет важную роль в формировании очага воспаления, влияя на пролиферацию и миграцию клеток и формирование пенистых МФ [256].

В КММФ, инфицированных ΔΔMcr11_DrrS, снижена экспрессия белков главного комплекса гистосовместимости класса II (MHC II) (H2-Ab1, H2-Eb1 H2-Aa). МФ осуществляют презентацию антигенов в ассоциации с MHC II для стимуляции CD4+ Т-клеток, и этот процесс необходим для сдерживания

инфекции. При персистировании *M. tuberculosis* уклоняется от этого пути защиты иммунной системы через TLR2-опосредованное ингибирование экспрессии молекулы МНС II и, как следствие, нарушения презентации антигена, что в итоге приводит к латентной инфекции [68].

Анализ транскриптома КММФ, инфицированных штаммом ΔΔMcr11_DrrS по сравнению с КММФ, инфицированных штаммом wt, проведенный с помощью базы данных STRING [257], позволяет выявить значительное число ДЭГ и существенную функциональную взаимосвязь между большинством обнаруженных ДЭГ (рис 28). При этом инфекция КММФ штаммами с однократными делециями генов малых PHK DrrS и Mcr11 дает гораздо менее интенсивный транскриптомный ответ.

Рис. 28. Функциональная взаимосвязь между ДЭГ, обнаруженными в инфекции $\Delta\Delta$ Mcr11 DrrS. КММФ при штаммом Каждому кружку соответствует один из ДЭГ. Линии между кружками обозначают наличие функциональной взаимосвязи (основано на ко-экспрессии генов в различных условиях, толщина линии отражает прочность взаимосвязи). Цветом обозначены ДЭГ, принадлежащие к одной функциональной группе: ФНО-а и его рецепторы – синий; ММП и их регуляторы – красный; хемокины и их рецепторы – розовый; процессинг и презентация антигенов – желтый; продукция интерлейкинов и их рецепторов – голубой; регуляция миграции зелёный; патоген-распознающие рецепторы – оранжевый; клеток индуцируемая NO-синтаза – серый. На схеме представлены только ДЭГ, имеющие функциональную взаимосвязь друг с другом.

В целом, при анализе транскриптомного массива данных КММФ, инфицированных мутантными штаммами, и в особенности штаммом $\Delta\Delta$ Mcr11 DrrS, наблюдается дисбаланс иммунных реакций хозяина, а именно: супрессия активации Т-клеточного ответа, изменение экспрессии цитокинов, нарушение процессов клеточного сигналинга и презентации антигенов, а также ингибирование ММП. Как правило, легочные патогены при инфекции не стремятся к преждевременной гибели своего хозяина, скорее, они заинтересованы в продолжительном динамическом сосуществовании с ним. Однако, исходя из полученных результатов, можно предположить, что клетки *M. tuberculosis* в отсутствие малых PHK Mcr11 и DrrS сдерживают своевременные иммунные реакции макроорганизма при инфекции, что в дальнейшем может усугублять тяжесть ее течения и приводить К преждевременной гибели организма-хозяина. То есть Mcr11 и DrrS выступают в роли регуляторов взаимодействия «патоген-хозяин», при отсутствии которых нарушается контроль инфекции *M. tuberculosis*. Транскриптом КММ Φ , инфицированных штаммом $\Delta\Delta$ Mcr11 DrrS, представляет собой более ДЭГ широкий спектр по сравнению транскриптомами KMMΦ, С инфицированных штаммами Δ Mcr11 и Δ DrrS, что может указывать на функциональное взаимодействие этих двух малых РНК между собой и совместное регулирование процесса взаимодействия инфицированного макроорганизма и патогена, причем это совместное регулирование более эффективно, чем их регуляторное действие по-отдельности.

3.4.7. Модель туберкулёзной инфекции мышей

Чтобы оценить роль малых РНК в развитии инфекции *in vivo*, был проведён эксперимент по заражению чувствительных и резистентных к ТБ линий мышей мутантными штаммами Δ Mcr11, Δ DrrS, $\Delta\Delta$ Mcr11_DrrS и штаммом wt *M. tuberculosis*. Согласно стандарту проведения экспериментов по определению восприимчивости модельных животных к ТБ инфицирование мышей проводили штаммами *M. tuberculosis* с восстановленной вирулентностью (см. раздел 3.4.1).

Было проведено два последовательных эксперимента по заражению мышей мутантными штаммами *M. tuberculosis*. В экспериментах использовали 2 чувствительные к ТБ линии мышей C3H.JK (в первом эксперименте) и I/st (во втором эксперименте) и резистентную линию мышей C57BL/6. Как чувствительные, так и резистентная линии мышей восприимчивы к ТБ инфекции, однако мыши чувствительной линии погибают от неё в отсутствие лечения, в то время как у резистентных мышей инфекция носит хроническую форму и может приводить к гибели лишь спустя длительное время, соотносимое с естественной продолжительностью жизни мышей. В нашем эксперименте как в случае чувствительных, так и резистентной линии наблюдались различия во времени жизни заражённых животных при инфекции их мутантными штаммами и штаммом wt.

В первом эксперименте мышей заражали тремя штаммами: $\Delta DrrS$, $\Delta\Delta Mcr11_DrrS$ и wt. На рис 29 показано, что мыши обеих линий – чувствительной C3H.JK и резистентной C57BL/6, зараженные штаммом с двойной делецией $\Delta\Delta Mcr11_DrrS$ погибали быстрее, чем мыши, зараженные штаммом wt *M. tuberculosis*. Мыши, зараженные штаммом $\Delta DrrS$, имели сходную динамику гибели от инфекции, что и мыши, зараженные wt в случае чувствительнойлинии C3H.JK, а в случае резистентной линии C57BL/6 демонстрировали большую продолжительность жизни (рис 29).

Рис. 29. Динамика гибели мышей линии C3H.JK, восприимчивых к ТБ (А) и мышей линии C57BL/6, резистентных к ТБ (Б) после заражения штаммами *M. tuberculosis* (синяя линия – wt, красная – штамм ΔDrrS, жёлтая линия – штамм ΔΔMcr11_DrrS).

В следующем эксперименте чувствительную I/st и резистентную C57BL/6 линии мышей заражали четырьмя штаммами: Δ Mcr11, Δ DrrS, $\Delta\Delta$ Mcr11_DrrS и wt. Так же, как и в первом эксперименте, и чувствительные, и резистентные к ТБ мыши, зараженные мутантным штаммом с двойной делецией $\Delta\Delta$ Mcr11_DrrS, погибали от инфекции быстрее, чем мыши зараженные, штаммом wt, а динамика гибели мышей линии C57BL/6, зараженных Δ DrrS, мало отличалась от динамики гибели мышей, зараженных штаммом wt (рис 30). Однако, в случае инфекции штаммом Δ DrrS мышей чувствительной линии I/st, среднее время их жизни было больше. Инфицирование мышей обеих линий штаммом Δ Mcr11 приводило к наиболее быстрой гибели животных (рис 30), то есть можно сделать вывод об увеличении вирулентности штамма с делецией малой PHK Mcr11. Штамм с двойной делецией проявлял умеренное увеличение вирулентности по сравнению с wt, более выраженное при инфекции мышей чувствительной линии I/st.

Полученный результат говорит о прямой связи малых PHK DrrS и Mcr11 с характером развития TБ инфекции *in vivo*. Отсутствие малой PHK DrrS снижает вирулентность клеток *M. tuberculosis*, что было показано нами как для мышей чувствительной линии I/st, так и резистентной линии C57BL/6, и что свидетельствует о нарушении регуляции метаболических процессов в клетках патогена, и, в первую очередь, тех биохимических процессов, которые направлены на его взаимодействие с организмом хозяина. Наоборот, для штаммома Δ Mcr11 наблюдается повышение вирулентности и ускоренная гибель животных, что также говорит о нарушении регуляции важнейших биохимических реакций в клетках *M. tuberculosis*.

132

Рис. 30. Динамика гибели чувствительных мышей линии I/st (A) и резистентных мышей линии C57BL/6 (Б) при заражении штаммами *M. tuberculosis* (синяя линия – wt, красная – штамм ΔDrrS, серая – ΔMcr11, жёлтая линия – штамм ΔΔMcr11_DrrS).

Выживаемость мышей при инфекции штаммами *M. tuberculosis* с комплементацией делеций малых РНК

Для подтверждения того, что наблюдаемый фенотип ускоренной гибели животных для штамма ΔΔMcr11_DrrS *M. tuberculosis* был связан с делецией малых PHK, совместно с коллегами из ИБХ РАН мы создали штамм с комлементацией делеции обеих малых PHK с использованием вектора pMV306 с устойчивостью к канамицину. Это штамм был назван нами ΔΔMcr11_DrrS_comp (т.е. был осуществлен «возврат» к дикому типу). Штамм ΔΔMcr11_DrrS_comp также был сначала пассирован через резистентных мышей для восстановления его вирулентного потенциала.

Параллельно были созданы штаммы wt_empty и ΔΔMcr11_DrrS_empty, содержащие пустую плазмиду pMV306, для получения корректных отрицательного и положительного контроля, которые тоже были предварительно пассированы через мышь. Далее мы инфицировали мышей чувствительной линии I/St тремя полученными штаммами.

Ha рис. 31 показано, ЧТО мыши, инфицированные штаммом $\Delta\Delta$ Mcr11 DrrS_comp, отличались достоверно большей продолжительностью жизни по сравнению штаммом $\Delta\Delta$ Mcr11 DrrS empty, co И эта продолжительность жизни была приближена к продолжительности жизни мышей, инфицированных штаммом wt-empty, то есть в результате комплементации делеций двух малых РНК Mcr11 и DrrS происходило «восстановление» штамма с возвратом к фенотипу дикого типа (рис. 31).

Рис. 31. Динамика гибели восприимчивых к ТБ мышей линии I/st после заражения штаммами *M. tuberculosis* (синяя линия – штамм wt-empty с пустой плазмидой, жёлтая линия – штамм ΔΔMcr11_DrrS_empty с пустой плазмидой, зелёная – штамм с комплементацией делеции двух малых PHK ΔΔMcr11_DrrS_comp).

Таким образом, инфекция мышей чувствительных и резистентных к ТБ линий мышей *M. tuberculosis* $\Delta DrrS$ приводит к увеличению времени жизни животных, а штаммом $\Delta Mcr11$ и $\Delta \Delta DrrS_Mcr11 - \kappa$ сокращению времени жизни животных по сравнению с их временем жизни при инфекции штаммом wt. Комплементация удаленных генов малых PHK в штамме $\Delta \Delta DrrS_Mcr11$ с получением штамма $\Delta \Delta DrrS_Mcr11_comp$ приводила к восстановлению в мутантном штамме фенотипа, характерного для штамма wt. Полученный в экспериментах *in vivo* результат наглядно показывает участие малых PHK DrrS и Mcr11 в регуляции биохимических процессов, связанных с взаимодействием патогена и организмом хозяина при инфекции.

ЗАКЛЮЧЕНИЕ

В ходе работы были впервые получены и изучены штаммы *M. tuberculosis* с делециями генов малых PHK DrrS и Mcr11, которые предположительно являются регуляторами биохимических процессов, протекающих в клетках патогена *M. tuberculosis* при инфекции. При анализе транскриптомов полученных мутантных штаммов с делецией Δ Drrs, Δ Mcr11 и $\Delta\Delta$ DrrS_ Mcr11, а также транскриптомов ранее полученных в нашей лаборатории штаммов с гиперэкспрессией Drrs-over и Mcr11-over был выявлен ряд закономерностей.

Обнаружено, что гиперэкспрессия DrrS приводит К активации транскрипционных регуляторов-металлосенсров, играющих важнейшую роль обеспечении вирулентности штамма *M. tuberculosis* и поддержании В жизнеспособности бактерий при инфекции, а также генов, обеспечивающих адаптацию к неблагоприятным внешним условиям, и факторов патогенности. При этом делеция DrrS, наоборот, вызывает снижение экспрессии генов, кодирующих белки *M. tuberculosis*, ассоциированные с вирулентностью, а также семейство белков PE-PGRS, характерных для патогенных видов рода Mycobacterium. Также наблюдается угнетение центральных метаболических процессов: аэробного дыхания, синтеза АТФ и трансляции, и активация несопряженной НАДН-дегидрогеназы II типа, альтернативных акцепторов электронов, ключевого регулятора покоящегося состояния DosR И контролируемого им DosR-регулона. Кроме того, в транскриптоме штамма $\Delta DrrS$ нами была обнаружена активация маркёров окислительного и нитрозативного стресса, а также белков стрессового ответа.

Гиперэкспрессия Mcr11 вызывает индукцию генов, кодирующих фаговые белки и мобильные генетические элементы, а также некоторые белки системы репарации ДНК. Делеция Mcr11 приводит к активации процессов ремоделирования клеточной стенки, подавления биосинтеза ряда липидов – факторов вирулентности *M. tuberculosis* и изменение экспрессии белков

семейств PE_PGRS и PE/PPE, которые также определяют вирулентность микобактерий.

Также было обнаружено, что в условиях *in vitro* малая PHK DrrS способствует формированию устойчивости клеток к перикисному, нитрозативному и кислотному стрессам, которые являются основными факторами негативного воздействия на клетки *M. tuberculosis* во время их пребывания в фагосоме при инфекции макроорганизма, и сохранению их жизнеспособности. Кроме того, было обнаружено, что малая PHK DrrS способствовала выживанию *M. tuberculosis* при инфекции макрофагов, дифференцированнных из моноцитов клеточной линии THP-1.

Интересно, что после пассирования мутантных штаммов ΔDrrS, ΔMcr11, ΔΔMcr11_DrrS *in vivo* с целью восстановления их вирулентного потенциала было обнаружено угнетение их роста *in vitro* в присутствии высоких концентраций глицерина (6 об.%), более выраженное у штамма с двойной делецией. Мы обнаружили, что одной из мишеней малой PHK DrrS может являться ген Rv3679, кодирующий белок с ATФазной активностью и участвующий в метаболизме глицерина.

Изучение транскриптома костномозговых макрофагов мыши при инфекции их мутантными штаммами, предварительно пассированными *in vivo*, и в особенности, штаммом с двойной делецией ΔΔMcr11_DrrS, выявило дисбаланс иммунных реакций хозяина, а именно: супрессию активации Т-клеточного ответа, изменение экспрессии цитокинов, нарушение процессов клеточного сигналинга и презентации антигенов и др.

Инфекция мутантными штаммами ΔDrrS, ΔMcr11, ΔΔMcr11_DrrS, предварительно пассированными *in vivo*, чувствительных и резистентных к ТБ линий мышей показала, что делеция гена малой PHK DrrS приводила к увеличению времени жизни животных, и, соответственно, ослаблению вирулентных свойств *M. tuberculosis*. А делеция гена малой PHK Mcr11, так же, как и делеция генов обеих малых PHK, приводила к ускоренной гибели мышей обеих линий, то есть усилению вирулентности *M. tuberculosis*. Возможно, при

отсутствии DrrS, которая, как мы показали в предыдущих разделах работы, обеспечивает устойчивость микобактерий к различным видам стрессового воздействия и обеспечивает их выживаемость, клетки *M. tuberculosis* переживающие дисбаланс метаболических реакций, не В состоянии эффективно противостоять стрессовому воздействию co стороны инфицированного организма, что может отрицательно сказываться на их жизнеспособности и вирулентности. Связь наблюдаемых фенотипических отличий мутантных штаммов, обнаруженных в экспериментах *in vivo*, с отсутствием малых PHK DrrS и Mcr11 в геноме M. tuberculosis была подтверждена при восстановлении их делетированных генов путем создания $\Delta\Delta$ Mcr11 DrrS-comp штамма С комплементацией удаленных последовательностей ДНК.

Таким образом, полученные результаты указывают на то, что изучаемые малые PHK DrrS и Mcr11 вовлечены в процессы биохимической регуляции взаимодействия патогена *M. tuberculosis* и макроорганизма при инфекции, и могут оказывать значительное влияние как на успешную адаптацию патогена и сохранение его жизнеспособности при инфекции, так и определять характер течения инфекции для организма-хозяина, модулируя его иммунный ответ.

выводы

1. DrrS играет важную роль в формировании устойчивости клеток *M. tuberculosis* к перекисному, нитрозативному и кислотному стрессам и нехватке компонентов питания, и способствует их выживанию в макрофагах при фагоцитировании.

2. Анализ транскриптома штамма ΔDrrS выявил угнетение центральных метаболических процессов (аэробного дыхания, синтеза ATΦ и трансляции), а также переход на использование альтернативных акцепторов электронов в электрон-транспортной цепи. При этом активировался ключевой регулятор гипоксии DosR и гены контролируемого им DosR-регулона, а также маркёры окислительного и нитрозативного стресса.

3. Транскриптом штамма ∆Mcr11 обнаружил активацию процессов ремоделирования клеточной стенки и подавления биосинтеза факторов вирулентности *M. tuberculosis*.

4. Инфекция костномозговых макрофагов мыши мутантными штаммами *M. tuberculosis* вызывает дисбаланс иммунных peakций макроорганизма, наиболее ярко выраженный в случае штамма ΔΔDrrS_Mcr11 с делецией двух малых PHK.

5. Инфекция мышей штаммом *M. tuberculosis* ΔDrrS приводит к увеличению времени жизни животных, а штаммами ΔMcr11 и ΔΔDrrS_Mcr11 – к сокращению времени жизни животных по сравнению с временем их жизни при инфекции штаммом дикого типа.

6. Малые PHK DrrS и Mcr11 вовлечены в процессы метаболической адаптации *M. tuberculosis* при инфекции и модуляцию иммунного ответа макроорганизма.

139

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. World Health Organization Global Tuberculosis Report 2022. 2.1 TB Incidence.
- 2. Gengenbacher, M.; Kaufmann, S.H.E. Mycobacterium Tuberculosis: Success through Dormancy. *FEMS Microbiol. Rev.* 2012, *36*, 514–532.
- 3. Mukamolova, G.; Salina, E.; Kaprelyants, A. Mechanisms of Latent Tuberculosis: Dormancy and Resuscitation of Mycobacterium Tuberculosis. In *National Institute of Allergy and Infectious Diseases, NIH*; Humana Press, 2008; pp. 83–90.
- 4. Peddireddy, V.; Doddam, S.N.; Ahmed, N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. *Front. Immunol.* 2017, *8*, 239376.
- 5. Papenfort, K.; Vogel, J. Regulatory RNA in Bacterial Pathogens. *Cell Host Microbe* 2010, 8, 116–127.
- 6. Waters, L.S.; Storz, G. Regulatory RNAs in Bacteria. *Cell* 2009, *136*, 615–628.
- 7. Schwenk, S.; Arnvig, K.B. Regulatory RNA in Mycobacterium Tuberculosis, Back to Basics. *Pathog. Dis.* 2018, *76*, 1–12.
- 8. Ажикина, Т.Л.; Игнатов, Д.В.; Салина, Е.Г.; Фурсов, М.В.; Капрельянц, А.С. Роль Малых Некодирующих РНК в Метаболизме Бактерий. *Успехи биологической химии* 2015, *55*, 3–32.
- 9. Arnvig, K.B.; Young, D.B. Identification of Small RNAs in Mycobacterium Tuberculosis. *Mol. Microbiol.* 2009, *73*, 397–408.
- Игнатов Д.В., Тимошина О.Ю.; Логунова Н.Н., Скворцов Т.А.; Ажикина Т.Л. Экспрессия Малых РНК Mycobacterium Tuberculosis в Мышиных Моделях Туберкулезной Инфекции. Биоорг. химия 2014, 40, 253–256.
- Ignatov, D. V.; Salina, E.G.; Fursov, M. V.; Skvortsov, T.A.; Azhikina, T.L.; Kaprelyants, A.S. Dormant Non-Culturable Mycobacterium Tuberculosis Retains Stable Low-Abundant MRNA. *BMC Genomics* 2015, *16*, 1–13.
- 12. Ahmad, S. Pathogenesis, Immunology, and Diagnosis of Latent Mycobacterium Tuberculosis Infection. *Clin. Dev. Immunol.* 2011, 2011.
- 13. Nechaeva, O.B. The State and Prospects of TB Control Service in Russia during the COVID-19 Pandemic. *Tuberc. Lung Dis.* 2021, *98*, 7–19.
- 14. Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; et al. Out-of-Africa Migration and Neolithic Coexpansion of Mycobacterium Tuberculosis with Modern Humans. *Nat. Genet.* 2013, *45*, 1176–1182.
- 15. Bergey's Manual® of Systematic Bacteriology; Springer New York, 2012;
- Brosch, R.; Gordon, S. V.; Marmiesse, M.; Brodin, P.; Buchrieser, C.; Eiglmeier, K.; Garnier, T.; Gutierrez, C.; Hewinson, G.; Kremer, K.; et al. A New Evolutionary Scenario for the Mycobacterium Tuberculosis Complex. *Proc. Natl. Acad. Sci. U. S. A.* 2002, *99*, 3684–3689.
- 17. Gupta, R.S. Impact of Genomics on Clarifying the Evolutionary Relationships amongst Mycobacteria: Identification of Molecular Signatures Specific for the

Tuberculosis-Complex of Bacteria with Potential Applications for Novel Diagnostics and Therapeutics. *High-Throughput* 2018, 7.

- Pathogenesis of Mycobacterium Tuberculosis and Its Interaction with the Host Organism; Pieters, J., McKinney, J.D., Eds.; Current Topics in Microbiology and Immunology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; Vol. 374; ISBN 978-3-642-40231-9.
- 19. Gagneux, S.; Small, P.M. Global Phylogeography of Mycobacterium Tuberculosis and Implications for Tuberculosis Product Development. *Lancet Infect. Dis.* 2007, *7*, 328–337.
- 20. Dulberger, C.L.; Rubin, E.J.; Boutte, C.C. The Mycobacterial Cell Envelope — a Moving Target. *Nat. Rev. Microbiol.* 2020, *18*, 47–59.
- 21. Gago, G.; Diacovich, L.; Gramajo, H. Lipid Metabolism and Its Implication in Mycobacteria–Host Interaction. *Curr. Opin. Microbiol.* 2018, *41*, 36–42.
- 22. Iseman, M. How Is Tuberculosis Transmitted. A Clin. Guid. to Tuberc. 2000 2000.
- 23. Dye, C.; Williams, B.G. The Population Dynamics and Control of Tuberculosis. *Science (80-.).* 2010, *328*, 856–861.
- 24. Bellamy, R.; Ruwende, C.; Corrah, T.; McAdam, K.P.W.J.; Whittle, H.C.; Hill, A.V.S. Variations in the NRAMP1 Gene and Susceptibility to Tuberculosis in West Africans . *N. Engl. J. Med.* 1998, *338*, 640–644.
- Dorman, S.E.; Holland, S.M. Mutation in the Signal-Transducing Chain of the Interferon-γ Receptor and Susceptibility to Mycobacterial Infection. J. Clin. Invest. 1998, 101, 2364–2369.
- 26. Smith, I. Mycobacterium Tuberculosis Pathogenesis and Molecular Determinants of Virulence. *Clin. Microbiol. Rev.* 2003, *16*, 463–496.
- 27. Russell, D.G.; Barry, C.E.; Flynn, J.L. Tuberculosis: What We Don't Know Can, and Does, Hurt Us. *Science* (80-.). 2010, *328*, 852–856.
- 28. Lerner, T.R.; Borel, S.; Gutierrez, M.G. The Innate Immune Response in Human Tuberculosis. *Cell. Microbiol.* 2015, *17*, 1277–1285.
- 29. Hussain Bhat, K.; Mukhopadhyay, S. Macrophage Takeover and the Host-Bacilli Interplay during Tuberculosis. *Future Microbiol.* 2015, *10*, 853–872.
- 30. Moraco, A.H.; Kornfeld, H. Cell Death and Autophagy in Tuberculosis. *Semin. Immunol.* 2014, *26*, 497–511.
- 31. Ehrt, S.; Schnappinger, D. Mycobacterial Survival Strategies in the Phagosome: Defence against Host Stresses. *Cell. Microbiol.* 2009, *11*, 1170–1178.
- Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of Innate Immunity by Mycobacterium Tuberculosis: Is Death an Exit Strategy? *Nat. Rev. Microbiol.* 2010, 8, 668–674.
- Zondervan, N.A.; Van Dam, J.C.J.; Schaap, P.J.; Dos Santos, V.A.P.M.; Suarez-Diez, M. Regulation of Three Virulence Strategies of Mycobacterium Tuberculosis: A Success Story. *Int. J. Mol. Sci.* 2018, *19*, 9–12.
- 34. Russell, D.G.; Cardona, P.J.; Kim, M.J.; Allain, S.; Altare, F. Foamy Macrophages and the Progression of the Human Tuberculosis Granuloma. *Nat.*

Immunol. 2009, 10, 943–948.

- Elkington, P.; Lerm, M.; Kapoor, N.; Mahon, R.; Pienaar, E.; Huh, D.; Kaushal, D.; Schlesinger, L.S. In Vitro Granuloma Models of Tuberculosis: Potential and Challenges. J. Infect. Dis. 2019, 219, 1858–1866.
- 36. Pagán, A.J.; Ramakrishnan, L. Immunity and Immunopathology in the Tuberculous Granuloma. *Cold Spring Harb. Perspect. Med.* 2015, 5.
- 37. Alix, E.; Mukherjee, S.; Roy, C.R. Subversion of Membrane Transport Pathways by Vacuolar Pathogens. J. Cell Biol. 2011, 195, 943–952.
- 38. Cambier, C.J.; Falkow, S.; Ramakrishnan, L. Host Evasion and Exploitation Schemes of Mycobacterium Tuberculosis. *Cell* 2014, *159*, 1497–1509.
- Gröschel, M.I.; Sayes, F.; Simeone, R.; Majlessi, L.; Brosch, R. ESX Secretion Systems: Mycobacterial Evolution to Counter Host Immunity. *Nat. Rev. Microbiol.* 2016, 14, 677–691.
- 40. Ma, Y.; Keil, V.; Sun, J. Characterization of Mycobacterium Tuberculosis EsxA Membrane Insertion: Roles of N- and C-Terminal Flexible Arms and Central Helix-Turn-Helix Motif. *J. Biol. Chem.* 2015, 290, 7314–7322.
- Frehel, C.; De Chastellier, C.; Lang, T.; Rastogi, N. Evidence for Inhibition of Fusion of Lysosomal and Prelysosomal Compartments with Phagosomes in Macrophages Infected with Pathogenic Mycobacterium Avium. *Infect. Immun.* 1986, 52, 252–262.
- 42. Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein Kinase G from Pathogenic Mycobacteria Promotes Survival within Macrophages. *Science* (80-.). 2004, 304, 1800–1804.
- 43. Rajni; Rao, N.; Meena, L.S. Biosynthesis and Virulent Behavior of Lipids Produced by Mycobacterium Tuberculosis: LAM and Cord Factor: An Overview . *Biotechnol. Res. Int.* 2011, 2011, 1–7.
- 44. Goren, M.B.; D'Arcy Hart, P.; Young, M.R.; Armstrong, J.A. Prevention of Phagosome Lysosome Fusion in Cultured Macrophages by Sulfatides of Mycobacterium Tuberculosis. *Proc. Natl. Acad. Sci. U. S. A.* 1976, *73*, 2510–2514.
- 45. Middlebrook, G.; Dubos, R.J.; Pierce, C. Virulence And Morphological Characteristics of Mammalian Tubercle Bacilli. *J. Exp. Med.* 1947, *86*, 175– 184.
- 46. Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; et al. Transcriptional Adaptation of Mycobacterium Tuberculosis within Macrophages: Insights into the Phagosomal Environment. *J. Exp. Med.* 2003, *198*, 693–704.
- 47. Dussurget, O.; Stewart, G.; Neyrolles, O.; Pescher, P.; Young, D.; Marchal, G. Role of Mycobacterium Tuberculosis Copper-Zinc Superoxide Dismutase. *Infect. Immun.* 2001, *69*, 529–533.
- 48. Liao, D.; Fan, Q.; Bao, L. The Role of Superoxide Dismutase in the Survival of Mycobacterium Tuberculosis in Macrophages. *Jpn. J. Infect. Dis.* 2013, *66*, 480–488.

- 49. Pym, A.S.; Saint-Joanis, B.; Cole, S.T. Effect of KatG Mutations on the Virulence of Mycobacterium Tuberculosis and the Implication for Transmission in Humans. *Infect. Immun.* 2002, *70*, 4955–4960.
- 50. Manca, C.; Paul, S.; Barry, C.E.; Freedman, V.H.; Kaplan, G. Mycobacterium Tuberculosis Catalase and Peroxidase Activities and Resistance to Oxidative Killing in Human Monocytes in Vitro. *Infect. Immun.* 1999, 67, 74–79.
- 51. Johnsson, K.; Froland, W.A.; Schultz, P.G. Overexpression, Purification, and Characterization of the Catalase- Peroxidase KatG from Mycobacterium Tuberculosis. *J. Biol. Chem.* 1997, 272, 2834–2840.
- 52. Springer, B.; Master, S.; Sander, P.; Zahrt, T.; McFalone, M.; Song, J.; Papavinasasundaram, K.G.; Colston, M.J.; Boettger, E.; Deretic, V. Silencing of Oxidative Stress Response in Mycobacterium Tuberculosis: Expression Patterns of AhpC in Virulent and Avirulent Strains and Effect of AhpC Inactivation. *Infect. Immun.* 2001, *69*, 5967–5973.
- 53. Adams, K.N.; Takaki, K.; Connolly, L.E.; Wiedenhoft, H.; Winglee, K.; Humbert, O.; Edelstein, P.H.; Cosma, C.L.; Ramakrishnan, L. Drug Tolerance in Replicating Mycobacteria Mediated by a Macrophage-Induced Efflux Mechanism. *Cell* 2011, *145*, 39–53.
- 54. Szumowski, J.D.; Adams, K.N.; Edelstein, P.H.; Ramakrishnan, L. Antimicrobial Efflux Pumps and Mycobacterium Tuberculosis Drug Tolerance: Evolutionary Considerations. In *Current topics in microbiology and immunology*; NIH Public Access, 2012; Vol. 374, pp. 81–108.
- 55. Baker, J.J.; Johnson, B.K.; Abramovitch, R.B. Slow Growth of Mycobacterium Tuberculosis at Acidic PH Is Regulated by PhoPR and Host-Associated Carbon Sources. *Mol. Microbiol.* 2014, *94*, 56–69.
- 56. Laval, T.; Chaumont, L.; Demangel, C. Not Too Fat to Fight: The Emerging Role of Macrophage Fatty Acid Metabolism in Immunity to Mycobacterium Tuberculosis. *Immunol. Rev.* 2021, *301*, 84–97.
- 57. Rombouts, Y.; Neyrolles, O. The Fat Is in the Lysosome: How Mycobacterium Tuberculosis Tricks Macrophages into Storing Lipids. *J. Clin. Invest.* 2023, *133*.
- 58. Mashabela, G.T.; de Wet, T.J.; Warner, D.F. Mycobacterium Tuberculosis Metabolism . *Microbiol. Spectr.* 2019, 7.
- 59. Salina, E.G.; Makarov, V. Mycobacterium Tuberculosis Dormancy: How to Fight a Hidden Danger. *Microorganisms* 2022, *10*.
- 60. Moores, A.; Riesco, A.B.; Schwenk, S.; Arnvig, K.B. Expression, Maturation and Turnover of DrrS, an Unusually Stable, DosR Regulated Small RNA in Mycobacterium Tuberculosis. *PLoS One* 2017, *12*, 1–27.
- 61. Alderwick, L.J.; Birch, H.L.; Mishra, A.K.; Eggeling, L.; Besra, G.S. Structure, Function and Biosynthesis of the Mycobacterium Tuberculosis Cell Wall: Arabinogalactan and Lipoarabinomannan Assembly with a View to Discovering New Drug Targets. In Proceedings of the Biochemical Society Transactions; Biochem Soc Trans, November 2007; Vol. 35, pp. 1325–1328.
- 62. Bloch, K. Fatty Acid Synthases from Mycobacterium Phlei. Methods Enzymol.

1975, 35, 84-90.

- 63. Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S. V.; Eiglmeier, K.; Gas, S.; Barry, C.E.; et al. Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence. *Nature* 1998, *393*, 537–544.
- 64. Pethe, K.; Swenson, D.L.; Alonso, S.; Anderson, J.; Wang, C.; Russell, D.G. Isolation of Mycobacterium Tuberculosis Mutants Defective in the Arrest of Phagosome Maturation. *Proc. Natl. Acad. Sci. U. S. A.* 2004, *101*, 13642–13647.
- Buter, J.; Cheng, T.Y.; Ghanem, M.; Grootemaat, A.E.; Raman, S.; Feng, X.; Plantijn, A.R.; Ennis, T.; Wang, J.; Cotton, R.N.; et al. Mycobacterium Tuberculosis Releases an Antacid That Remodels Phagosomes. *Nat. Chem. Biol.* 2019, *15*, 889–899.
- 66. Cambier, C.J.; Takaki, K.K.; Larson, R.P.; Hernandez, R.E.; Tobin, D.M.; Urdahl, K.B.; Cosma, C.L.; Ramakrishnan, L. Mycobacteria Manipulate Macrophage Recruitment through Coordinated Use of Membrane Lipids. *Nature* 2014, *505*, 218–222.
- 67. Saraav, I.; Singh, S.; Sharma, S. Outcome of Mycobacterium Tuberculosis and Toll-like Receptor Interaction: Immune Response or Immune Evasion? *Immunol. Cell Biol.* 2014, *92*, 741–746.
- 68. Harding, C. V.; Boom, W.H. Regulation of Antigen Presentation by Mycobacterium Tuberculosis: A Role for Toll-like Receptors. *Nat. Rev. Microbiol.* 2010, *8*, 296–307.
- 69. Chang, C.H.; Flavell, R.A. Class Ii Transactivator Regulates the Expression of Multiple Genes Involved in Antigen Presentation. *J. Exp. Med.* 1995, *181*, 765–767.
- Noss, E.H.; Pai, R.K.; Sellati, T.J.; Radolf, J.D.; Belisle, J.; Golenbock, D.T.; Boom, W.H.; Harding, C. V. Toll-Like Receptor 2-Dependent Inhibition of Macrophage Class II MHC Expression and Antigen Processing by 19-KDa Lipoprotein of Mycobacterium Tuberculosis. *J. Immunol.* 2001, *167*, 910–918.
- Bekker, L.G.; Haslett, P.; Maartens, G.; Steyn, L.; Kaplan, G. Thalidomide-Induced Antigen-Specific Immune Stimulation in Patients with Human Immunodeficiency Virus Type 1 and Tuberculosis. J. Infect. Dis. 2000, 181, 954–965.
- Senaldi, G.; Shaklee, C.L.; Mak, T.W.; Ulich, T.R. Corynebacterium Parvumand Mycobacterium Bovis Bacillus Calmette and Guerin-Induced Granuloma Formation in Mice Lacking CD4 and CD8. *Cell. Immunol.* 1999, *193*, 155– 161.
- Balcewicz-Sablinska, M.K.; Keane, J.; Kornfeld, H.; Remold, H.G. Pathogenic Mycobacterium Tuberculosis Evades Apoptosis of Host Macrophages by Release of TNF-R2, Resulting in Inactivation of TNF-α. J. Immunol. 1998, 161, 2636–2641.
- 74. Pai, R.K.; Pennini, M.E.; Tobian, A.A.R.; Canaday, D.H.; Boom, W.H.; Harding, C. V. Prolonged Toll-like Receptor Signaling by Mycobacterium
Tuberculosis and Its 19-Kilodalton Lipoprotein Inhibits Gamma Interferon-Induced Regulation of Selected Genes in Macrophages. *Infect. Immun.* 2004, 72, 6603–6614.

- 75. Cooper, A.M. Cell-Mediated Immune Responses in Tuberculosis. *Annu. Rev. Immunol.* 2009, 27, 393–422.
- 76. Nathan, C.F.; Hibbs, J.B. Role of Nitric Oxide Synthesis in Macrophage Antimicrobial Activity. *Curr. Opin. Immunol.* 1991, *3*, 65–70.
- 77. Chan, J.; Xing, Y.; Magliozzo, R.S.; Bloom, B.R. Killing of Virulent Mycobacterium Tuberculosis by Reactive Nitrogen Intermediates Produced by Activated Murine Macrophages. *J. Exp. Med.* 1992, *175*, 1111–1122.
- 78. Macmicking, J.D.; North, R.J.; Lacourse, R.; Mudgett, J.S.; Shah, S.K.; Nathan, C.F. Identification of Nitric Oxide Synthase as a Protective Locus against Tuberculosis. *Proc. Natl. Acad. Sci. U. S. A.* 1997, *94*, 5243–5248.
- 79. Nicholson, S.; Bonecini-Almeida, M.D.G.; Lapa E Silva, J.R.; Nathan, C.; Xie, Q.W.; Mumford, R.; Weidner, J.R.; Calaycay, J.; Geng, J.; Boechat, N.; et al. Inducible Nitric Oxide Synthase in Pulmonary Alveolar Macrophages from Patients with Tuberculosis. *J. Exp. Med.* 1996, *183*, 2293–2302.
- Eruslanov, E.B.; Majorov, K.B.; Orlova, M.O.; Mischenko, V. V.; Kondratieva, T.K.; Apt, A.S.; Lyadova, I. V. Lung Cell Responses to M. Tuberculosis in Genetically Susceptible and Resistant Mice Following Intratracheal Challenge. *Clin. Exp. Immunol.* 2004, *135*, 19–28.
- Martinez, F.O.; Helming, L.; Gordon, S. Alternative Activation of Macrophages: An Immunologic Functional Perspective. *Annu. Rev. Immunol.* 2009, 27, 451–483.
- 82. Storz, G.; Altuvia, S.; Wassarman, K.M. An Abundance of RNA Regulators. *Annu. Rev. Biochem.* 2005, *74*, 199–217.
- 83. Waters, L.S.; Storz, G. Regulatory RNAs in Bacteria. *Cell* 2009, *136*, 615–628.
- 84. Gottesman, S.; Storz, G. Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations. *Cold Spring Harb. Perspect. Biol.* 2011, *3*.
- 85. Repoila, F.; Darfeuille, F. Small Regulatory Non-Coding RNAs in Bacteria: Physiology and Mechanistic Aspects. *Biol. Cell* 2009, *101*, 117–131.
- 86. Britten, R.J.; Davidson, E.H. Gene Regulation for Higher Cells: A Theory. *Science* (80-.). 1969, 165, 349–357.
- Mizuno, T.; Chou, M.Y.; Inouye, M. A Unique Mechanism Regulating Gene Expression: Translational Inhibition by a Complementary RNA Transcript (MicRNA). *Proc. Natl. Acad. Sci. U. S. A.* 1984, *81*, 1966–1970.
- 88. Delihas, N.; Forst, S. MicF: An Antisense RNA Gene Involved in Response of Escherichia Coli to Global Stress Factors. J. Mol. Biol. 2001, 313, 1–12.
- 89. Delihas, N. Discovery and Characterization of the First Non-Coding RNA That Regulates Gene Expression, MicF RNA: A Historical Perspective . *World J. Biol. Chem.* 2015, 6, 272.
- 90. Tomizawa, J.; Itoh, T.; Selzer, G.; Som, T. Inhibition of ColE1 RNA Primer Formation by a Plasmid-Specified Small RNA. *Proc. Natl. Acad. Sci. U. S. A.*

1981, 78, 1421–1425.

- 91. Simons, R.W.; Kleckner, N. Translational Control of IS10 Transposition. *Cell* 1983, *34*, 683–691.
- 92. Livny, J.; Waldor, M.K. Identification of Small RNAs in Diverse Bacterial Species. *Curr. Opin. Microbiol.* 2007, *10*, 96–101.
- 93. Waters, L.S.; Storz, G. Regulatory RNAs in Bacteria. *Cell* 2009, *136*, 615–628.
- 94. Wagner, E.G.H.; Romby, P. Small RNAs in Bacteria and Archaea: Who They Are, What They Do, and How They Do It. *Adv. Genet.* 2015, *90*, 133–208.
- 95. Taneja, S.; Dutta, T. On a Stake-out: Mycobacterial Small RNA Identification and Regulation. *Non-coding RNA Res.* 2019, *4*, 86–95.
- Bossi, L.; Schwartz, A.; Guillemardet, B.; Boudvillain, M.; Figueroa-Bossi, N. A Role for Rho-Dependent Polarity in Gene Regulation by a Noncoding Small RNA. *Genes Dev.* 2012, 26, 1864–1873.
- 97. Papenfort, K.; Vanderpool, C.K. Target Activation by Regulatory RNAs in Bacteria. *FEMS Microbiol. Rev.* 2015, *39*, 362–378.
- 98. Fröhlich, K.S.; Papenfort, K.; Fekete, A.; Vogel, J. A Small RNA Activates CFA Synthase by Isoform-Specific MRNA Stabilization. *EMBO J.* 2013, *32*, 2963–2979.
- Sedlyarova, N.; Shamovsky, I.; Bharati, B.K.; Epshtein, V.; Chen, J.; Gottesman, S.; Schroeder, R.; Nudler, E. SRNA-Mediated Control of Transcription Termination in E. Coli. *Cell* 2016, *167*, 111-121.e13.
- Denham, E.L. The Sponge RNAs of Bacteria How to Find Them and Their Role in Regulating the Post-Transcriptional Network. *Biochim. Biophys. Acta* - *Gene Regul. Mech.* 2020, 1863.
- 101. Gimpel, M.; Brantl, S. Dual-Function Small Regulatory RNAs in Bacteria. *Mol. Microbiol.* 2017, *103*, 387–397.
- 102. Westermann, A.J. Regulatory RNAs in Virulence and Host-Microbe Interactions. *Microbiol. Spectr.* 2018, 6.
- 103. Bobrovskyy, M.; Vanderpool, C.K. The Small RNA SgrS: Roles in Metabolism and Pathogenesis of Enteric Bacteria. *Front. Cell. Infect. Microbiol.* 2014, *4*.
- 104. Jiang, X.; Rossanese, O.W.; Brown, N.F.; Kujat-Choy, S.; Galán, J.E.; Finlay, B.B.; Brumell, J.H. The Related Effector Proteins SopD and SopD2 from Salmonella Enterica Serovar Typhimurium Contribute to Virulence during Systemic Infection of Mice. *Mol. Microbiol.* 2004, *54*, 1186–1198.
- 105. Furuse, Y.; Finethy, R.; Saka, H.A.; Xet-Mull, A.M.; Sisk, D.M.; Jurcic Smith, K.L.; Lee, S.; Coers, J.; Valdivia, R.H.; Tobin, D.M.; et al. Search for MicroRNAs Expressed by Intracellular Bacterial Pathogens in Infected Mammalian Cells. *PLoS One* 2014, 9.
- 106. Westermann, A.J.; Förstner, K.U.; Amman, F.; Barquist, L.; Chao, Y.; Schulte, L.N.; Müller, L.; Stadler, P.F.; Vogel, J. Dual RNA-Seq Unveils Noncoding RNA Functions in Host-Pathogen Interactions. *Nature* 2016, *529*, 496–501.
- 107. Lee, J.; Lee, S.G.; Kim, K.K.; Lim, Y.J.; Choi, J.A.; Cho, S.N.; Park, C.; Song,

C.H. Characterisation of Genes Differentially Expressed in Macrophages by Virulent and Attenuated Mycobacterium Tuberculosis through RNA-Seq Analysis. *Sci. Rep.* 2019, *9*.

- Choi, J.W.; Kim, S.C.; Hong, S.H.; Lee, H.J. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens. J. Dent. Res. 2017, 96, 458– 466.
- 109. Burkert, S.; Schumann, R.R. RNA Sensing of Mycobacterium Tuberculosis and Its Impact on TB Vaccination Strategies. *Vaccines* 2020, 8.
- 110. Arnvig, K.B.; Young, D.B. Non-Coding RNA and Its Potential Role in Mtb Pathogenesis. 2012, 427–436.
- 111. Haning, K.; Cho, S.H.; Contreras, L.M.; Murphy, E.R. Small RNAs in Mycobacteria: An Unfolding Story. *Front. Cell. Microbiol.* 2014, *4*, 1–11.
- 112. Stiens, J.; Arnvig, K.B.; Kendall, S.L.; Nobeli, I. Challenges in Defining the Functional, Non-coding, Expressed Genome of Members of the *Mycobacterium Tuberculosis* Complex. *Mol. Microbiol.* 2022, *117*, 20–31.
- 113. Almatroudi, A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. *Int. J. Mol. Sci.* 2022, 23.
- 114. Jumat, M.I.; Sarmiento, M.E.; Acosta, A.; Chin, K.L. Role of Non-Coding RNAs in Tuberculosis and Their Potential for Clinical Applications. *J. Appl. Microbiol.* 2023, *134*.
- 115. Płociński, P.; Macios, M.; Houghton, J.; Niemiec, E.; Płocińska, R.; Brzostek, A.; Słomka, M.; Dziadek, J.; Young, D.; Dziembowski, A. Proteomic and Transcriptomic Experiments Reveal an Essential Role of RNA Degradosome Complexes in Shaping the Transcriptome of Mycobacterium Tuberculosis. *Nucleic Acids Res.* 2019, *47*, 5892–5905.
- 116. Jonathan Livny, Anja Brencic Stephen Lory, and M.K.W. Identification of 17 Pseudomonas Aeruginosa SRNAs and Prediction of SRNA-Encoding Genes in 10 Diverse Pathogens Using the Bioinformatic Tool SRNAPredict2.
- 117. DiChiara, J.M.; Contreras-Martinez, L.M.; Livny, J.; Smith, D.; McDonough, K.A.; Belfort, M. Multiple Small RNAs Identified in Mycobacterium Bovis BCG Are Also Expressed in Mycobacterium Tuberculosis and Mycobacterium Smegmatis. *Nucleic Acids Res.* 2010, *38*, 4067–4078.
- 118. Arnvig, K.B.; Comas, I.; Thomson, N.R.; Houghton, J.; Boshoff, H.I.; Croucher, N.J.; Rose, G.; Perkins, T.T.; Parkhill, J.; Dougan, G.; et al. Sequence-Based Analysis Uncovers an Abundance of Non-Coding RNA in the Total Transcriptome of Mycobacterium Tuberculosis. *PLoS Pathog.* 2011, 7, e1002342.
- Miotto, P.; Forti, F.; Ambrosi, A.; Pellin, D.; Veiga, D.F.; Balazsi, G.; Gennaro, M.L.; Di Serio, C.; Ghisotti, D.; Cirillo, D.M. Genome-Wide Discovery of Small RNAs in Mycobacterium Tuberculosis. *PLoS One* 2012, 7.
- 120. Pellin, D.; Miotto, P.; Ambrosi, A.; Cirillo, D.M.; Di Serio, C. A Genome-Wide Identification Analysis of Small Regulatory RNAs in Mycobacterium

Tuberculosis by RNA-Seq and Conservation Analysis. PLoS One 2012, 7.

- 121. Wang, M.; Fleming, J.; Li, Z.; Li, C.; Zhang, H.; Xue, Y.; Chen, M.; Zhang, Z.; Zhang, X.E.; Bi, L. An Automated Approach for Global Identification of SRNA-Encoding Regions in RNA-Seq Data from Mycobacterium Tuberculosis. *Acta Biochim. Biophys. Sin. (Shanghai).* 2016, 48, 544–553.
- 122. Dejesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; et al. Comprehensive Essentiality Analysis of the Mycobacterium Tuberculosis Genome via Saturating Transposon Mutagenesis. *MBio* 2017, *8*.
- 123. Gerrick, E.R.; Barbier, T.; Chase, M.R.; Xu, R.; François, J.; Lin, V.H.; Szucs, M.J.; Rock, J.M.; Ahmad, R.; Tjaden, B.; et al. Small RNA Profiling in Mycobacterium Tuberculosis Identifies MrsI as Necessary for an Anticipatory Iron Sparing Response. *Proc. Natl. Acad. Sci.* 2018, *115*, 6464–6469.
- 124. Ami, V.K.G.; Balasubramanian, R.; Hegde, S.R. Genome-Wide Identification of the Context-Dependent SRNA Expression in Mycobacterium Tuberculosis. *BMC Genomics* 2020, *21*.
- 125. Solans, L.; Gonzalo-Asensio, J.; Sala, C.; Benjak, A.; Uplekar, S.; Rougemont, J.; Guilhot, C.; Malaga, W.; Martín, C.; Cole, S.T. The PhoP-Dependent NcRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium Tuberculosis. *PLoS Pathog.* 2014, *10*.
- 126. Wiker, H.G.; Harboe, M. The Antigen 85 Complex: A Major Secretion Product of Mycobacterium Tuberculosis. *Microbiol. Rev.* 1992, *56*, 648–661.
- 127. Flores, A.R.; Parsons, L.M.; Pavelka, M.S. Genetic Analysis of the β-Lactamases of Mycobacterium Tuberculosis and Mycobacterium Smegmatis and Susceptibility to β-Lactam Antibiotics. *Microbiology* 2005, *151*, 521–532.
- 128. Tsai, C.H.; Baranowski, C.; Livny, J.; McDonough, K.A.; Wade, J.T.; Contreras, L.M. Identification of Novel SRNAs in Mycobacterial Species. *PLoS One* 2013, 8, 1–8.
- 129. Prakash, P.; Yellaboina, S.; Ranjan, A.; Hasnain, S.E. Computational Prediction and Experimental Verification of Novel IdeR Binding Sites in the Upstream Sequences of Mycobacterium Tuberculosis Open Reading Frames. *Bioinformatics* 2005, *21*, 2161–2166.
- 130. Walters, S.B.; Dubnau, E.; Kolesnikova, I.; Laval, F.; Daffe, M.; Smith, I. The Mycobacterium Tuberculosis PhoPR Two-Component System Regulates Genes Essential for Virulence and Complex Lipid Biosynthesis. *Mol. Microbiol.* 2006, *60*, 312–330.
- 131. Mai, J.; Rao, C.; Watt, J.; Sun, X.; Lin, C.; Zhang, L.; Liu, J. Mycobacterium Tuberculosis 6C SRNA Binds Multiple MRNA Targets via C-Rich Loops Independent of RNA Chaperones. *Nucleic Acids Res.* 2019, 47, 4292–4307.
- 132. Budell, W.C.; Germain, G.A.; Janisch, N.; McKie-Krisberg, Z.; Jayaprakash, A.D.; Resnick, A.E.; Quadri, L.E.N. Transposon Mutagenesis in Mycobacterium Kansasii Links a Small RNA Gene to Colony Morphology and Biofilm Formation and Identifies 9,885 Intragenic Insertions That Do Not Compromise Colony Outgrowth. *Microbiologyopen* 2020, 9.

- 133. Houghton, J.; Rodgers, A.; Rose, G.; D'Halluin, A.; Kipkorir, T.; Barker, D.; Waddell, S.J.; Arnvig, K.B. The Mycobacterium Tuberculosis SRNA F6 Modifies Expression of Essential Chaperonins, GroEL2 and GroES. *Microbiol. Spectr.* 2021, 9.
- 134. Grigorov, A.; Bychenko, O.; Salina, E.G.; Skvortsova, Y.; Mazurova, A.; Skvortsov, T.; Kaprelyants, A.; Azhikina, T. Small RNA F6 Provides Mycobacterium Smegmatis Entry into Dormancy. *Int. J. Mol. Sci.* 2021, 22, 11536.
- 135. Šiková, M.; Janoušková, M.; Ramaniuk, O.; Páleníková, P.; Pospíšil, J.; Bartl, P.; Suder, A.; Pajer, P.; Kubičková, P.; Pavliš, O.; et al. Ms1 RNA Increases the Amount of RNA Polymerase in Mycobacterium Smegmatis. *Mol. Microbiol.* 2019, *111*, 354–372.
- 136. Houghton, J.; Cortes, T.; Schubert, O.; Rose, G.; Rodgers, A.; De Ste Croix, M.; Aebersold, R.; Young, D.B.; Arnvig, K.B. A Small RNA Encoded in the Rv2660c Locus of Mycobacterium Tuberculosis Is Induced during Starvation and Infection. *PLoS One* 2013, 8.
- 137. Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P.J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A Multistage Tuberculosis Vaccine That Confers Efficient Protection before and after Exposure. *Nat. Med.* 2011, *17*, 189–195.
- 138. Shaaretha Pelly, William R. Bishai, and G.L. A Screen for Non-Coding RNA in Mycobacterium Tuberculosis Reveals a CAMP-Responsive RNA That Is Expressed during Infection. 2012.
- 139. Girardin, R.C.; Bai, G.; He, J.; Sui, H.; McDonough, K.A. AbmR (Rv1265) Is a Novel Transcription Factor of Mycobacterium Tuberculosis That Regulates Host Cell Association and Expression of the Non-Coding Small RNA Mcr11. *Mol. Microbiol.* 2018, *110*, 811–830.
- 140. Girardin, R.C.; McDonough, K.A. Small RNA Mcr11 Requires the Transcription Factor AbmR for Stable Expression and Regulates Genes Involved in the Central Metabolism of Mycobacterium Tuberculosis. *Mol. Microbiol.* 2019, 1–17.
- 141. Piddington, D.L.; Kashkouli, A.; Buchmeier, N.A. Growth of Mycobacterium Tuberculosis in a Defined Medium Is Very Restricted by Acid PH and Mg2+ Levels. *Infect. Immun.* 2000, *68*, 4518–4522.
- 142. MIDDLEBROOK, G.; COHN, M.L. Bacteriology of Tuberculosis: Laboratory Methods. Am. J. Public Health 1958, 48, 844–853.
- 143. Philipp, W.J.; Gordon, S.; Telenti, A.; Cole, S.T. Pulsed Field Gel Electrophoresis for Mycobacteria. *Methods Mol. Biol.* 1998, *101*, 51–63.
- 144. Salina, E.G.; Waddell, S.J.; Hoffmann, N.; Rosenkrands, I.; Butcher, P.D.; Kaprelyants, A.S. Potassium Availability Triggers Mycobacterium Tuberculosis Transition to, and Resuscitation from, Non-Culturable (Dormant) States. *Open Biol.* 2014, *4*, 140106.
- 145. de Man, J.C. The Probability of Most Probable Numbers. Eur. J. Appl. Microbiol. 1975, 1, 67–78.

- 146. Mahenthiralingam, E. Extraction of RNA from Mycobacteria. *Methods Mol. Biol.* 1998, *101*, 65–75.
- 147. Parish, T.; Brown, A.C. *Mycobacteria Protocols*; 2008; Vol. 465; ISBN 9781588298898.
- 148. Butcher, P.D.; Mangan, J.A.; Monahan, I.M. Intracellular Gene Expression. Analysis of RNA from Mycobacteria in Macrophages Using RT-PCR. *Methods Mol. Biol.* 1998, *101*, 285–306.
- 149. Huang, Y.; Sheth, R.U.; Kaufman, A.; Wang, H.H. Scalable and Cost-Effective Ribonuclease-Based RRNA Depletion for Transcriptomics. *Nucleic Acids Res.* 2020, *48*, E20.
- 150. Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. *Nat. Methods* 2012, *9*, 357–359.
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. *Bioinformatics* 2014, *30*, 923–930.
- 152. Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An Integrated Platform for Visualization and Analysis of High-Throughput Sequence-Based Experimental Data. *Bioinformatics* 2012, *28*, 464–469.
- 153. Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. *Genome Biol.* 2014, *15*, 550.
- 154. Shleeva, M.O.; Kudykina, Y.K.; Vostroknutova, G.N.; Suzina, N.E.; Mulyukin, A.L.; Kaprelyants, A.S. Dormant Ovoid Cells of Mycobacterium Tuberculosis Are Formed in Response to Gradual External Acidification. *Tuberculosis* 2011, 91, 146–154.
- 155. Bychenko, O.; Skvortsova, Y.; Ziganshin, R.; Grigorov, A.; Aseev, L.; Ostrik, A.; Kaprelyants, A.; Salina, E.G.; Azhikina, T. Mycobacterium Tuberculosis Small Rna Mts1338 Confers Pathogenic Properties to Non-Pathogenic Mycobacterium Smegmatis. *Microorganisms* 2021, 9, 1–18.
- 156. Gao, C.H.; Yang, M.; He, Z.G. An ArsR-like Transcriptional Factor Recognizes a Conserved Sequence Motif and Positively Regulates the Expression of PhoP in Mycobacteria. *Biochem. Biophys. Res. Commun.* 2011, *411*, 726–731.
- 157. Gao, C. hui; Yang, M.; He, Z.G. Characterization of a Novel ArsR-like Regulator Encoded by Rv2034 in Mycobacterium Tuberculosis. *PLoS One* 2012, 7.
- 158. Ryndak, M.; Wang, S.; Smith, I. PhoP, a Key Player in Mycobacterium Tuberculosis Virulence. *Trends Microbiol.* 2008, *16*, 528–534.
- 159. Park, H.D.; Guinn, K.M.; Harrell, M.I.; Liao, R.; Voskuil, M.I.; Tompa, M.; Schoolnik, G.K.; Sherman, D.R. Rv3133c/DosR Is a Transcription Factor That Mediates the Hypoxic Response of Mycobacterium Tuberculosis. *Mol. Microbiol.* 2003, 48, 833–843.
- Rustad, T.R.; Sherrid, A.M.; Minch, K.J.; Sherman, D.R. Hypoxia: A Window into Mycobacterium Tuberculosis Latency. *Cell. Microbiol.* 2009, *11*, 1151– 1159.

- 161. Bajaj, R.A.; Arbing, M.A.; Shin, A.; Cascio, D.; Miallau, L. Crystal Structure of the Toxin Msmeg_6760, the Structural Homolog of *Mycobacterium Tuberculosis* Rv2035, a Novel Type II Toxin Involved in the Hypoxic Response. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 72, 863–869.
- 162. Hotter, G.S.; Wilson, T.; Collins, D.M. Identification of a Cadmium-Induced Gene in Mycobacterium Bovis and Mycobacterium Tuberculosis. *FEMS Microbiol. Lett.* 2001, 200, 151–155.
- 163. Salina, E.G.; Huszar, S.; Zemanova, J.; Keruchenko, J.; Riabova, O.; Kazakova, E.; Grigorov, A.; Azhikina, T.; Kaprelyants, A.; Mikušova, K.; et al. Copper-Related Toxicity in Replicating and Dormant Mycobacterium Tuberculosis Caused by 1-Hydroxy-5-R-Pyridine-2(1H)-Thiones. *Metallomics* 2018, *10*, 992–1002.
- 164. Ma, R.; Farrell, D.; Gonzalez, G.; Browne, J.A.; Nakajima, C.; Suzuki, Y.; Gordon, S. V. The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in Mycobacterium Bovis. *Front. Microbiol.* 2022, 13, 593.
- 165. Li, Q.; Li, C.; Xie, L.; Zhang, C.; Feng, Y.; Xie, J. Characterization of a Putative ArsR Transcriptional Regulator Encoded by Rv2642 from Mycobacterium Tuberculosis. J. Biomol. Struct. Dyn. 2017, 35, 2031–2039.
- 166. Serra-Vidal, M.; Latorre, I.; Franken, K.; Díaz, J.; de Souza-Galvão, M.; Casas, I.; Maldonado, J.; Milà, C.; Solsona, J.; Jimenez-Fuentes, M.A.; et al. Immunogenicity of 60 Novel Latency-Related Antigens of Mycobacterium Tuberculosis. *Front. Microbiol.* 2014, 5.
- 167. Li, X.; Chen, L.; Liao, J.; Hui, J.; Li, W.; He, Z.G. A Novel Stress-Inducible CmtR-ESX3-Zn2+regulatory Pathway Essential for Survival of Mycobacterium Bovis under Oxidative Stress. J. Biol. Chem. 2020, 295, 17083–17099.
- Lucarelli, D.; Vasil, M.L.; Meyer-Klaucke, W.; Pohl, E. The Metal-Dependent Regulators FurA and FurB from Mycobacterium Tuberculosis. *Int. J. Mol. Sci.* 2008, 9, 1548–1560.
- 169. Yang, M.; Jia, S.-H.; Tao, H.-L.; Zhu, C.; Jia, W.-Z.; Hu, L.-H.; Gao, C.-H. Cd(II)-Binding Transcriptional Regulator Interacts with Isoniazid and Regulates Drug Susceptibility in Mycobacteria. J. Biochem. 2021, 169, 43–53.
- 170. Hudock, T.A.; Foreman, T.W.; Bandyopadhyay, N.; Gautam, U.S.; Veatch, A. V.; LoBato, D.N.; Gentry, K.M.; Golden, N.A.; Cavigli, A.; Mueller, M.; et al. Hypoxia Sensing and Persistence Genes Are Expressed during the Intragranulomatous Survival of Mycobacterium Tuberculosis. *Am. J. Respir. Cell Mol. Biol.* 2017, *56*, 637–647.
- 171. Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a Nutrient Starvation Model of Mycobacterium Tuberculosis Persistence by Gene and Protein Expression Profiling. *Mol. Microbiol.* 2002, *43*, 717–731.
- 172. Bertholet, S.; Ireton, G.C.; Kahn, M.; Guderian, J.; Mohamath, R.; Stride, N.; Laughlin, E.M.; Baldwin, S.L.; Vedvick, T.S.; Coler, R.N.; et al. Identification of Human T Cell Antigens for the Development of Vaccines against Mycobacterium Tuberculosis . J. Immunol. 2008, 181, 7948–7957.

- 173. Clemmensen, H.S.; Dube, J.Y.; McIntosh, F.; Rosenkrands, I.; Jungersen, G.; Aagaard, C.; Andersen, P.; Behr, M.A.; Mortensen, R. In Vivo Antigen Expression Regulates Cd4 t Cell Differentiation and Vaccine Efficacy against Mycobacterium Tuberculosis Infection. *MBio* 2021, *12*.
- 174. Qian, J.; Chen, R.; Wang, H.; Zhang, X. Role of the PE/PPE Family in Host– Pathogen Interactions and Prospects for Anti-Tuberculosis Vaccine and Diagnostic Tool Design. *Front. Cell. Infect. Microbiol.* 2020, *10*, 594288.
- 175. Huang, Y.; Ge, J.; Yao, Y.; Wang, Q.; Shen, H.; Wang, H. Characterization and Site-Directed Mutagenesis of the Putative Novel Acyl Carrier Protein Rv0033 and Rv1344 from Mycobacterium Tuberculosis. *Biochem. Biophys. Res. Commun.* 2006, *342*, 618–624.
- 176. Klepp, L.I.; Sabio y Garcia, J.; FabianaBigi Mycobacterial MCE Proteins as Transporters That Control Lipid Homeostasis of the Cell Wall. *Tuberculosis* 2022, *132*.
- 177. Serafini, A. Interplay between Central Carbon Metabolism and Metal Homeostasis in Mycobacteria and Other Human Pathogens. *Microbiol.* (*United Kingdom*) 2021, *167*, 001060.
- 178. Kumar, A.; Majid, M.; Kunisch, R.; Rani, P.S.; Qureshi, I.A.; Lewin, A.; Hasnain, S.E.; Ahmed, N. Mycobacterium Tuberculosis DosR Regulon Gene Rv0079 Encodes a Putative, "Dormancy Associated Translation Inhibitor (DATIN)." *PLoS One* 2012, 7.
- 179. Berney, M.; Greening, C.; Hards, K.; Collins, D.; Cook, G.M. Three Different [NiFe] Hydrogenases Confer Metabolic Flexibility in the Obligate Aerobe Mycobacterium Smegmatis. *Environ. Microbiol.* 2014, *16*, 318–330.
- 180. Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E. V. The COG Database: A Tool for Genome-Scale Analysis of Protein Functions and Evolution. *Nucleic Acids Res.* 2000, *28*, 33–36.
- Muñoz-Elías, E.J.; Upton, A.M.; Cherian, J.; McKinney, J.D. Role of the Methylcitrate Cycle in Mycobacterium Tuberculosis Metabolism, Intracellular Growth, and Virulence. *Mol. Microbiol.* 2006, *60*, 1109–1122.
- 182. Dos Vultos, T.; Mestre, O.; Tonjum, T.; Gicquel, B. DNA Repair in Mycobacterium Tuberculosis Revisited. In Proceedings of the FEMS Microbiology Reviews; Oxford Academic, May 1 2009; Vol. 33, pp. 471–487.
- Siegrist, M.S.; Unnikrishnan, M.; McConnell, M.J.; Borowsky, M.; Cheng, T.Y.; Siddiqi, N.; Fortune, S.M.; Moody, D.B.; Rubin, E.J. Mycobacterial Esx-3 Is Required for Mycobactin-Mediated Iron Acquisition. *Proc. Natl. Acad. Sci. U. S. A.* 2009, *106*, 18792–18797.
- 184. Smollett, K.L.; Smith, K.M.; Kahramanoglou, C.; Arnvig, K.B.; Buxton, R.S.; Davis, E.O. Global Analysis of the Regulon of the Transcriptional Repressor LexA, a Key Component of SOS Response in Mycobacterium Tuberculosis. *J. Biol. Chem.* 2012, 287, 22004–22014.
- 185. Talaat, A.M.; Lyons, R.; Howard, S.T.; Johnston, S.A. The Temporal Expression Profile of Mycobacterium Tuberculosis Infection in Mice. *Proc. Natl. Acad. Sci. U. S. A.* 2004, *101*, 4602–4607.

- 186. Parish, T.; Stoker, N.G. Use of Flexible Cassette Method to Generate a Double Unmarked Mycobacterium Tuberculosis TlyA PlcABC Mutant by Gene Replacement. *Microbiology* 2000, *146*, 1969–1975.
- 187. De Maio, F.; Berisio, R.; Manganelli, R.; Delogu, G. PE_PGRS Proteins of Mycobacterium Tuberculosis: A Specialized Molecular Task Force at the Forefront of Host–Pathogen Interaction. *Virulence* 2020, *11*, 898–915.
- 188. Buxton, R.S.; Green, J.; Hunt, D.M.; Kahramanoglou, C.; Stapleton, M.R.; Sweeney, N.P. Long Range Transcriptional Control of Virulence Critical Genes in Mycobacterium Tuberculosis by Nucleoid-Associated Proteins? *Virulence* 2012, *3*, 408–410.
- 189. Bosserman, R.E.; Nguyen, T.T.; Sanchez, K.G.; Chirakos, A.E.; Ferrell, M.J.; Thompson, C.R.; Champion, M.M.; Abramovitch, R.B.; Champion, P.A. WhiB6 Regulation of ESX-1 Gene Expression Is Controlled by a Negative Feedback Loop in Mycobacterium Marinum. *Proc. Natl. Acad. Sci. U. S. A.* 2017, *114*, E10772–E10781.
- 190. Kumar, A.; Manisha; Sangha, G.K.; Shrivastava, A.; Kaur, J. The Immunosuppressive Effects of a Novel Recombinant LipQ (Rv2485c) Protein of Mycobacterium Tuberculosis on Human Macrophage Cell Lines. *Microb. Pathog.* 2017, *107*, 361–367.
- 191. McKinney, J.D.; Höner Zu Bentrup, K.; Muñoz-Elias, E.J.; Miczak, A.; Chen, B.; Chan, W.T.; Swenson, D.; Sacchettini, J.C.; Jacobs, W.R.; Russell, D.G. Persistence of Mycobacterium Tuberculosis in Macrophages and Mice Requires the Glyoxylate Shunt Enzyme Isocitrate Lyase. *Nature* 2000, 406, 735–738.
- 192. Muñoz-Elías, E.J.; McKinney, J.D. Carbon Metabolism of Intracellular Bacteria. *Cell. Microbiol.* 2006, *8*, 10–22.
- 193. Hillas, P.J.; Soto Del Alba, F.; Oyarzabal, J.; Wilks, A.; Ortiz De Montellano, P.R. The AhpC and AhpD Antioxidant Defense System of Mycobacterium Tuberculosis. J. Biol. Chem. 2000, 275, 18801–18809.
- 194. Babu Sait, M.R.; Koliwer-Brandl, H.; Stewart, J.A.; Swarts, B.M.; Jacobsen, M.; Ioerger, T.R.; Kalscheuer, R. PPE51 Mediates Uptake of Trehalose across the mycomembrane of Mycobacterium Tuberculosis. *Sci. Rep.* 2022, *12*, 1–12.
- 195. Wang, Q.; Boshoff, H.I.M.; Harrison, J.R.; Ray, P.C.; Green, S.R.; Wyatt, P.G.; Barry, C.E. PE/PPE Proteins Mediate Nutrient Transport across the Outer Membrane of Mycobacterium Tuberculosis. *Science (80-.).* 2020, *367*, 1147–1151.
- 196. Voskuil, M.I.; Visconti, K.C.; Schoolnik, G.K. Mycobacterium Tuberculosis Gene Expression during Adaptation to Stationary Phase and Low-Oxygen Dormancy. *Tuberculosis* 2004, *84*, 218–227.
- 197. Muttucumaru, D.G.N.; Roberts, G.; Hinds, J.; Stabler, R.A.; Parish, T. Gene Expression Profile of Mycobacterium Tuberculosis in a Non-Replicating State. *Tuberculosis* 2004, *84*, 239–246.
- 198. Kana, B.D.; Weinstein, E.A.; Avarbock, D.; Dawes, S.S.; Rubin, H.; Mizrahi, V. Characterization of the CydAB-Encoded Cytochrome Bd Oxidase from

Mycobacterium Smegmatis. J. Bacteriol. 2001, 183, 7076–7086.

- 199. Yano, T.; Rahimian, M.; Aneja, K.K.; Schechter, N.M.; Rubin, H.; Scott, C.P. Mycobacterium Tuberculosis Type II NADH-Menaquinone Oxidoreductase Catalyzes Electron Transfer through a Two-Site Ping-Pong Mechanism and Has Two Quinone-Binding Sites. *Biochemistry* 2014, *53*, 1179–1190.
- 200. Awasthy, D.; Ambady, A.; Narayana, A.; Morayya, S.; Sharma, U. Roles of the Two Type II NADH Dehydrogenases in the Survival of Mycobacterium Tuberculosis in Vitro. *Gene* 2014, *550*, 110–116.
- 201. Akhtar, S.; Khan, A.; Sohaskey, C.D.; Jagannath, C.; Sarkar, D. Nitrite Reductase NirBD Is Induced and Plays an Important Role during in Vitro Dormancy of Mycobacterium Tuberculosis. *Bacteriol.* 2013, *195*, 4592–4599.
- 202. Салина Е.Г. Транскриптомика Mycobacterium Tuberculosis в Состоянии Покоя и Подходы к Инактивации Покоящихся Клеток.
- 203. Manikandan, K.; Geerlof, A.; Zozulya, A. V.; Svergun, D.I.; Weiss, M.S. Structural Studies on the Enzyme Complex Isopropylmalate Isomerase (LeuCD) from Mycobacterium Tuberculosis. *Proteins Struct. Funct. Bioinforma*. 2011, 79, 35–49.
- 204. Chen, Z.; Hu, Y.; Cumming, B.M.; Lu, P.; Feng, L.; Deng, J.; Steyn, A.J.C.; Chen, S. Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish. *Cell Rep.* 2016, *16*, 2512–2524.
- 205. Sherman, D.R.; Voskuil, M.; Schnappinger, D.; Liao, R.; Harrell, M.I.; Schoolnik, G.K. Regulation of the Mycobacterium Tuberculosis Hypoxic Response Gene Encoding α-Crystallin. *Proc. Natl. Acad. Sci. U. S. A.* 2001, 98, 7534–7539.
- 206. Park, H.D.; Guinn, K.M.; Harrell, M.I.; Liao, R.; Voskuil, M.I.; Tompa, M.; Schoolnik, G.K.; Sherman, D.R. Rv3133c/DosR Is a Transcription Factor That Mediates the Hypoxic Response of Mycobacterium Tuberculosis. *Mol. Microbiol.* 2003, 48, 833–843.
- 207. De Majumdar, S.; Vashist, A.; Dhingra, S.; Gupta, R.; Singh, A.; Challu, V.K.; Ramanathan, V.D.; Kumar, P.; Tyagi, J.S. Appropriate DevR (DosR)-Mediated Signaling Determines Transcriptional Response, Hypoxic Viability and Virulence of Mycobacterium Tuberculosis. *PLoS One* 2012, 7, e35847.
- 208. Voskuil, M.I.; Schnappinger, D.; Visconti, K.C.; Harrell, M.I.; Dolganov, G.M.; Sherman, D.R.; Schoolnik, G.K. Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium Tuberculosis Dormancy Program. J. Exp. Med. 2003, 198, 705–713.
- 209. Sharma, D.; Bose, A.; Shakila, H.; Das, T.K.; Tyagi, J.S.; Ramanathan, V.D. Expression of Mycobacterial Cell Division Protein, FtsZ, and Dormancy Proteins, DevR and Acr, within Lung Granulomas throughout Guinea Pig Infection. *FEMS Immunol. Med. Microbiol.* 2006, 48, 329–336,.
- 210. Peddireddy, V.; Doddam, S.N.; Qureshi, I.A.; Yerra, P.; Ahmed, N. A Putative Nitroreductase from the DosR Regulon of Mycobacterium Tuberculosis Induces Pro-Inflammatory Cytokine Expression via TLR2 Signaling Pathway.

Sci. Rep. 2016, *6*, 1–9.

- 211. Ricagno, S.; de Rosa, M.; Aliverti, A.; Zanetti, G.; Bolognesi, M. The Crystal Structure of FdxA, a 7Fe Ferredoxin from Mycobacterium Smegmatis. *Biochem. Biophys. Res. Commun.* 2007, 360, 97–102.
- Ouellet, H.; Ouellet, Y.; Richard, C.; Labarre, M.; Wittenberg, B.; Wittenberg, J.; Guertin, M. Truncated Hemoglobin HbN Protects Mycobacterium Bovis from Nitric Oxide. *Proc. Natl. Acad. Sci. U. S. A.* 2002, *99*, 5902–5907.
- 213. Wang, F.; Langley, R.; Gulten, G.; Wang, L.; Sacchettini, J.C. Identification of a Type III Thioesterase Reveals the Function of an Operon Crucial for Mtb Virulence. *Chem. Biol.* 2007, *14*, 543–551,.
- 214. Yang, H.; Wang, F.; Guo, X.; Liu, F.; Liu, Z.; Wu, X.; Zhao, M.; Ma, M.; Liu, H.; Qin, L.; et al. Interception of Host Fatty Acid Metabolism by Mycobacteria under Hypoxia to Suppress Anti-TB Immunity. *Cell Discov.* 2021, *7*, 1–18.
- 215. Domenech, P.; Honoré, N.; Heym, B.; Cole, S.T. Role of OxyS of Mycobacterium Tuberculosis in Oxidative Stress: Overexpression Confers Increased Sensitivity to Organic Hydroperoxides. *Microbes Infect.* 2001, *3*, 713–721.
- 216. Kapopoulou, A.; Lew, J.M.; Cole, S.T. The MycoBrowser Portal: A Comprehensive and Manually Annotated Resource for Mycobacterial Genomes. *Tuberculosis* 2011, *91*, 8–13.
- 217. Snášel, J.; Machová, I.; Šolínová, V.; Kašička, V.; Krečmerová, M.; Pichová, I. Phosphofructokinases a and b from Mycobacterium Tuberculosis Display Different Catalytic Properties and Allosteric Regulation. *Int. J. Mol. Sci.* 2021, 22, 1–21.
- 218. Cunningham, A.F.; Spreadbury, C.L. Mycobacterial Stationary Phase Induced by Low Oxygen Tension: Cell Wall Thickening and Localization of the 16-Kilodalton α-Crystallin Homolog. J. Bacteriol. 1998, 180, 801–808.
- 219. Li, H.; Tonge, P.J. Characterization of TrpE and PabB from Mycobacterium Tuberculosis. *FASEB J.* 2008, *22*, 791.3-791.3.
- 220. Parish, T.; Stoker, N.G. The Common Aromatic Amino Acid Biosynthesis Pathway Is Essential in Mycobacterium Tuberculosis. *Microbiology* 2002, 148, 3069–3077.
- 221. Augenstreich, J.; Haanappel, E.; Sayes, F.; Simeone, R.; Guillet, V.; Mazeres, S.; Chalut, C.; Mourey, L.; Brosch, R.; Guilhot, C.; et al. Phthiocerol Dimycocerosates From Mycobacterium Tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. *Front. Cell. Infect. Microbiol.* 2020, *10*, 560184.
- 222. Rousseau, C.; Winter, N.; Pivert, E.; Bordat, Y.; Neyrolles, O.; Ave, P.; Huerre, M.; Gicquel, B.; Jackson, M. Production of Phthiocerol Dimycocerosates Protects Mycobacterium Tuberculosis from the Cidal Activity of Reactive Nitrogen Intermediates Produced by Macrophages and Modulates the Early Immune Response to Infection. *Cell. Microbiol.* 2004, *6*, 277–287.
- 223. Pang, J.M.; Layre, E.; Sweet, L.; Sherrid, A.; Moody, D.B.; Ojha, A.; Sherman,

D.R. The Polyketide Pks1 Contributes to Biofilm Formation in Mycobacterium Tuberculosis. J. Bacteriol. 2012, 194, 715–721.

- 224. Drumm, J.E.; Mi, K.; Bilder, P.; Sun, M.; Lim, J.; Bielefeldt-Ohmann, H.; Basaraba, R.; So, M.; Zhu, G.; Tufariello, J.M.; et al. Mycobacterium Tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP-Binding: Requirement for Establishing Chronic Persistent Infection. *PLoS Pathog.* 2009, *5*, e1000460.
- 225. Glass, L.N.; Swapna, G.; Chavadi, S.S.; Tufariello, J.M.; Mi, K.; Drumm, J.E.; Lam, T.T.; Zhu, G.; Zhan, C.; Vilchéze, C.; et al. Mycobacterium Tuberculosis Universal Stress Protein Rv2623 Interacts with the Putative ATP Binding Cassette (ABC) Transporter Rv1747 to Regulate Mycobacterial Growth. *PLOS Pathog.* 2017, *13*, e1006515.
- 226. Leyten, E.M.S.; Lin, M.Y.; Franken, K.L.M.C.; Friggen, A.H.; Prins, C.; van Meijgaarden, K.E.; Voskuil, M.I.; Weldingh, K.; Andersen, P.; Schoolnik, G.K.; et al. Human T-Cell Responses to 25 Novel Antigens Encoded by Genes of the Dormancy Regulon of Mycobacterium Tuberculosis. *Microbes Infect.* 2006, *8*, 2052–2060.
- 227. Black, G.F.; Thiel, B.A.; Ota, M.O.; Parida, S.K.; Adegbola, R.; Boom, W.H.; Dockrell, H.M.; Franken, K.L.M.C.; Friggen, A.H.; Hill, P.C.; et al. Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of Mycobacterium Tuberculosis in Three High-Burden Populations in Africa. *Clin. Vaccine Immunol.* 2009, *16*, 1203–1212.
- 228. Zhang, L.; Ma, H.; Wan, S.; Zhang, Y.; Gao, M.; Liu, X. Mycobacterium Tuberculosis Latency-Associated Antigen Rv1733c SLP Improves the Accuracy of Differential Diagnosis of Active Tuberculosis and Latent Tuberculosis Infection. *Chin. Med. J. (Engl).* 2022, *135*, 63–69.
- 229. Converse, P.J.; Eisenach, K.D.; Theus, S.A.; Nuermberger, E.L.; Tyagi, S.; Ly, L.H.; Geiman, D.E.; Guo, H.; Nolan, S.T.; Akar, N.C.; et al. The Impact of Mouse Passaging of Mycobacterium Tuberculosis Strains Prior to Virulence Testing in the Mouse and Guinea Pig Aerosol Models. *PLoS One* 2010, *5*, e10289.
- 230. Whitaker, M.; Ruecker, N.; Hartman, T.; Klevorn, T.; Andres, J.; Kim, J.; Rhee, K.; Ehrt, S. Two Interacting ATPases Protect Mycobacterium Tuberculosis from Glycerol and Nitric Oxide Toxicity. *J. Bacteriol.* 2020, 202.
- 231. Wright, P.R.; Georg, J.; Mann, M.; Sorescu, D.A.; Richter, A.S.; Lott, S.; Kleinkauf, R.; Hess, W.R.; Backofen, R. CopraRNA and IntaRNA: Predicting Small RNA Targets, Networks and Interaction Domains. *Nucleic Acids Res.* 2014, 42, W119.
- 232. Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. *Nat. Cell Biol.* 2007, 9, 654-659.
- 233. Herbst, S.; Schaible, U.E.; Schneider, B.E. Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis. *PLoS*

One 2011, 6, e19105.

- 234. Jamaati, H.; Mortaz, E.; Pajouhi, Z.; Folkerts, G.; Movassaghi, M.; Moloudizargari, M.; Adcock, I.M.; Garssen, J. Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. *Front. Microbiol.* 2017, 8.
- 235. Braverman, J.; Stanley, S.A. Nitric Oxide Modulates Macrophage Responses to Mycobacterium Tuberculosis Infection through Activation of HIF-1α and Repression of NF-KB . J. Immunol. 2017, 199, 1805–1816.
- 236. Mishra, B.B.; Lovewell, R.R.; Olive, A.J.; Zhang, G.; Wang, W.; Eugenin, E.; Smith, C.M.; Phuah, J.Y.; Long, J.E.; Dubuke, M.L.; et al. Nitric Oxide Prevents a Pathogen-Permissive Granulocytic Inflammation during Tuberculosis. *Nat. Microbiol.* 2017, 2.
- 237. Yang, C.-S.; Yuk, J.-M.; Jo, E.-K. The Role of Nitric Oxide in Mycobacterial Infections. *Immune Netw.* 2009, *9*, 46.
- 238. Glenn, S.M.; Gap-Gaupool, B.; Waddell, S.J.; Bacon, J.; Crosatti, M.; Hincks, J.; Kendall, S.L.; Riabova, O.; Monakhova, N.; Green, J.; et al. Exposure to Nitric Oxide Drives Transition to Resuscitation-Promoting Factor-Dependency in Mycobacteria. *bioRxiv* 2021, 2021.09.28.462152.
- Mootoo, A.; Stylianou, E.; Arias, M.A.; Reljic, R. TNF-α in Tuberculosis: A Cytokine with a Split Personality. *Inflamm. Allergy - Drug Targets* 2009, 8, 53–62.
- 240. Fallahi-Sichani, M.; El-Kebir, M.; Marino, S.; Kirschner, D.E.; Linderman, J.J. Multiscale Computational Modeling Reveals a Critical Role for TNF-α Receptor 1 Dynamics in Tuberculosis Granuloma Formation. J. Immunol. 2011, 186, 3472–3483.
- 241. Etna, M.P.; Giacomini, E.; Severa, M.; Coccia, E.M. Pro-and Anti-Inflammatory Cytokines in Tuberculosis: A Two-Edged Sword in TB Pathogenesis. *Semin. Immunol.* 2014, *26*, 543–551.
- 242. Kapina, M.A.; Shepelkova, G.S.; Avdeenko, V.G.; Guseva, A.N.; Kondratieva, T.K.; Evstifeev, V. V.; Apt, A.S. Interleukin-11 Drives Early Lung Inflammation during Mycobacterium Tuberculosis Infection in Genetically Susceptible Mice. *PLoS One* 2011, 6.
- 243. Ritter, K.; Rousseau, J.; Hölscher, C. Interleukin-27 in Tuberculosis: A Sheep in Wolf's Clothing? *Front. Immunol.* 2022, *12*.
- 244. Reeme, A.E.; Miller, H.E.; Robinson, R.T. IL12B Expression Is Sustained by a Heterogenous Population of Myeloid Lineages during Tuberculosis. *Tuberculosis* 2013, *93*, 343–356.
- 245. Schaunaman, N.; Sanchez, A.; Dimasuay, K.G.; Pavelka, N.; Numata, M.; Alam, R.; Martin, R.J.; Chu, H.W. Interleukin 1 Receptor-like 1 (IL1RL1) Promotes Airway Bacterial and Viral Infection and Inflammation. *Infect. Immun.* 2019, 87.
- 246. Chendi, B.H.; Tveiten, H.; Snyders, C.I.; Tonby, K.; Jenum, S.; Nielsen, S.D.; Hove-Skovsgaard, M.; Walzl, G.; Chegou, N.N.; Dyrhol-Riise, A.M. CCL1 and IL-2Ra Differentiate Tuberculosis Disease from Latent Infection Irrespective of HIV Infection in Low TB Burden Countries. *J. Infect.* 2021, *83*,

433-443.

- 247. Kumar, N.P.; Moideen, K.; Nancy, A.; Viswanathan, V.; Shruthi, B.S.; Sivakumar, S.; Natarajan, M.; Kornfeld, H.; Babu, S. Plasma Chemokines Are Biomarkers of Disease Severity, Higher Bacterial Burden and Delayed Sputum Culture Conversion in Pulmonary Tuberculosis. *Sci. Rep.* 2019, *9*, 1–8.
- 248. Gimm, T.; Wiese, M.; Teschemacher, B.; Deggerich, A.; Schödel, J.; Knaup, K.X.; Hackenbeck, T.; Hellerbrand, C.; Amann, K.; Wiesener, M.S.; et al. Hypoxia-inducible Protein 2 Is a Novel Lipid Droplet Protein and a Specific Target Gene of Hypoxia-inducible Factor-1. *FASEB J.* 2010, 24, 4443–4458.
- 249. Sabir, N.; Hussain, T.; Mangi, M.H.; Zhao, D.; Zhou, X. Matrix Metalloproteinases: Expression, Regulation and Role in the Immunopathology of Tuberculosis. *Cell Prolif.* 2019, *52*, e12649.
- 250. Brilha, S.; Sathyamoorthy, T.; Stuttaford, L.H.; Walker, N.F.; Wilkinson, R.J.; Singh, S.; Moores, R.C.; Elkington, P.T.; Friedland, J.S. Early Secretory Antigenic Target-6 Drives Matrix Metalloproteinase-10 Gene Expression and Secretion in Tuberculosis. *Am. J. Respir. Cell Mol. Biol.* 2017, *56*, 223–232.
- 251. Xiong, C.; Zhan, X.; Xiao, Z. Transcript Levels of Major MMPs and ADAMTS-4 in Relation to the Clinicopathological Profile of Patients with Tuberculous Intervertebral Discs and Healthy Controls. *Clin. Biochem.* 2013, 46, 603–611.
- 252. Maphasa, R.E.; Meyer, M.; Dube, A. The Macrophage Response to Mycobacterium Tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy. *Front. Cell. Infect. Microbiol.* 2021, *10*, 618414.
- 253. Proell, M.; Riedl, S.J.; Fritz, J.H.; Rojas, A.M.; Schwarzenbacher, R. The Nod-Like Receptor (NLR) Family: A Tale of Similarities and Differences. *PLoS One* 2008, *3*.
- 254. Hosseinkhani, N.; Derakhshani, A.; Shadbad, M.A.; Argentiero, A.; Racanelli, V.; Kazemi, T.; Mokhtarzadeh, A.; Brunetti, O.; Silvestris, N.; Baradaran, B. The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead. *Front. Immunol.* 2021, *12*.
- 255. Ohnuma, K.; Uchiyama, M.; Yamochi, T.; Nishibashi, K.; Hosono, O.; Takahashi, N.; Kina, S.; Tanaka, H.; Lin, X.; Dang, N.H.; et al. Caveolin-1 Triggers T-Cell Activation via CD26 in Association with CARMA1. *J. Biol. Chem.* 2007, 282, 10117–10131.
- 256. Martínez-gonzález, J.; Cañes, L.; Alonso, J.; Ballester-servera, C.; Rodríguezsinovas, A.; Corrales, I.; Rodríguez, C. Nr4a3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling and Beyond. *Int. J. Mol. Sci.* 2021, 22.
- 257. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. *Nucleic Acids Res.* 2023, *51*, D638–D646.

приложения

Приложение 1. Транскриптомный анализ штамма DrrS-over в логарифмической фазе роста, $|log_2FC| > 1.5$, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	Rv0168	yrbE1B	Conserved integral membrane protein YrbE1B	-1,67
2	Rv1754c	Rv1754c	Conserved protein	-1,64
3	Rv0169	mce1A	Protein thought to be involved in host cell invasion	-1,61
			(entry and survival inside macrophages)	
4	Rv0033	асрА	Probable acyl carrier protein AcpA (ACP)	-1,57
5	Rv0034	Rv0034	Conserved hypothetical protein	-1,53
6	Rv0620	galK	Probable galactokinase GalK (galactose kinase)	1,50
7	Rv1790	PPE27	PPE family protein PPE27	1,51
8	Rv2656c	Rv2656c	Possible PhiRv2 prophage protein	1,52
9	Rv1955	higB	Possible toxin HigB	1,52
10	Rv3061c	fadE22	Protein involved in lipid degradation	1,52
11	Rv0623	vapB30	Possible antitoxin VapB30	1,53
12	Rv0196	Rv0196	Possible transcriptional regulatory protein	1,56
13	Rv3189	Rv3189	Conserved hypothetical protein	1,57
14	Rv3839	Rv3839	Conserved hypothetical protein	1,58
15	Rv3188	Rv3188	Conserved hypothetical protein	1,59
16	Rv0792c	Rv0792c	Probable transcriptional regulatory protein (probably	1,59
			GntR-family)	
17	Rv0142	Rv0142	Conserved hypothetical protein	1,60
18	Rv3848	Rv3848	Probable conserved transmembrane protein	1,62
19	Rv2737A	Rv2737A	Conserved hypothetical cysteine rich protein	1,65
			(fragment)	
20	Rv2327	Rv2327	Conserved protein	1,65
21	Rv1460	Rv1460	Probable transcriptional regulatory protein	1,65
22	Rv3751	Rv3751	Probable integrase (fragment)	1,67
23	Rv0830	Rv0830	Possible S-adenosylmethionine-dependent	1,67
			methyltransferase	
24	Rv0384c	clpB	Probable endopeptidase ATP binding protein (chain B)	1,69
			ClpB (ClpB protein) (heat shock protein F84.1)	
25	Rv0612	Rv0612	Conserved hypothetical protein	1,71
26	Rv2353c	PPE39	PPE family protein PPE39	1,72
27	Rv1954A	Rv1954A	Hypothetical protein	1,74
28	Rv2013	Rv2013	Transposase	1,74
29	Rv1991A	mazE6	Antitoxin MazE6	1,76
30	Rv1674c	Rv1674c	Probable transcriptional regulatory protein	1,77
31	Rv1991c	mazF6	Toxin MazF6	1,77
32	Rv2643	arsC	Probable arsenic-transport integral membrane protein	1,82
			ArsC	
33	Rv1528c	papA4	Probable conserved polyketide synthase associated	1,82
			protein PapA4	
34	Rv1806	PE20	PE family protein PE20	1,86

35	Rv0725c	Rv0725c	Conserved hypothetical protein	1,86
36	Rv1993c	Rv1993c	Conserved protein	1,88
37	Rv0724A	Rv0724A	Conserved hypothetical protein	1,88
38	Rv2123	PPE37	PPE family protein PPE37	1,96
39	Rv1989c	Rv1989c	Hypothetical protein	1,99
40	Rv3659c	Rv3659c	Conserved hypothetical protein	2,02
41	Rv1990c	Rv1990c	Probable transcriptional regulatory protein	2,04
42	Rv0989c	grcC2	Probable polyprenyl-diphosphate synthase GrcC2	2,05
			(polyprenyl pyrophosphate synthetase)	
43	Rv2035	Rv2035	Conserved hypothetical protein	2,13
44	Rv1994c	cmtR	Metal sensor transcriptional regulator CmtR (ArsR-SmtB	2,14
			family)	
45	Rv2642	Rv2642	Possible transcriptional regulatory protein (probably	2,20
			ArsR-family)	
46	Rv2641	cadI	Cadmium inducible protein Cadl	2,21
47	Rv3182	Rv3182	Conserved hypothetical protein	2,23
48	Rv1395	Rv1395	Transcriptional regulatory protein	2,30
49	Rv3183	Rv3183	Possible transcriptional regulatory protein	2,34
50	Rv3862c	whiB6	Possible transcriptional regulatory protein WhiB-like	2,36
			WhiB6	
51	Rv0826	Rv0826	Conserved hypothetical protein	2,38
52	Rv1357c	Rv1357c	Conserved hypothetical protein	2,44
53	Rv2875	mpt70	Major secreted immunogenic protein Mpt70	2,51
54	Rv3660c	Rv3660c	Conserved hypothetical protein	2,52
55	Rv0251c	hsp	Heat shock protein Hsp (heat-stress-induced ribosome-	2,59
			binding protein A)	
56	Rv1801	PPE29	PPE family protein PPE29	2,84
57	Rv2662	Rv2662	Hypothetical protein	2,88
58	Rv0841	Rv0841	Probable conserved transmembrane protein	2,93
59	Rv2034	Rv2034	ArsR repressor protein	3,08
60	Rv3054c	Rv3054c	Conserved hypothetical protein	3,17

Приложение 2. Транскриптомный анализ штамма DrrS-over в стационарной фазе роста, |log₂FC|> 1.5, padj < 0.01.

r					1
		Локус	Ген	Продукт	log ₂ FC
	1	Rv1158c	Rv1158c	Conserved hypothetical ala-, pro-rich protein	-4,44
	2	Rv2812	Rv2812	Probable transposase	-3,72
	3	Rv3136	PPE51	PPE family protein PPE51	-2,78
	4	Rv2033c	Rv2033c	Conserved hypothetical protein	-2,59
	5	Rv2987c	leuD	Probable 3-isopropylmalate dehydratase (small	-2,59
				subunit) LeuD (isopropylmalate isomerase) (alpha-IPM	
				isomerase) (IPMI)	
	6	Rv0440	groEL2	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL	-2,46
				protein 2) (65 kDa antigen) (heat shock protein 65) (cell	
				wall protein A) (antigen A)	
	7	Rv2947c	pks15	Probable polyketide synthase Pks15	-2,15
	8	Rv2986c	hupB	DNA-binding protein HU homolog HupB (histone-like	-2,14
				protein) (HLP) (21-kDa laminin-2-binding protein)	
	9	Rv3260c	whiB2	Probable transcriptional regulatory protein WhiB-like	-2,05
				WhiB2	
	10	Rv3019c	esxR	Secreted ESAT-6 like protein EsxR (TB10.3) (ESAT-6 like	-1,86
				protein 9)	
	11	Rv1772	Rv1772	Hypothetical protein	-1,81
	12	Rv2988c	leuC	Probable 3-isopropylmalate dehydratase (large subunit)	-1,67
				LeuC (isopropylmalate isomerase) (alpha-IPM	
				isomerase) (IPMI)	
	13	Rv3767c	Rv3767c	Possible S-adenosylmethionine-dependent	-1,61
				methyltransferase	
	14	Rv1690	IprJ	Probable lipoprotein LprJ	-1,56
	15	Rv0516c	Rv0516c	Possible anti-anti-sigma factor	1,52
	16	Rv0084	hycD	Possible formate hydrogenlyase HycD (FHL)	1,99
	17	Rv0087	hycE	Possible formate hydrogenase HycE (FHL)	2,06
	18	Rv0081	Rv0081	Probable transcriptional regulatory protein	2,30
	19	Rv0086	hycQ	Possible hydrogenase HycQ	2,37
	20	Rv0083	Rv0083	Probable oxidoreductase	2,50
	21	Rv1621c	cydD	Probable 'component linked with the assembly of	2,50
				cytochrome' transport transmembrane ATP-binding	
				protein ABC transporter CydD	
	22	Rv1622c	cydB	Probable integral membrane cytochrome D ubiquinol	2,52
				oxidase (subunit II) CydB (cytochrome BD-I oxidase	
	•	D 0000	B 0000		2.64
	23	RV0082	RV0082	Probable oxidoreductase	2,61
	24 25	KVUU85	NYCP avel C	Prossible hydrogenase Hyce	2,64
	25	KV102UC	cyac	Probable component linked with the assembly of	2,88
				cylochrome transport transmembrane ATP-binding	
	26		D./0070	protein ABC transporter CydC	2.02
	20		KVUU/9	Concerned hypothetical protein	3,03
	27	RVUUAU	RVUUSU	Conserved hypothetical protein	3,32

Приложение 3. Транскриптомный анализ штамма Mcr11-over в логарифмической фазе роста, |log₂FC|> 1.5, padj < 0.01.

		Локус	Ген	Продукт	log ₂ FC
-	1	Rv1738	Rv1738	Conserved protein	-1,90
2	2	Rv1588c	Rv1588c	Partial REP13E12 repeat protein	1,50
3	3	Rv3201c	Rv3201c	Probable ATP-dependent DNA helicase	1,54
2	1	Rv2813	Rv2813	Conserved hypothetical protein	1,58
Ę	5	Rv1268c	Rv1268c	Hypothetical protein	1,66
6	5	Rv0150c	Rv0150c	Conserved hypothetical protein	1,67
7	7	Rv1130	prpD	Possible methylcitrate dehydratase PrpD	1,70
8	3	Rv3294c	Rv3294c	Conserved hypothetical protein	1,74
9	Э	Rv2231A	vapC16	Possible toxin VapC16	1,77
1	10	Rv0094c	Rv0094c	Conserved hypothetical protein	1,79
1	11	Rv3202c	Rv3202c	Possible ATP-dependent DNA helicase	1,81
1	12	Rv2100	Rv2100	Conserved hypothetical protein	1,89
1	13	Rv3017c	esxQ	ESAT-6 like protein EsxQ (TB12.9)(ESAT-6 like protein 8)	1,96
1	14	Rv1584c	Rv1584c	Possible PhiRv1 phage protein	2,05
1	15	Rv3467	Rv3467	Conserved hypothetical protein	2,13
1	16	Rv3192	Rv3192	Conserved hypothetical alanine and proline-rich protein	2,36
	17	Rv2657c	Rv2657c	Probable PhiRv2 prophage protein	2,67

Приложение 4. Транскриптомный анализ штамма Mcr11-over в стационарной фазе роста, $|log_2FC| > 1.5$, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	Rv2885c	Rv2885c	Probable transposase	1,68
2	Rv3555c	Rv3555c	Conserved protein	1,69
3	Rv0515	Rv0515	Conserved 13E12 repeat family protein	1,75
4	Rv0336	Rv0336	Conserved 13E12 repeat family protein	1,75
5	Rv2015c	Rv2015c	Conserved hypothetical protein	1,77
6	Rv1277	Rv1277	Conserved hypothetical protein	1,78
7	Rv2978c	Rv2978c	Probable transposase	1,80
8	Rv2720	lexA	Repressor LexA	1,90
9	Rv1588c	Rv1588c	Partial REP13E12 repeat protein	2,02
10	Rv2886c	Rv2886c	Probable resolvase	2,07
11	Rv3074	Rv3074	Conserved hypothetical protein	2,25
12	Rv3395c	Rv3395c	Conserved hypothetical protein	2,30
13	Rv1130	prpD	Possible methylcitrate dehydratase PrpD	2,37
14	Rv3017c	esxQ	ESAT-6 like protein EsxQ (TB12.9)(ESAT-6 like protein 8)	2,39
15	Rv3640c	Rv3640c	Probable transposase	2,46
16	Rv2719c	Rv2719c	Possible conserved membrane protein	2,50
17	Rv3202c	Rv3202c	Possible ATP-dependent DNA helicase	2,51
18	Rv3467	Rv3467	Conserved hypothetical protein	2,58
19	Rv1378c	Rv1378c	Conserved hypothetical protein	2,61
20	Rv3776	Rv3776	Conserved hypothetical protein	2,66
21	Rv0094c	Rv0094c	Conserved hypothetical protein	2,69
22	Rv2030c	Rv2030c	Conserved protein	3,01
23	Rv1583c	Rv1583c	Probable PhiRv1 phage protein	3,29
24	Rv3637	Rv3637	Possible transposase	3,40

Приложение 5. Транскриптомный анализ штамма ΔDrrS в логарифмической фазе роста, |log₂FC|> 1.5, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	Rv2485c	lipQ	Probable carboxylesterase LipQ	-2,39
2	Rv0872c	PE_PGRS15	PE-PGRS family protein PE_PGRS15	-2,14
3	Rv0166	fadD5	Probable fatty-acid-CoA ligase FadD5 (fatty-acid-CoA	-2,13
			synthetase) (fatty-acid-CoA synthase)	
4	Rv3508	PE_PGRS54	PE-PGRS family protein PE_PGRS54	-2,03
5	Rv0165c	mce1R	Probable transcriptional regulatory protein Mce1R	-1,83
			(probably GntR-family)	
6	Rv1066	Rv1066	Conserved hypothetical protein	-1,75
7	Rv0834c	PE_PGRS14	PE-PGRS family protein PE_PGRS14	-1,73
8	Rv0297	PE_PGRS5	PE-PGRS family protein PE_PGRS5	-1,71
9	Rv3613c	Rv3613c	Hypothetical protein	-1,63
10	Rv1506c	Rv1506c	Hypothetical protein	-1,61
11	Rv3514	PE_PGRS57	PE-PGRS family protein PE_PGRS57	-1,59
12	Rv1352	Rv1352	Conserved protein	-1,59
13	Rv3616c	espA	ESX-1 secretion-associated protein A, EspA	-1,57
14	Rv3614c	espD	ESX-1 secretion-associated protein EspD	-1,55
15	Rv1892	Rv1892	Probable membrane protein	-1,54
16	Rv0459	Rv0459	Conserved hypothetical protein	-1,54
17	Rv1087	PE_PGRS21	PE-PGRS family protein PE_PGRS21	-1,53
18	Rv3512	PE_PGRS56	PE-PGRS family protein PE_PGRS56	-1,53
19	Rv0578c	PE_PGRS7	PE-PGRS family protein PE_PGRS7	-1,51
20	Rv0260c	Rv0260c	Possible transcriptional regulatory protein	1,52
21	Rv1758	cut1	Probable cutinase Cut1	1,58
22	Rv3294c	Rv3294c	Conserved hypothetical protein	1,58
23	Rv1805c	Rv1805c	Hypothetical protein	1,59
24	Rv2107	PE22	PE family protein PE22	1,61
25	Rv1807	PPE31	PPE family protein PPE31	1,61
26	Rv0467	icl1	Isocitrate lyase Icl (isocitrase) (isocitratase)	1,65
27	Rv0094c	Rv0094c	Conserved hypothetical protein	1,72
28	Rv1047	Rv1047	Probable transposase	1,72
29	Rv0600c	Rv0600c	Two component sensor kinase [second part]	1,74
30	Rv2450c	rpfE	Probable resuscitation-promoting factor RpfE	1,76
31	Rv1199c	Rv1199c	Possible transposase	1,76
32	Rv1702c	Rv1702c	Conserved hypothetical protein	1,80
33	Rv2578c	Rv2578c	Conserved hypothetical protein	1,82
34	Rv3776	Rv3776	Conserved hypothetical protein	1,84
35	Rv1673c	Rv1673c	Conserved hypothetical protein	1,84
36	Rv1053c	Rv1053c	Hypothetical protein	1,85
37	Rv3074	Rv3074	Conserved hypothetical protein	1,87
38	Rv2813	Rv2813	Conserved hypothetical protein	1,92
39	Rv3115	Rv3115	Probable transposase	1,97
40	Rv2014	Rv2014	Transposase	1,99
41	Rv3467	Rv3467	Conserved hypothetical protein	2,02

42	Rv3128c	Rv3128c	Conserved hypothetical protein	2,12
43	Rv2429	ahpD	Alkyl hydroperoxide reductase D protein AhpD (alkyl	2,38
			hydroperoxidase D)	
44	Rv3136	PPE51	PPE family protein PPE51	2,44
45	Rv3638	Rv3638	Possible transposase	2,53
46	Rv2428	ahpC	Alkyl hydroperoxide reductase C protein AhpC (alkyl	2,84
			hydroperoxidase C)	

Приложение 6. Транскриптомный анализ штамма ΔDrrS в стационарной фазе роста, |log₂FC|> 1.5, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	Rv2056c	rpsN2	30S ribosomal protein S14 RpsN2	-3,12
2	Rv0280	PPE3	PPE family protein PPE3	-3,00
3	Rv2055c	rpsR2	30S ribosomal protein S18 RpsR2	-2,95
4	Rv0105c	rpmB1	50S ribosomal protein L28-1 RpmB1	-2,93
5	Rv2058c	rpmB2	50S ribosomal protein L28 RpmB2	-2,92
6	Rv3149	nuoE	Probable NADH dehydrogenase I (chain E) NuoE	
			(NADH-ubiquinone oxidoreductase chain E)	-2,85
7	Rv0167	yrbE1A	Conserved integral membrane protein YrbE1A	-2,84
8	Rv0166	fadD5	Probable fatty-acid-CoA ligase FadD5	-2,72
9	Rv2057c	rpmG1	50S ribosomal protein L33 RpmG1	-2,71
10	Rv0168	yrbE1B	Conserved integral membrane protein YrbE1B	-2,68
11	Rv0106	Rv0106	Conserved hypothetical protein	-2,67
12	Rv0059	Rv0059	Hypothetical protein	-2,64
13	Rv0165c	mce1R	Probable transcriptional regulatory protein Mce1R	
			(probably GntR-family)	-2,63
14	Rv3146	nuoB	Probable NADH dehydrogenase I (chain B) NuoB	
			(NADH-ubiquinone oxidoreductase chain B)	-2,61
15	Rv1613	trpA	Probable tryptophan synthase, alpha subunit TrpA	-2,61
16	Rv0169	mce1A	Mce-family protein Mce1A	-2,60
17	Rv2060	Rv2060	Possible conserved integral membrane protein	-2,57
18	Rv3145	nuoA	Probable NADH dehydrogenase I (chain A) NuoA	
			(NADH-ubiquinone oxidoreductase chain A)	-2,57
19	Rv3148	nuoD	Probable NADH dehydrogenase I (chain D) NuoD	
			(NADH-ubiquinone oxidoreductase chain D)	-2,51
20	Rv3150	nuoF	Probable NADH dehydrogenase I (chain F) NuoF (NADH-	
			ubiquinone oxidoreductase chain F)	-2,48
21	Rv3477	PE31	PE family protein PE31	-2,45
22	Rv1386	PE15	PE family protein PE15	-2,44
23	Rv3152	nuoH	Probable NADH dehydrogenase I (chain H) NuoH	
			(NADH-ubiquinone oxidoreductase chain H)	-2,40
24	Rv3151	nuoG	Probable NADH dehydrogenase I (chain G) NuoG	
25	B 2000		(NADH-ubiquinone oxidoreductase chain G)	-2,40
25	RV2988C	leuc	Probable 3-isopropyimalate denydratase (large subunit)	
			Leuc (Isopropyimalate Isomerase) (alpha-iPivi	2.20
26			Somerase) (IPIVII)	-2,38
20	RV1158C	KVIIJOC	Truntonhan sunthasa, hata subunit Trap	-2,37
2/	RV1012	пре	Probable NADH debydrogenace L(chain C) NucC	-2,30
20	NV314/	nuoc	(NADH-ubiquinone ovidereductore chain C)	.2.25
20	Rv2087c	ΙουΓ	Probable 3-isonrony/malate dehydratase (small	-2,25
23	111230/0		subunit) LeuD (isonronylmalate isomerase)	-2.24
30	Bv3224A	BV3224A	Conserved hypothetical protein	-2,24
21	Rv175/c	Rv1754c	Conserved protein	-2,21
22	Rv2033c	Rv2033c	Conserved hypothetical protein	-2,21
52	11020330	11120336		-2,10

33	Rv0459	Rv0459	Conserved hypothetical protein	-2.18
34	Rv0173	lprK	Possible Mce-family lipoprotein LprK	-2.18
35	Rv3478	PPE60	PE family protein PPE60	-2.17
36	Rv1549	fadD11.1	Possible fatty-acid-CoA ligase FadD11.1 (fatty-acid-CoA	_,_,
			synthetase)	-2.17
37	Rv0440	groEL2	60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL	_,_,
		0	protein 2) (65 kDa antigen) (heat shock protein 65) (cell	
			wall protein A) (antigen A)	-2.15
38	Rv2590	fadD9	Probable fatty-acid-CoA ligase FadD9 (fatty-acid-CoA	
			synthetase)	-2,15
39	Rv0172	mce1D	Mce-family protein Mce1D	-2,13
40	Rv2074	Rv2074	Possible pyridoxamine 5'-phosphate oxidase (PNP/PMP	
			oxidase) (pyridoxinephosphate oxidase) (PNPOX)	-2,11
41	Rv1387	PPE20	PPE family protein PPE20	-2,11
42	Rv0058	dnaB	Probable replicative DNA helicase DnaB	-2,10
43	Rv1947	Rv1947	Hypothetical protein	-2,10
44	Rv0096	PPE1	PPE family protein PPE1	-2,08
45	Rv0170	mce1B	Mce-family protein Mce1B	-2,07
46	Rv3154	nuoJ	Probable NADH dehydrogenase I (chain J) NuoJ (NADH-	
			ubiquinone oxidoreductase chain J)	-2,05
47	Rv1305	atpE	Probable ATP synthase C chain AtpE (lipid-binding	
			protein) (dicyclohexylcarbodiimide-binding protein)	-2,02
48	Rv3224	Rv3224	Possible iron-regulated short-chain	
			dehydrogenase/reductase	-2,02
49	Rv0379	secE2	Possible protein transport protein SecE2	-2,01
50	Rv1550	fadD11	Probable fatty-acid-CoA ligase FadD11 (fatty-acid-CoA	
			synthetase)	-2,00
51	Rv0171	mce1C	Mce-family protein Mce1C	-1,99
52	Rv3258c	Rv3258c	Conserved hypothetical protein	-1,98
53	Rv1230c	Rv1230c	Possible membrane protein	-1,96
54	Rv2059	Rv2059	Conserved hypothetical protein	-1,96
55	Rv3224B	Rv3224B	Conserved hypothetical protein	-1,95
56	Rv2352c	PPE38	PPE family protein PPE38	-1,91
57	Rv3418c	groES	10 kDa chaperonin GroES (protein CPN10) (protein	
			GroES) (BCG-a heat shock protein) (10 kDa antigen)	-1,91
58	Rv0129c	fbpC	Secreted antigen 85-C FbpC (85C) (antigen 85 complex	
			C) (AG58C) (mycolyl transferase 85C) (fibronectin-	
			binding protein C)	-1,91
59	Rv0226c	Rv0226c	Probable conserved transmembrane protein	-1,91
60	Rv0655	mkl	Possible ribonucleotide-transport ATP-binding protein	
		.	ABC transporter Mkl	-1,90
61	Rv1932	tpx	Probable thiol peroxidase Tpx	-1,90
62	Rv3157	nuoM	Probable NADH dehydrogenase I (chain M) NUOK	4.00
62	D 2450		(NADH-ubiquinone oxidoreductase chain M)	-1,89
63	Rv3156	nuoL	Probable NADH denydrogenase I (chain L) NuoL (NADH-	4.00
	D. 0001	D. 0201	upiquinone oxidoreductase chain L)	-1,89
64	Rv0281	KV0281	Possible S-adenosylmethionine-dependent	4.00
			methyltransferase	-1,89

65	Rv0341	iniB	Isoniazid inductible gene protein IniB	-1,88
66	Rv1611	trpC	Probable indole-3-glycerol phosphate synthase TrpC	-1,88
67	Rv0613c	Rv0613c	Unknown protein	-1,87
68	Rv0097	Rv0097	Possible oxidoreductase	-1,86
69	Rv1133c	metE	Probable 5-methyltetrahydropteroyltriglutamate	
			homocysteine methyltransferase MetE (methionine	
			synthase, vitamin-B12 independent isozyme)	-1,86
70	Rv2150c	ftsZ	Cell division protein FtsZ	-1,85
71	Rv2989	Rv2989	Probable transcriptional regulatory protein	-1,85
72	Rv0935	pstC1	Phosphate-transport integral membrane ABC	
			transporter PstC1	-1,85
73	Rv2351c	plcA	Membrane-associated phospholipase C 1 PlcA (MTP40	
			antigen)	-1,82
74	Rv1437	pgk	Probable phosphoglycerate kinase Pgk	-1,81
75	Rv3747	Rv3747	Conserved protein	-1,80
76	Rv1307	atpH	Probable ATP synthase delta chain AtpH	-1,80
77	Rv3158	nuoN	Probable NADH dehydrogenase I (chain N) NuoN	
			(NADH-ubiquinone oxidoreductase chain N)	-1,78
78	Rv0098	fcoT	Probable fatty acyl CoA thioesterase type III FcoT	-1,77
79	Rv1891	Rv1891	Conserved protein	-1,76
80	Rv0652	rplL	50S ribosomal protein L7/L12 RplL (SA1)	-1,74
81	Rv0859	fadA	Possible acyl-CoA thiolase FadA	-1,74
82	Rv1306	atpF	Probable ATP synthase B chain AtpF	-1,73
83	Rv0061c	Rv0061c	Hypothetical protein	-1,72
84	Rv1478	Rv1478	Possible invasion protein	-1,71
85	Rv1157c	Rv1157c	Conserved ala-, pro-rich protein	-1,71
86	Rv1309	atpG	Probable ATP synthase gamma chain AtpG	-1,71
87	Rv0360c	Rv0360c	Conserved protein	-1,69
88	Rv1435c	Rv1435c	Probable conserved proline, glycine, valine-rich	
			secreted protein	-1,69
89	Rv0706	rplV	50S ribosomal protein L22 RplV	-1,69
90	Rv1244	lpqZ	Probable lipoprotein LpqZ	-1,69
91	Rv1614	lgt	Possible prolipoprotein diacylglyceryl transferases Lgt	-1,68
92	Rv3810	pirG	Exported repetitive protein precursor PirG (cell surface	
	5	5 9999	protein) (EXP53)	-1,68
93	Rv3209	Rv3209	Conserved hypothetical threonine and proline rich	4.67
	D 4000	D 4000	protein	-1,67
94	RV1893	RV1893	Conserved hypothetical protein	-1,67
95	RV1892	RV1892	Probable membrane protein	-1,67
96	RV1233C	RV1233C	Conserved hypothetical membrane protein	-1,66
97	KV3153	nuor	whigh in a private state state in the state state of the state sta	1.65
00		hnoC	Dessible perovidase Pact (pop baom perovidase)	-1,05
30		npi/	Probable iron regulated pontidul probable is trans	-1,62
23	NVUUU9	hhit	isomerase A DriA (DDIase A) (retamase A)	1.60
100	Bv1202	By1202	Conserved hypothetical transmembrane protein	-1,60
100	Rv1/20	tni	Prohable triosenbosnbate isomeraco Thi (TIM)	-1,60
101	Ry26120		Conserved hypothetical protoin	-1,00
102	INVJUIZU	11030120		-1,59

103	Rv1304	atpB	Probable ATP synthase a chain AtpB (protein 6)	-1,56
104	Rv3260c	whiB2	Probable transcriptional regulatory protein WhiB-like	
			WhiB2	-1,56
105	Rv1310	atpD	Probable ATP synthase beta chain AtpD	-1,55
106	Rv3330	dacB1	Probable penicillin-binding protein DacB1 (D-alanyl-D-	
			alanine carboxypeptidase) (DD-peptidase) (DD-	
			carboxypeptidase) (PBP) (DD-transpeptidase) (serine-	
			type D-ala-D-ala carboxypeptidase) (D-amino acid	
			hydrolase)	-1,54
107	Rv1477	ripA	Peptidoglycan hydrolase	-1,54
108	Rv0936	pstA2	Phosphate-transport integral membrane ABC	, ,
			transporter PstA2	-1,54
109	Rv0444c	rskA	Anti-sigma factor RskA (regulator of sigma K)	-1,52
110	Rv2054	Rv2054	Conserved protein	-1,52
111	Rv3797	fadE35	Probable acyl-CoA dehydrogenase FadE35	-1,52
112	Rv3110	moaB1	Probable pterin-4-alpha-carbinolamine dehydratase	, i
			MoaB1 (PHS)	-1,51
113	Rv3124	moaR1	Transcriptional regulatory protein MoaR1	1,51
114	Rv1129c	Rv1129c	Probable transcriptional regulator protein	1,51
115	Rv3893c	PE36	PE family protein PE36	1,51
116	Rv0311	Rv0311	Unknown protein	1,51
117	Rv3837c	Rv3837c	Probable phosphoglycerate mutase	1,51
118	Rv0117	oxyS	Oxidative stress response regulatory protein OxyS	1,51
119	Rv2428	ahpC	Alkyl hydroperoxide reductase C protein AhpC (alkyl	
			hydroperoxidase C)	1,52
120	Rv1290A	Rv1290A	Hypothetical protein	1,52
121	Rv3416	whiB3	Transcriptional regulatory protein WhiB-like WhiB3.	
			Contains [4FE-4S] cluster.	1,53
122	Rv1671	Rv1671	Probable membrane protein	1,53
123	Rv1735c	Rv1735c	Hypothetical membrane protein	1,53
124	Rv1491c	Rv1491c	Conserved membrane protein	1,54
125	Rv0557	mgtA	Mannosyltransferase MgtA	1,54
126	Rv1036c	Rv1036c	Probable IS1560 transposase (fragment)	1,55
127	Rv3744	nmtR	Metal sensor transcriptional regulator (ArsR-SmtB	
			family)	1,55
128	Rv1623c	cydA	Probable integral membrane cytochrome D ubiquinol	
			oxidase (subunit I) CydA	1,55
129	Rv3650	PE33	PE family protein PE33	1,56
130	Rv3013	Rv3013	Conserved protein	1,56
131	Rv3098A	Rv3098A	PemK-like protein	1,56
132	Rv1622c	cydB	Probable integral membrane cytochrome D ubiquinol	
			oxidase (subunit II) CydB	1,57
133	Rv1795	eccD5	ESX conserved component EccD5. ESX-5 type VII	
			secretion system protein. Probable membrane protein.	1,57
134	Rv0327c	cyp135A1	Possible cytochrome P450 135A1 Cyp135A1	1,57
135	Rv1187	rocA	Probable pyrroline-5-carboxylate dehydrogenase RocA	1,57
136	Rv3829c	Rv3829c	Probable dehydrogenase	1,57
137	Rv3230c	Rv3230c	Hypothetical oxidoreductase	1,57

138 Rv0918 Rv0918 Conserved protein 1,59 139 Rv1748 Rv1748 Unknown protein 1,60 141 Rv1780 PE13 PE family protein PE13 1,61 142 Rv1403c Rv1403c Putative methyltransferase 1,61 142 Rv1403c Rv1403c Putative methyltransferase 1,61 144 Rv0491 regX3 Transcriptional regulatory protein ClgR 1,61 144 Rv0491 regX3 Two component sensory transduction protein RegX3 1,66 145 Rv2003c Rv2003c Conserved hypothetical protein 1,66 147 Rv0901 mtn Probable bifunctional MTA/SAH nucleosidase Mtn: 5'- 1,66 148 Rv1794 Rv1794 Conserved hypothetical protein 1,66 149 Rv0257 Rv2077A Conserved hypothetical protein 1,67 151 Rv2577 Rv2577 Conserved hypothetical protein 1,67 153 Rv2577 Rv2577 Conserved hypothetical protein 1,69 </th <th>Î</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Î					
139 Rv1748 Rv1748 Unknown protein 1,60 140 Rv1790 PPE27 PPE family protein PPE27 1,61 141 Rv1703 PPE family protein PE18 1,61 142 Rv1703 Rv1403c Rv1603c		138	Rv0918	Rv0918	Conserved protein	1,59
140 Rv1790 PPE27 PPE family protein PE17 1,61 141 Rv1788 PE18 PE family protein PE18 1,61 142 Rv1403c Rv1403c Putative methyltransferase 1,61 143 Rv2475c clgR Transcriptional regulatory protein ClgR 1,61 144 Rv0401 regX3 Two component sensory transduction protein RegX3 1,66 144 Rv1079 PE13 PE family protein PE13 1,66 147 Rv0091 mt Probable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase 1,66 148 Rv1794 Rv1794 Conserved protein 1,66 1,66 148 Rv1188 Probable proline dehydrogenase 1,67 1,67 151 Rv0277 Rv2577 Conserved hypothetical protein 1,67 153 Rv2141c Conserved protein ParD2 1,69 154 Rv1861 Probable conserved transmembrane protein 1,71 155 Rv21412 parD2 Possible antitoxin ParD2		139	Rv1748	Rv1748	Unknown protein	1,60
141Rv1788PE18PE family protein PE181,61142Rv1403cRv1403cPutative methyltransferase1,61143Rv2745cclgRTranscriptional regulatory protein ClgR1,61144Rv0491regX3Two component sensory transduction protein RegX31,64144Rv2003cRv2003cConserved hypothetical protein1,65146Rv1195PE13PE family protein PE131,66147Rv0091mtnProbable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase1,66148Rv1794Rv1794Conserved protein1,66150Rv1188Rv118Probable proline dehydrogenase1,67153Rv2077ARv2077AConserved hypothetical protein1,67153Rv2141cRv2411cConserved hypothetical protein1,67153Rv2411Rv2411cConserved hypothetical protein1,67154Rv1861Rv1861Probable conserved transmembrane protein1,68155Rv2424Rv2491Conserved hypothetical protein1,71158Rv0258cRv058cConserved hypothetical protein1,71158Rv1796Rv1796Probable crascriptional regulatory protein1,73161Rv0196Rv0381Probable transcriptional regulatory protein1,72158Rv1796Rv1796Probable transcriptional regulatory protein1,76159Rv17976Rv1796Probable conserved hypothetical p		140	Rv1790	PPE27	PPE family protein PPE27	1,61
142Rv1403cRv1403cPutative methyltransferase1,61143Rv2745cclgRTranscriptional regulatory protein ClgR1,61144Rv0491regX3Two component sensory transduction protein RegX3 (transcriptional regulatory protein) (LuXR-family)1,64145Rv2003cRv2003cConserved hypothetical protein1,65146Rv105PE13PE family protein PE131,66147Rv0091mtnProbable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase1,66148Rv1794Rv1794Conserved hypothetical protein1,66150Rv1188Rv1188Probable proline dehydrogenase1,67151Rv2077AConserved hypothetical protein1,67153Rv2577Rv2577Conserved hypothetical protein1,67154Rv1861Rv1861Probable conserved transmembrane protein1,68155Rv2142parD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2411Rv2491Conserved hypothetical protein1,71158Rv0785Rv0785Conserved protein1,73160Rv0081Probable transcriptional regulatory protein1,73161Rv10785Rv0785Conserved protein PE91,76163Rv1088PE9PE family protein PE91,76164Rv179cRv179cPossible transcriptional regulatory protein		141	Rv1788	PE18	PE family protein PE18	1,61
143 Rv2745c clgR Transcriptional regulatory protein ClgR 1,61 144 Rv0491 regX3 Two component sensory transduction protein RegX3 1,64 145 Rv2003c Rv2003c Conserved hypothetical protein 1,65 146 Rv1155 PE13 PE family protein PE13 1,66 147 Rv0091 mtn Probable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase 1,66 148 Rv1794 Kv1794 Conserved hypothetical protein 1,66 149 Rv0257 Rv0257 Conserved hypothetical protein 1,67 150 Rv1188 Rv1188 Probable proline dehydrogenase 1,67 151 Rv2077A Rv2077A Conserved hypothetical protein 1,67 153 Rv2177 Rv2577 Conserved hypothetical protein 1,67 153 Rv2164 Rv1861 Probable conserved transmembrane protein 1,67 154 Rv1841 Rv1861 Probable conserved hypothetical protein 1,71 158 Rv2782		142	Rv1403c	Rv1403c	Putative methyltransferase	1,61
144 Rv0491 regX3 Two component sensory transduction protein RegX3 (transcriptional regulatory protein) (LuxR-family) 1,64 145 Rv2003c Rv2003c Conserved hypothetical protein 1,65 146 Rv1195 PE13 PE family protein PE13 1,66 147 Rv0091 mtn Probable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase 1,66 148 Rv1794 Rv1794 Conserved hypothetical protein 1,66 150 Rv1188 Rv0277 Conserved hypothetical protein 1,67 151 Rv2077A Rv2077A Conserved hypothetical protein 1,67 153 Rv1241 Rv2477 Conserved hypothetical protein 1,67 154 Rv1861 Rv1861 Probable conserved transmembrane protein 1,68 156 Rv0278c PE_PGRS3 PE-PGRS3 1,69 157 Rv2491 Rv2491 Conserved hypothetical protein 1,71 158 Rv0258c Rv0258c Conserved hypothetical protein 1,73 158		143	Rv2745c	clgR	Transcriptional regulatory protein ClgR	1,61
Image(transcriptional regulatory protein) (LuxR-family)1,64145Rv2003cConserved hypothetical protein1,65146Rv1195PE13PE family protein PE131,66147Rv0091mtnProbable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase1,66148Rv1794Rv1794Conserved protein1,66149Rv0257Rv0257Conserved hypothetical protein1,66150Rv1188Rv1188Probable proline dehydrogenase1,67151Rv2777Rv2077AConserved hypothetical protein1,67152Rv2411cRv2411cConserved hypothetical protein1,67153Rv2577Rv2577Conserved hypothetical protein1,67154Rv1861Probable conserved transmembrane protein1,68155Rv24242parD2Possible antitoxin ParD21,69156Rv0278cRv0258cConserved hypothetical protein1,71158Rv279cRv1779cPsible integral membrane protein1,71158Rv0258cRv0258cConserved protein1,76151Rv0196Rv0196Possible transcriptional regulatory protein1,76153Rv275Rv3785Conserved protein1,76154Rv1874Utknown protein PE91,76155Rv2143Rv1874Utknown protein PE491,78166Rv2713sthAProbable conserved lipoprotein LppF1,82167		144	Rv0491	regX3	Two component sensory transduction protein RegX3	
145Rv2003cRv2003cConserved hypothetical protein1,65146Rv1195PE13FE family protein PE131,66147Rv0091mtnProbable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase1,66148Rv1794Rv1794Conserved protein1,66149Rv0257Rv0257Conserved protein1,66150Rv1188Rv1188Probable proline dehydrogenase1,67151Rv2077ARv2077AConserved hypothetical protein1,67152Rv2411cRv2411cConserved hypothetical protein1,67153Rv2577Rv2577Conserved hypothetical protein1,67154Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS4 family protein PE_PGRS31,69157Rv2491Rov2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved protein1,73160Rv081Probable transcriptional regulatory protein1,73161Rv1088PF9PE family protein PE91,76162Rv173sthAProbable soluble pyridine nucleotide transhydrogenase1,80167Rv3027cRv3027cGCN5-related N-acetytransferase1,82168Rv1282PPE49PE family protein PE91,76164Rv1874Vu1874Unknown protein					(transcriptional regulatory protein) (LuxR-family)	1,64
146 Rv1195 PE13 PE family protein PE13 1,66 147 Rv0091 mtn Probable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase 1,66 148 Rv1794 Rv1794 Conserved protein 1,66 149 Rv0257 Rv0257 Conserved hypothetical protein 1,66 150 Rv1188 Probable proline dehydrogenase 1,67 151 Rv2077A Conserved hypothetical protein 1,67 152 Rv2112 Conserved protein 1,67 153 Rv2577 Rv2577 Conserved protein 1,69 154 Rv1861 Probable conserved transmembrane protein 1,68 155 Rv2142A parD Possible antitoxin ParD2 1,69 157 Rv2491 Conserved hypothetical protein 1,71 158 Rv21779c Rv1779c Possible integral membrane protein 1,73 159 Rv1779c Rv1779c Possible transcriptional regulatory protein 1,74 159 Rv1779c Rv1779c		145	Rv2003c	Rv2003c	Conserved hypothetical protein	1,65
147Rv0091mtnProbable bifunctional MTA/SAH nucleosidase Mtn: 5'- methylthioadenosine nucleosidase1,66148Rv1794Rv1794Conserved protein1,66149Rv0257Rv0257Conserved hypothetical protein1,66150Rv1188Rv1188Probable proline dehydrogenase1,67151Rv277ARv2577Conserved hypothetical protein1,67152Rv2411cRv2411cConserved hypothetical protein1,67153Rv2577Rv2577Conserved protein1,67154Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,73160Rv0081Probable transcriptional regulatory protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv327cRv3027cGCN5-related N-acetyltransferase1,80168Rv121cIppFProbable conserved ipoprotein LppF1,82170Rv3637Rv3637Possible transcriptional regulator OxyR', pseudogene1,82171Rv3637Rv3637Possible transposase1,83172Rv2673probable conserved ipoprotein Lp		146	Rv1195	PE13	PE family protein PE13	1,66
methylthioadenosine nucleosidase 1,66 148 Rv1794 Conserved protein 1,66 149 Rv0257 Rv0257 Conserved hypothetical protein 1,66 150 Rv1188 Probable proline dehydrogenase 1,67 151 Rv2077A Rv2077A Conserved hypothetical protein 1,67 152 Rv2111 Rv2161 Probable conserved protein 1,68 153 Rv2577 Rv2577 Conserved protein 1,68 154 Rv1861 Rv1861 Probable conserved transmembrane protein 1,68 155 Rv2142A parD2 Possible antitoxin ParD2 1,69 156 Rv0278c PE_PGRS3 PE-PGRS3 1,69 157 Rv2491 Rv2491 Conserved hypothetical protein 1,71 158 Rv0258c Rv0258c Conserved protein 1,71 159 Rv179c Rv179c Possible transcriptional regulatory protein 1,73 161 Rv0188 PE9 PE family protein PE9 1,76		147	Rv0091	mtn	Probable bifunctional MTA/SAH nucleosidase Mtn: 5'-	
148 Rv1794 Rv1794 Conserved protein 1,66 149 Rv0257 Rv0257 Conserved hypothetical protein 1,67 151 Rv2077A Rv2077A Conserved hypothetical protein 1,67 152 Rv2111 Rv2077A Conserved hypothetical protein 1,67 153 Rv2077 Rv2577 Conserved protein 1,67 154 Rv1861 Probable conserved transmembrane protein 1,68 155 Rv2142A parD2 Possible antitoxin ParD2 1,69 156 Rv0278c PE_PGRS3 PE-PGRS3 1,69 157 Rv2491 Conserved hypothetical protein 1,71 158 Rv0278c Rv0278c Conserved hypothetical protein 1,73 161 Rv0278c Rv0278c Conserved hypothetical protein 1,73 162 Rv079c Rv179c Possible integral membrane protein 1,73 163 Rv0196 Possible transcriptional regulatory protein 1,76 164 Rv1874 Rv1874					methylthioadenosine nucleosidase	1,66
149Rv0257Rv0257Conserved hypothetical protein1,66150Rv1188Rv1188Probable proline dehydrogenase1,67151Rv2077ARv2077AConserved hypothetical protein1,67152Rv2411cRv2411cConserved hypothetical protein1,67153Rv2577Rv2577Conserved protein1,67154Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible transcriptional regulatory protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3225cPPE49PPE family protein PE491,78166Rv121cIppFProbable conserved lipoprotein LppF1,82167Rv3037Rv3637Rv3637Posible transposase1,82178Rv3637Rv3637Posible transposase1,82179Rv3638PE3PPE301,83173Rv1802PPE30PPE family protein PE301,83174Rv0678Rv0		148	Rv1794	Rv1794	Conserved protein	1,66
150Rv1188Rv1188Probable proline dehydrogenase1,67151Rv2077ARv2077AConserved hypothetical protein1,67152Rv2411cRv2411cConserved protein1,67153Rv2577Rv2577Conserved protein1,67154Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2281Conserved hypothetical protein1,71158Rv028cRv028cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Probable transcriptional regulatory protein1,74162Rv0785Rv0285Conserved protein PE91,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein PE91,78165Rv322cPR327cGCN5-related N-acetyltransferase1,80166Rv2713sthAProbable conserved lipoprotein LppF1,82167Rv3027cRv3027cGCN5-related N-acetyltransferase1,82178Rv0678Rv0678Conserved protein1,83178Rv0678Rv0678Conserved protein1,83179Rv3027cRv3637Possible transposase1,82170Rv3637Pnosable conserved integra		149	Rv0257	Rv0257	Conserved hypothetical protein	1,66
151Rv2077ARv2077AConserved hypothetical protein1,67152Rv2411cRv2411cConserved hypothetical protein1,67153Rv2577Rv2577Conserved protein1,67154Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,73160Rv0196Rv0196Possible integral membrane protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PE91,78166Rv2713sthAProbable conserved lipoprotein LppF1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,82178Rv3637Rv3637Possible transposase1,82179Rv3637Rv3637Posible transposase1,82171Rv0678Rv0678Conserved protein CpF1,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv0678Con		150	Rv1188	Rv1188	Probable proline dehydrogenase	1,67
152Rv2411cRv2411cConserved hypothetical protein1,67153Rv2577Rv2577Conserved protein1,67154Rv1861Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,76162Rv0785R00785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv327cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921cIppFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv206otsB1Probable conserved transmembrane protein1,84173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein		151	Rv2077A	Rv2077A	Conserved hypothetical protein	1,67
153Rv2577Rv2577Conserved protein1,67154Rv1861Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,74161Rv0196Rv0196Possible transcriptional regulatory protein1,74162Rv0785Rv0785Conserved protein1,77163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PE491,78166Rv2713sthAProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1678Rv0478Probable conserved integral membrane protein1,84173Rv3637Rv3637Possible transposase1,82174Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83174Rv0678Rv0478Probable conserved t		152	Rv2411c	Rv2411c	Conserved hypothetical protein	1,67
154Rv1861Rv1861Probable conserved transmembrane protein1,68155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv179cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,74161Rv0196Rv0196Possible transcriptional regulatory protein1,76163Rv178sRv0785Conserved protein1,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable conserved lipoprotein LppF1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921clppFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82173Rv0678Rv0678Conserved protein1,83174Rv0578cprebaProbable conserved transmembrane protein1,84177Rv2450crpfEProbable transposase1,82178Rv3637Rv3637Possible transposase1,83174Rv0678Rv0678Conserved protein1,84 <td< td=""><td></td><td>153</td><td>Rv2577</td><td>Rv2577</td><td>Conserved protein</td><td>1,67</td></td<>		153	Rv2577	Rv2577	Conserved protein	1,67
155Rv2142AparD2Possible antitoxin ParD21,69156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,74161Rv0196Possible integral membrane protein1,74162Rv0785Rv0785Conserved protein1,74163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921clppFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicctinic acid phosphoribosyltransferase PncB21,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Probable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,		154	Rv1861	Rv1861	Probable conserved transmembrane protein	1,68
156Rv0278cPE_PGRS3PE-PGRS family protein PE_PGRS31,69157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,76162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable conserved lipoprotein LppF1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Probable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable transcriptional regulatory protein1,83173Rv1802PPE30PPE family protein PPE		155	Rv2142A	parD2	Possible antitoxin ParD2	1,69
157Rv2491Rv2491Conserved hypothetical protein1,71158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,74162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77155Rv2125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921cIppFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82171Rv0678Rv0678Conserved protein1,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved ransmembrane protein1,84177Rv2450crpfEProbable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved integral membrane pro		156	Rv0278c	PE PGRS3	PE-PGRS family protein PE PGRS3	1,69
158Rv0258cRv0258cConserved hypothetical protein1,71159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,74162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv212cPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase1,80168Rv1921clppFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1802PE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Probable conserved integral membrane protein1,84176Rv484Rv0488Probable conserved integral membrane protein1,84177Rv450crpfEProbable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved protein CpsA1,92178Rv460Rv1460 <t< td=""><td></td><td>157</td><td>Rv2491</td><td></td><td>Conserved hypothetical protein</td><td>1,71</td></t<>		157	Rv2491		Conserved hypothetical protein	1,71
159Rv1779cRv1779cPossible integral membrane protein1,73160Rv0081Rv0081Probable transcriptional regulatory protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,74162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase SthA (STH) (NAD(P)(+) transhydrogenase [B-specific])1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,82168Rv1921clppFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,83171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved int		158	Rv0258c	Rv0258c	Conserved hypothetical protein	1,71
160Rv0081Rv0081Probable transcriptional regulatory protein1,73161Rv0196Rv0196Possible transcriptional regulatory protein1,74162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv2125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase SthA (STH) (NAD(P)(+) transhydrogenase [B-specific])1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,82168Rv1921cIpFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3484Probable conserved integral membrane protein1,84176Rv488Rv0488Probable conserved protein CpsA1,92180Rv1460Rv1460Probable conserved protein CpsA1,92178Rv3484Rv0488Probable conserved integral membrane protein1,84177Rv3484Rv0488Probable conserved protein CpsA1,92 <t< td=""><td></td><td>159</td><td>Rv1779c</td><td>Rv1779c</td><td>Possible integral membrane protein</td><td>1,73</td></t<>		159	Rv1779c	Rv1779c	Possible integral membrane protein	1,73
161Rv0196Rv0196Possible transcriptional regulatory protein1,74162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv2125PPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase SthA (STH) (NAD(P)(+) transhydrogenase [B-specific])1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,82168Rv1921cIpFProbable conserved lipoprotein LppF1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3488Probable conserved transmembrane protein1,84176Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved ransmembrane protein1,84176Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved ransmembrane protein1,92178Rv1460Rv1460Probable conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein SxN (protein 5)1,94178Rv14		160	Rv0081	Rv0081	Probable transcriptional regulatory protein	1,73
162Rv0785Rv0785Conserved protein1,76163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921cIppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3488Rv0488Probable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved protein conserved integral membrane protein1,84177Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsA		161	Rv0196	Rv0196	Possible transcriptional regulatory protein	1,74
163Rv1088PE9PE family protein PE91,76164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921cIppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83174Rv0678Rv0678Conserved protein1,84175Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved protein conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv179		162	Rv0785	Rv0785	Conserved protein	1,76
164Rv1874Rv1874Unknown protein1,77165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921clppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable conserved transmembrane protein1,84175Rv3848Rv0678Conserved protein1,84176Rv0488Rv0488Probable conserved transmembrane protein1,84177Rv2450crpfEProbable conserved integral membrane protein1,84176Rv0488Rv0488Probable conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPosble conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		163	Rv1088	PE9	PE family protein PE9	1,76
165Rv3125cPPE49PPE family protein PPE491,78166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase SthA (STH) (NAD(P)(+) transhydrogenase [B-specific])1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921clppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,84176Rv0678Rv0678Conserved protein1,84177Rv2450crpfEProbable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv076cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		164	Rv1874	Rv1874	Unknown protein	1,77
166Rv2713sthAProbable soluble pyridine nucleotide transhydrogenase SthA (STH) (NAD(P)(+) transhydrogenase [B-specific])1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921cIppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,84175Rv3848Rv0678Conserved protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		165	Rv3125c	PPE49	PPE family protein PPE49	1,78
InterpretationSthA (STH) (NAD(P)(+) transhydrogenase [B-specific])1,80167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921cIppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv0488Probable conserved transmembrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		166	Rv2713	sthA	Probable soluble pyridine nucleotide transhydrogenase	, i
167Rv3027cRv3027cGCN5-related N-acetyltransferase1,80168Rv1921clppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv0488Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95					SthA (STH) (NAD(P)(+) transhydrogenase [B-specific])	1,80
168Rv1921cIppFProbable conserved lipoprotein LppF1,82169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		167	Rv3027c	Rv3027c	GCN5-related N-acetyltransferase	1,80
169Rv2427AoxyR'Transcriptional regulator OxyR', pseudogene1,82170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		168	Rv1921c	lppF	Probable conserved lipoprotein LppF	1,82
170Rv3637Rv3637Possible transposase1,82171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv0488Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		169	Rv2427A	oxyR'	Transcriptional regulator OxyR', pseudogene	1,82
171Rv0573cpncB2Nicotinic acid phosphoribosyltransferase PncB21,83172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94182Rv3054cRv3054cConserved hypothetical protein1,95		170	Rv3637	Rv3637	Possible transposase	1,82
172Rv2006otsB1Probable trehalose-6-phosphate phosphatase OtsB11,83173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		171	Rv0573c	pncB2	Nicotinic acid phosphoribosyltransferase PncB2	1,83
173Rv1802PPE30PPE family protein PPE301,83174Rv0678Rv0678Conserved protein1,84175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		172	Rv2006	otsB1	Probable trehalose-6-phosphate phosphatase OtsB1	1,83
174Rv0678Rv0678Conserved protein1,84175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable conserved integral membrane protein1,84178Rv1460Rv1460Probable resuscitation-promoting factor RpfE1,88179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		173	Rv1802	PPE30	PPE family protein PPE30	1,83
175Rv3848Rv3848Probable conserved transmembrane protein1,84176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		174	Rv0678	Rv0678	Conserved protein	1,84
176Rv0488Rv0488Probable conserved integral membrane protein1,84177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		175	Rv3848	Rv3848	Probable conserved transmembrane protein	1,84
177Rv2450crpfEProbable resuscitation-promoting factor RpfE1,88178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		176	Rv0488	Rv0488	Probable conserved integral membrane protein	1,84
178Rv1460Rv1460Probable transcriptional regulatory protein1,92179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		177	Rv2450c	rpfE	Probable resuscitation-promoting factor RpfE	1,88
179Rv3484cpsAPossible conserved protein CpsA1,92180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95	ļ	178	Rv1460	Rv1460	Probable transcriptional regulatory protein	1,92
180Rv1793esxNPutative ESAT-6 like protein EsxN (protein 5)1,94181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95		179	Rv3484	cpsA	Possible conserved protein CpsA	1,92
181Rv0776cRv0776cConserved hypothetical protein1,95182Rv3054cRv3054cConserved hypothetical protein1,95	ļ	180	Rv1793	esxN	Putative ESAT-6 like protein EsxN (protein 5)	1,94
182 Rv3054c Rv3054c Conserved hypothetical protein 1,95	ļ	181	Rv0776c	Rv0776c	Conserved hypothetical protein	1,95
	ļ	182	Rv3054c	Rv3054c	Conserved hypothetical protein	1,95

183	Rv0490	senX3	Putative two component sensor histidine kinase SenX3	1,96
184	Rv3128c	Rv3128c	Conserved hypothetical protein	1,96
185	Rv3620c	esxW	Putative ESAT-6 like protein EsxW (protein 10)	1,97
186	Rv0080	Rv0080	Conserved hypothetical protein	1,97
187	Rv3133c	devR	Two component transcriptional regulatory protein	
			DevR (probably LuxR/UhpA-family)	1,97
188	Rv2451	Rv2451	Hypothetical proline and serine rich protein	2,03
189	Rv2108	PPE36	PPE family protein PPE36	2,05
190	Rv1087A	Rv1087A	Conserved hypothetical protein	2,06
191	Rv1854c	ndh	Probable NADH dehydrogenase Ndh	2,09
192	Rv1706c	PPE23	PPE family protein PPE23	2,09
193	Rv0569	Rv0569	Conserved protein	2,09
194	Rv1034c	Rv1034c	Probable transposase (fragment)	2,10
195	Rv2518c	ldtB	Probable L,D-transpeptidase LdtB	2,11
196	Rv1035c	Rv1035c	Probable transposase (fragment)	2,13
197	Rv1705c	PPE22	PPE family protein PPE22	2,14
198	Rv0612	Rv0612	Conserved hypothetical protein	2,16
199	Rv0079	Rv0079	Unknown protein	2,17
200	Rv1801	PPE29	PPE family protein PPE29	2,18
201	Rv3161c	Rv3161c	Possible dioxygenase	2,18
202	Rv1068c	PE_PGRS20	PE-PGRS family protein PE_PGRS20	2,20
203	Rv2729c	Rv2729c	Probable conserved integral membrane alanine valine	
			and leucine rich protein	2,22
204	Rv2013	Rv2013	Transposase	2,24
205	Rv1791	PE19	PE family protein PE19	2,27
206	Rv2324	Rv2324	Probable transcriptional regulatory protein (probably	
			AsnC-family)	2,28
207	Rv1038c	esxJ	ESAT-6 like protein EsxJ (ESAT-6 like protein 2)	2,28
208	Rv3745c	Rv3745c	Conserved hypothetical protein	2,31
209	Rv2031c	hspX	Heat shock protein HspX (alpha-crystallin homolog) (14	
			kDa antigen) (HSP16.3)	2,34
210	Rv1875	Rv1875	Conserved protein	2,38
211	Rv3619c	esxV	Putative ESAT-6 like protein EsxV (ESAT-6 like protein 1)	2,39
212	Rv2028c	Rv2028c	Universal stress protein family protein	2,39
213	Rv0827c	kmtR	Metal sensor transcriptional regulator KmtR (ArsR-SmtB	
			family)	2,39
214	Rv2779c	Rv2779c	Possible transcriptional regulatory protein (probably	2.40
245	D 4700		Lrp/AshC-family)	2,40
215	RV1/92	esxIVI	ESAT-6 like protein ESXM	2,42
216	Rv3862c	whiB6	Possible transcriptional regulatory protein WhiB-like	2.44
247	D. 2200 -	let.	WNIB6	2,44
21/	KV329UC		Probable L-lysine-epsilon aminotransferase Lat	2,46
218		esxi	Putative ESAT-6 like protein ESXI (ESAT-6 like protein 1)	2,49
219	KVU5/2C	KVU5/2C	Hypothetical protein	2,53
220	KVU/84	KVU/84	Conserved hypothetical protein	2,65
221	KV3289C	KV3289C	Possible transmembrane protein	2,77
222	KV2998A	KV2998A	Conserved hypothetical protein	2,78
223	KV2U3UC	KVZU3UC	conserved protein	2,80

r		1		
224	Rv1996	Rv1996	Universal stress protein family protein	2,84
225	Rv3026c	Rv3026c	Conserved hypothetical protein	2,84
226	Rv1807	PPE31	PPE family protein PPE31	2,85
227	Rv2029c	pfkB	6-phosphofructokinase PfkB (phosphohexokinase)	2,87
228	Rv1806	PE20	PE family protein PE20	
229	Rv1067c	PE_PGRS19	PE-PGRS family protein PE PGRS19	
230	Rv0259c	Rv0259c	Conserved hypothetical protein	3,05
231	Rv2628	Rv2628	Hypothetical protein	3,13
232	Rv1804c	Rv1804c	Conserved protein	3,16
233	Rv1736c	narX	Probable nitrate reductase NarX	3,20
234	Rv2107	PE22	PE family protein PE22	3,32
235	Rv3134c	Rv3134c	Universal stress protein family protein	3,38
236	Rv0267	narU	Probable integral membrane nitrite extrusion protein	,
			NarU (nitrite facilitator)	3,42
237	Rv0260c	Rv0260c	Possible transcriptional regulatory protein	3,54
238	Rv3127	Rv3127	Conserved protein	3.54
239	Rv3131	Rv3131	Conserved protein	3.60
240	Rv1057	Rv1057	Conserved hypothetical protein	3.60
241	Rv3130c	tgs1	Triacylglycerol synthase (diacylglycerol acyltransferase)	-,
		U	Tgs1	3,61
242	Rv0252	nirB	Probable nitrite reductase [NAD(P)H] large subunit	,
			[FAD flavoprotein] NirB	3,64
243	Rv2319c	Rv2319c	Universal stress protein family protein	3,66
244	Rv2780	ald	Secreted L-alanine dehydrogenase Ald (40 kDa antigen)	
			(TB43)	3,67
245	Rv1737c	narK2	Possible nitrate/nitrite transporter NarK2	3,76
246	Rv2626c	hrp1	Hypoxic response protein 1 Hrp1	3,80
247	Rv0253	nirD	Probable nitrite reductase [NAD(P)H] small subunit	
			NirD	3,94
248	Rv2320c	rocE	Probable cationic amino acid transport integral	
			membrane protein RocE	3,95
249	Rv1738	Rv1738	Conserved protein	4,03
250	Rv2321c	rocD2	Probable ornithine aminotransferase (C-terminus part)	
			RocD2 (ornithineoxo-acid aminotransferase)	4,06
251	Rv1541c	lprl	Possible lipoprotein Lprl	4,14
252	Rv1813c	Rv1813c	Conserved hypothetical protein	4,15
253	Rv2007c	fdxA	Ferredoxin FdxA	4,19
254	Rv3126c	Rv3126c	Hypothetical protein	4,21
255	Rv2322c	rocD1	Probable ornithine aminotransferase (N-terminus part)	
			RocD1 (ornithineoxo-acid aminotransferase)	4,22
256	Rv2624c	Rv2624c	Universal stress protein family protein	4,24
257	Rv2032	acg	Conserved protein Acg	4,30
258	Rv2323c	Rv2323c	Conserved protein	4,50
259	Rv1733c	Rv1733c	Probable conserved transmembrane protein	5,18
260	Rv0261c	narK3	Probable integral membrane nitrite extrusion protein	
			NarK3 (nitrite facilitator)	5,22
261	Rv1542c	glbN	Hemoglobin GlbN	5,50
262	Rv2627c	Rv2627c	Conserved protein	5,86

Приложение 7. Транскриптомный анализ штамма ΔMcr11 в логарифмической фазе роста, |log₂FC|> 1.5, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	Rv3514	PE_PGRS57	PE-PGRS family protein PE_PGRS57	-1,92
2	Rv3508	PE_PGRS54	PE-PGRS family protein PE_PGRS54	-1,71
3	Rv1066	Rv1066	Conserved hypothetical protein	-1,66
4	Rv1158c	Rv1158c	Conserved hypothetical ala-, pro-rich protein	-1,64
5	Rv0578c	PE_PGRS7	PE-PGRS family protein PE_PGRS7	-1,53
6	Rv0279c	PE_PGRS4	PE-PGRS family protein PE_PGRS4	-1,53
7	Rv2657c	Rv2657c	Probable PhiRv2 prophage protein	-1,52
8	Rv1199c	Rv1199c	Possible transposase	-1,52
9	Rv2666	Rv2666	Probable transposase for insertion sequence element	
			IS1081 (fragment)	-1,51
10	Rv3108	Rv3108	Hypothetical protein	1,53
11	Rv3862c	whiB6	Possible transcriptional regulatory protein WhiB-like	
			WhiB6	1,60
12	Rv0341	iniB	Isoniazid inductible gene protein IniB	1,66
13	Rv3109	moaA1	Probable molybdenum cofactor biosynthesis protein A	
			MoaA1	1,68
14	Rv3074	Rv3074	Conserved hypothetical protein	1,70
15	Rv3424c	Rv3424c	Hypothetical protein	2,36

Приложение 8. Транскриптомный анализ штамма ΔMcr11 в стационарной фазе роста, |log₂FC|> 1.5, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	Rv3453	Rv3453	Possible conserved transmembrane protein	-4,04
2	Rv0260c	Rv0260c	Possible transcriptional regulatory protein	-3,68
3	Rv2450c	rpfE	Probable resuscitation-promoting factor RpfE	
4	Rv3454	Rv3454	Probable conserved integral membrane protein	-3,54
5	Rv2813	Rv2813	Conserved hypothetical protein	-2,84
6	Rv2541	Rv2541	Hypothetical alanine rich protein	-2,81
7	Rv1405c	Rv1405c	Putative methyltransferase	-2,80
8	Rv0847	lpqS	Probable lipoprotein LpqS	-2,77
9	Rv0833	PE_PGRS13	PE-PGRS family protein PE_PGRS13	-2,74
10	Rv1787	PPE25	PPE family protein PPE25	-2,73
11	Rv1130	prpD	Possible methylcitrate dehydratase PrpD	-2,69
12	Rv3136	PPE51	PPE family protein PPE51	-2,67
13	Rv2098c	PE_PGRS36	PE-PGRS family protein PE_PGRS36	-2,54
14	Rv3135	PPE50	PPE family protein PPE50	-2,52
15	Rv3467	Rv3467	Conserved hypothetical protein	-2,48
16	Rv2395A	aprA	Acid and phagosome regulated protein A AprA	-2,48
17	Rv2769c	PE27	PE family protein PE27	-2,45
18	Rv0867c	rpfA	Possible resuscitation-promoting factor RpfA	-2,44
19	Rv0253	nirD	Probable nitrite reductase [NAD(P)H] small subunit	
			NirD	-2,43
20	Rv2768c	PPE43	PPE family protein PPE43	-2,38
21	Rv0252	nirB	Probable nitrite reductase [NAD(P)H] large subunit	
			[FAD flavoprotein] NirB	-2,38
22	Rv3512	PE_PGRS56	PE-PGRS family protein PE_PGRS56	-2,19
23	Rv1542c	glbN	Hemoglobin GlbN	-2,18
24	Rv0094c	Rv0094c	Conserved hypothetical protein	-2,16
25	Rv1038c	esxJ	ESAT-6 like protein EsxJ (ESAT-6 like protein 2)	-2,16
26	Rv1779c	Rv1779c	Possible integral membrane protein	-2,16
27	Rv1592c	Rv1592c	Conserved hypothetical protein	-2,15
28	Rv3653	PE_PGRS61	PE-PGRS family-related protein PE_PGRS61	-2,14
29	Rv3371	Rv3371	Possible triacylglycerol synthase (diacylglycerol	
20	D. 025C -	0053	acyltransferase)	-2,06
30	RVU256C	PPEZ	PPE family protein PPE2	-2,05
31	RV0453	PPEII	PPE family protein PPE11	-2,03
32	RV2428	anpc	Aikyi nydroperoxide reductase C protein AnpC (aikyi	2.02
22	Dv2012	Dv2012	Conserved protein	-2,03
21	Dv12420		DE DGPS family protoin DE DGPS22	-2,02
25	RV1243C	rL_rGK323	PhenoInthiocerol synthesis type I polykatide synthese	-2,01
35	1172321	hhav	$P_{\text{Dec}}\Delta$	-2.00
36	Rv2162c	DE DUBCAS	PE-PGRS family protein PE_PGRS38	_1 98
37	Rv3590c	PF PGRS58	PE-PGRS family protein PE_PGRS58	-1 97
38	Rv3175	Rv3175	Possible amidase (aminohydrolase)	-1.96
32 33 34 35 36 37 38	Rv2428 Rv3013 Rv1243c Rv2931 Rv2162c Rv3590c Rv3175	ahpC Rv3013 PE_PGRS23 ppsA PE_PGRS38 PE_PGRS58 Rv3175	Alkyl hydroperoxide reductase C protein AhpC (alkyl hydroperoxidase C) Conserved protein PE-PGRS family protein PE_PGRS23 Phenolpthiocerol synthesis type-I polyketide synthase PpsA PE-PGRS family protein PE_PGRS38 PE-PGRS family protein PE_PGRS58 Possible amidase (aminohydrolase)	-2,03 -2,02 -2,01 -2,00 -1,98 -1,97 -1,96

	39	Rv3425	PPF57	PPE family protein PPE57	-1 89
	40	Rv1030	kdnB	Probable notassium-transporting P-type ATPase B chain	1,05
	-0	1101030	Карь	KdnB (notassium-translocating ATPase B chain) (ATP	
				nhosnhohydrolase [notassium-transporting] B chain)	
				(notassium hinding and translocating subunit B)	-1 88
	<i>1</i> 1	Rv1031	kdnC	Probable notassium-transporting ATPase C chain KdpC	1,00
	41	NVIUSI	кирс	(notassium translocating ATPase C chain) (ATP	
				hosphohydrolaso [notassium transporting] (chain)	
				(notassium hinding and translocating subunit C)	1 96
	12	Dv1001		DE DCPS family protoin DE DCPS22	1 96
	42 12	Dv1772	PL_PUN322	Probable hydrolase	-1,00 1 OE
	45 11	NV1725	NV1725	Conserved hypothetical protein	-1,05 1 OE
	44			DE family protoin DEQ	-1,85
	45	RV1040C		PE Tarmity protein PE8	-1,84
	46	RV2126C	PE_PGRS37	PE-PGRS family protein PE_PGRS37	-1,84
	47	RV3138	рпА	Probable pyruvate formate lyase activating protein PfIA	
				(formate acetyltransferase activating enzyme)	4.04
				([pyruvate formate-lyase] activating enzyme)	-1,84
	48	Rv3344c	PE_PGRS49	PE-PGRS family protein PE_PGRS49	-1,83
	49	Rv2429	ahpD	Alkyl hydroperoxide reductase D protein AhpD (alkyl	
				hydroperoxidase D)	-1,82
	50	Rv1057	Rv1057	Conserved hypothetical protein	-1,81
	51	Rv2490c	PE_PGRS43	PE-PGRS family protein PE_PGRS43	-1,79
	52	Rv1441c	PE_PGRS26	PE-PGRS family protein PE_PGRS26	-1,79
	53	Rv2946c	pks1	Probable polyketide synthase Pks1	-1,77
	54	Rv1005c	pabB	Probable para-aminobenzoate synthase component I PABD	-1,75
	55	Rv1037c	esxl	Putative ESAT-6 like protein EsxI (ESAT-6 like protein 1)	-1.74
	56	Rv1818c	PE PGRS33	PE-PGRS family protein PE PGRS33	-1.74
	57	Rv3416	whiB3	Transcriptional regulatory protein WhiB-like WhiB3.	,
	_		_	Contains [4FE-4S] cluster.	-1.73
	58	Rv3174	Rv3174	Probable short-chain dehydrogenase/reductase	-1,72
	59	Rv2372c	Rv2372c	Conserved hypothetical protein	-1.70
	60	Rv2960c	Rv2960c	Hypothetical protein	-1.69
	61	Rv3137	Rv3137	Probable monophosphatase	-1.69
	62	Rv1468c	PF PGRS29	PE-PGRS family protein PE_PGRS29	-1.69
	63	Rv0341	iniB	Isoniazid inductible gene protein IniB	-1.68
	64	Rv0124	PF_PGRS2	PE-PGRS family protein PE_PGRS2	-1 68
	65	Rv2083	Rv2083	Conserved hypothetical protein	-1 66
	66	Rv2932	nnsB	PhenoInthiocerol synthesis type-I nolyketide synthase	1,00
	00	102332	PP30	PpsB	-1,66
	67	Rv1705c	PPE22	PPE family protein PPE22	-1,66
	68	Rv0962c	lprP	Possible lipoprotein LprP	-1,65
l	69	Rv1803c	PE_PGRS32	PE-PGRS family protein PE_PGRS32	-1,65
	70	Rv3370c	dnaE2	Probable DNA polymerase III (alpha chain) DnaE2 (DNA	
				nucleotidyltransferase)	-1,63
l	71	Rv0362	mgtE	Possible Mg2+ transport transmembrane protein MgtE	-1,63
	72	Rv3388	PE_PGRS52	PE-PGRS family protein PE_PGRS52	-1,63
	73	Rv3312A	Rv3312A	Secreted protein antigen	-1,63

74	Rv0980c	PE PGRS18	PE-PGRS family protein PE PGRS18	-1,62
75	Rv1131	prpC	Probable methylcitrate synthase PrpC	-1,62
76	Rv3514	PE PGRS57	PE-PGRS family protein PE PGRS57	-1,62
77	Rv2566		Long conserved protein	-1,61
78	Rv3248c	sahH	Probable adenosylhomocysteinase SahH (S-adenosyl-L-	
			homocysteine hydrolase) (adohcyase)	-1,61
79	Rv1029	kdpA	Probable potassium-transporting ATPase a chain KdpA	
			(potassium-translocating ATPase a chain) (ATP	
			phosphohydrolase [potassium-transporting] a chain)	
			(potassium binding and translocating subunit A)	-1,61
80	Rv1039c	PPE15	PPE family protein PPE15	-1,61
81	Rv2245	kasA	3-oxoacyl-[acyl-carrier protein] synthase 1 KasA (beta-	
			ketoacyl-ACP synthase) (KAS I)	-1,60
82	Rv3345c	PE_PGRS50	PE-PGRS family protein PE_PGRS50	-1,59
83	Rv1004c	Rv1004c	Probable membrane protein	-1,59
84	Rv2539c	aroK	Shikimate kinase AroK (SK)	-1,57
85	Rv2518c	ldtB	Probable L,D-transpeptidase LdtB	-1,56
86	Rv1396c	PE_PGRS25	PE-PGRS family protein PE_PGRS25	-1,56
87	Rv0039c	Rv0039c	Possible conserved transmembrane protein	-1,55
88	Rv1854c	ndh	Probable NADH dehydrogenase Ndh	-1,53
89	Rv1026	Rv1026	Conserved protein	-1,52
90	Rv0784	Rv0784	Conserved hypothetical protein	-1,52
91	Rv0259c	Rv0259c	Conserved hypothetical protein	-1,52
92	Rv3332	nagA	Probable N-acetylglucosamine-6-phosphate	
			deacetylase NagA (GlcNAc 6-P deacetylase)	-1,52
93	Rv2558	Rv2558	Conserved protein	-1,51
94	Rv3342	Rv3342	Possible methyltransferase (methylase)	-1,50
95	Rv2956	Rv2956	Conserved protein	1,51
96	Rv3033	Rv3033	Unknown protein	1,52
97	Rv0911	Rv0911	Conserved protein	1,57
98	Rv0974c	accD2	Probable acetyl-/propionyl-CoA carboxylase (beta	
			subunit) AccD2	1,61
99	Rv3112	moaD1	Probable molybdenum cofactor biosynthesis protein D	
			MoaD1 (molybdopterin converting factor small subunit)	
			(molybdopterin [MPT] converting factor, subunit 1)	1,62
100	Rv0488	Rv0488	Probable conserved integral membrane protein	1,63
101	Rv3114	Rv3114	Conserved hypothetical protein	1,63
102	Rv2338c	moeW	Possible molybdopterin biosynthesis protein MoeW	1,63
103	Rv2353C	PPE39	PPE family protein PPE39	1,63
104	Rv3480c	Rv3480c	Possible triacylglycerol synthase (diacylglycerol	4.64
105	D. 2C21	D-2C24	acyltransferase)	1,64
105	KV2031	KV2031	Conserved hypothetical protein	1,64
105	KV2386C		ISOCHORISMALE SYRINASE IVIDII	1,65
10/	KV3125C	PPE49	Pre idminy protein PPE49	1,65
108	KV326UC	WIIBZ	Probable transcriptional regulatory protein WhiB-like	1.05
100	Dv21000	Dv2100-	WillD2 Conserved hypothetical protein	1,05
1109			Conserved hypothetical protein	1,00
110	KV1501	KV15U1	Conserved hypothetical protein	1,67

11	1	Rv0003	recF	DNA replication and repair protein RecF (single-strand	
				DNA binding protein)	1,67
11	2	Rv0755c	PPE12	PPE family protein PPE12	1,69
11	3	Rv2492	Rv2492	Hypothetical protein	1,70
11	4	Rv3853	rraA	Regulator of RNase E activity a RraA	1,73
11	5	Rv1507c	Rv1507c	Conserved protein	1,74
11	6	Rv3476c	kgtP	Probable dicarboxylic acid transport integral membrane	
			_	protein KgtP (dicarboxylate transporter)	1,76
11	.7	Rv2336	Rv2336	Hypothetical protein	1,81
11	8	Rv2269c	Rv2269c	Hypothetical protein	1,81
11	9	Rv1735c	Rv1735c	Hypothetical membrane protein	1,83
12	0	Rv3378c	Rv3378c	Diterpene synthase	1,84
12	1	Rv1986	Rv1986	Probable conserved integral membrane protein	1,85
12	2	Rv3155	nuoK	Probable NADH dehydrogenase I (chain K) NuoK	
				(NADH-ubiquinone oxidoreductase chain K)	1,86
12	3	Rv1724c	Rv1724c	Hypothetical protein	1,88
12	4	Rv1509	Rv1509	Hypothetical protein	1,89
12	5	Rv2485c	lipQ	Probable carboxylesterase LipQ	1,91
12	6	Rv3377c	Rv3377c	Halimadienyl diphosphate synthase	1,92
12	7	Rv3902c	Rv3902c	Hypothetical protein	1,95
12	8	Rv2307B	Rv2307B	Hypothetical glycine rich protein	1,95
12	9	Rv1032c	trcS	Two component sensor histidine kinase TrcS	2,03
13	0	Rv3528c	Rv3528c	Unknown protein	2,15
13	1	Rv0002	dnaN	DNA polymerase III (beta chain) DnaN (DNA	
				nucleotidyltransferase)	2,15
13	2	Rv1503c	Rv1503c	Conserved hypothetical protein	2,18
13	3	Rv1502	Rv1502	Hypothetical protein	2,25
13	4	Rv0913c	Rv0913c	Possible dioxygenase	2,39
13	5	Rv1033c	trcR	Two component transcriptional regulator TrcR	2,42
13	6	Rv3424c	Rv3424c	Hypothetical protein	2,48
13	7	Rv2630	Rv2630	Hypothetical protein	2,51
13	8	Rv2031c	hspX	Heat shock protein HspX (alpha-crystallin homolog) (14	
				kDa antigen) (HSP16.3)	2,58
13	9	Rv1076	lipU	Possible lipase LipU	2,67
14	0	Rv2780	ald	Secreted L-alanine dehydrogenase Ald (40 kDa antigen)	
				(TB43)	2,68
14	1	Rv2028c	Rv2028c	Universal stress protein family protein	3,77
14	2	Rv2029c	pfkB	6-phosphofructokinase PfkB (phosphohexokinase)	
		D 2022	D 2020	(phosphotructokinase)	3,84
14	3	Rv2030c	Kv2030c	Conserved protein	4,28
14	4	RV3126C	Rv3126c	Hypothetical protein	4,85
14	.5	Kv2007c	tdxA	Ferredoxin FdxA	4,85
14	6	Rv2623	FB31.7	Universal stress protein family protein TB31.7	5,92
14	.7	Kv1733c	Kv1733c	Probable conserved transmembrane protein	6,17

Приложение 9. Транскриптомный анализ костномозговых макрофагов, активированных гамма-интерфероном, через 24 часа после инфекции ΔDrrS, |log₂FC|> 1.0, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	ENSMUSG0000069008.4	Gm5537	predicted gene 5537	-12,32
2	ENSMUSG0000037406.8	Htra4	HtrA serine peptidase 4	-1,46
3	ENSMUSG0000092595.3	NA	NA	-1,35
4	ENSMUSG0000094777.3	H2ac24	H2A clustered histone 24	-1,31
5	ENSMUSG0000059256.7	Gzmd	granzyme D	-1,23
6	ENSMUSG0000022156.9	Gzme	granzyme E	-1,15
			colony stimulating factor 3	
7	ENSMUSG0000038067.3	Csf3	(granulocyte)	-1,14
8	ENSMUSG0000004371.16	ll11	interleukin 11	-1,11
9	ENSMUSG00000101249.2	NA	NA	-1,11
10	ENSMUSG0000022157.9	Mcpt8	mast cell protease 8	-1,10
			spectrin repeat containing, nuclear	
11	ENSMUSG0000063450.15	Syne2	envelope 2	-1,07
			solute carrier family 1 (glial high	
			affinity glutamate transporter),	
12	ENSMUSG0000005089.16	Slc1a2	member 2	-1,07
13	ENSMUSG0000095304.10	Plac9a	placenta specific 9a	-1,06
14	ENSMUSG0000060206.12	Zfp462	zinc finger protein 462	-1,05
15	ENSMUSG0000058427.11	Cxcl2	chemokine (C-X-C motif) ligand 2	-1,03
16	ENSMUSG0000038508.8	Gdf15	growth differentiation factor 15	-1,03
17	ENSMUSG0000020826.10	Nos2	nitric oxide synthase 2, inducible	-1,00
18	ENSMUSG0000026069.16	ll1rl1	interleukin 1 receptor-like 1	-1,00
19	ENSMUSG0000074733.15	Zfp950	zinc finger protein 950	1,01
20	ENSMUSG0000019971.11	Cep290	centrosomal protein 290	1,07
		9930111	RIKEN cDNA 9930111J21 gene 1	
21	ENSMUSG0000069893.11	J21Rik1		1,08
			membrane protein, palmitoylated 7	
22	ENSMUSG0000057440.9	Mpp7	(MAGUK p55 subfamily member 7)	1,10
		Casp8ap	caspase 8 associated protein 2	
23	ENSMUSG0000028282.13	2		1,11
24	ENSMUSG0000086825.2	NA	NA	1,13
<u> </u>		9930111	RIKEN cDNA 9930111J21 gene 2	
25	ENSMUSG0000069892.10	J21Rik2		1,13
26	ENSMUSG00000/3/16./	NA		1,23
		D 0(0	POU domain, class 2, transcription	4.95
27	ENSIVIUSG00000008496.20	Pou2t2	Tactor 2	1,25
28	ENSIVIUSG00000031465.7	Angpt2	angiopoletin 2	1,32
29	ENSMUSG00000054690.18	Emcn	enaomucin	1,40
30	ENSIVIUSG00000026605.15	Cenpt	centromere protein F	1,99
31	ENSIVIUSG0000026582.8	Sele	selectin, endotnellal cell	2,34
22		۸ ما میرا ۸	adnesion & protein-coupled receptor	2.00
32	ENSIVIUSG00000039167.13	Adgrl4	L4	3,09

Приложение 10. Транскриптомный анализ костномозговых макрофагов, активированных гамма-интерфероном, через 24 часа после инфекции ΔMcr11, |log₂FC|> 1.0, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	ENSMUSG0000069008.4	Gm5537	predicted gene 5537	-11,51
2	ENSMUSG0000096764.2	Slc12a6	solute carrier family 12, member 6	-9,57
3	ENSMUSG0000045886.8	Gm9803	presequence translocase-asssociated	
			motor 16 homolog pseudogene	-3,68
4	ENSMUSG0000037406.8	Htra4	HtrA serine peptidase 4	-1,86
5	ENSMUSG0000040003.19	Magi2	membrane associated guanylate	
			kinase, WW and PDZ domain	
			containing 2	-1,78
6	ENSMUSG0000042212.4	Sprr2d	small proline-rich protein 2D	-1,74
7	ENSMUSG0000025321.15	ltgb8	integrin beta 8	-1,74
8	ENSMUSG0000004296.15	ll12b	interleukin 12b	-1,65
9	ENSMUSG0000050395.10	Tnfsf15	tumor necrosis factor (ligand)	
			superfamily, member 15	-1,56
10	ENSMUSG0000021367.9	Edn1	endothelin 1	-1,52
11	ENSMUSG00000044701.6	1127	interleukin 27	-1,41
12	ENSMUSG0000039470.16	Zdhhc2	zinc finger, DHHC domain containing 2	-1,28
13	ENSMUSG0000020826.10	Nos2	nitric oxide synthase 2, inducible	-1,21
14	ENSMUSG0000074622.5	Mafb	v-maf musculoaponeurotic	
			fibrosarcoma oncogene family,	
			protein B (avian)	1,04
15	ENSMUSG0000014426.10	Map3k4	mitogen-activated protein kinase	
			kinase kinase 4	1,12
16	ENSMUSG0000024036.17	Slc37a1	solute carrier family 37 (glycerol-3-	
			phosphate transporter), member 1	1,43
17	ENSMUSG0000024795.12	Kif20b	kinesin family member 20B	1,50
18	ENSMUSG0000028647.14	Mycbp	MYC binding protein	1,54
19	ENSMUSG0000069892.10	9930111	RIKEN cDNA 9930111J21 gene 2	
		J21Rik2		1,58
20	ENSMUSG0000033781.8	Asb13	ankyrin repeat and SOCS box-	
			containing 13	1,63
21	ENSMUSG0000026102.10	Inpp1	inositol polyphosphate-1-phosphatase	1,72

Приложение 11. Транскриптомный анализ костномозговых макрофагов, активированных гамма-интерфероном, через 24 часа после инфекции ΔΔMcr11_DrrS, |log₂FC|> 1.0, padj < 0.01.

	Локус	Ген	Продукт	log ₂ FC
1	ENSMUSG0000069008.4	Gm5537	predicted gene 5537	-12,34
2	ENSMUSG0000040284.5	Gzmg	granzyme G	-4,61
3	ENSMUSG0000053797.11	Krt16	keratin 16	-2,68
4	ENSMUSG0000040537.18	Adam22	a disintegrin and metallopeptidase	
			domain 22	-2,46
5	ENSMUSG0000038508.8	Gdf15	growth differentiation factor 15	-2,43
6	ENSMUSG0000042807.16	Hecw2	HECT, C2 and WW domain containing	
			E3 ubiquitin protein ligase 2	-2,39
7	ENSMUSG0000026166.15	Ccl20	chemokine (C-C motif) ligand 20	-2,16
8	ENSMUSG0000044461.7	Shisa2	shisa family member 2	-2,11
9	ENSMUSG0000028341.10	Nr4a3	nuclear receptor subfamily 4, group A,	
			member 3	-2,02
10	ENSMUSG0000015316.12	Slamf1	signaling lymphocytic activation	
			molecule family member 1	-2,01
11	ENSMUSG0000087484.2	NA	NA	-2,00
12	ENSMUSG0000042212.4	Sprr2d	small proline-rich protein 2D	-1,91
13	ENSMUSG0000029380.12	Cxcl1	chemokine (C-X-C motif) ligand 1	-1,88
14	ENSMUSG00000107176.2	Gm9794	predicted pseudogene 9794	-1,84
15	ENSMUSG0000096768.9	Erdr1	erythroid differentiation regulator 1	-1,81
16	ENSMUSG0000043613.9	Mmp3	matrix metallopeptidase 3	-1,81
17	ENSMUSG0000027832.6	Ptx3	pentraxin related gene	-1,79
18	ENSMUSG0000072940.6	NA	NA	-1,79
19	ENSMUSG0000043953.13	Ccrl2	chemokine (C-C motif) receptor-like 2	-1,76
20	ENSMUSG0000022015.9	Tnfsf11	tumor necrosis factor (ligand)	
			superfamily, member 11	-1,74
21	ENSMUSG0000020826.10	Nos2	nitric oxide synthase 2, inducible	-1,73
22	ENSMUSG0000058427.11	Cxcl2	chemokine (C-X-C motif) ligand 2	-1,73
23	ENSMUSG0000035186.7	Ubd	ubiquitin D	-1,71
24	ENSMUSG0000063450.15	Syne2	spectrin repeat containing, nuclear	
25			envelope 2	-1,62
25	ENSMUSG00000022504.11	Clita	class II transactivator	-1,58
26	ENSMUSG0000027919.6	Lce1g	late cornified envelope 1G	-1,57
27	ENSMUSG0000028214.14	Gem	GTP binding protein (gene	
20		114.4	overexpressed in skeletal muscle)	-1,55
28	ENSMUSG0000004371.16		interleukin 11	-1,52
29	ENSIMUSG00000002289.17	Angptl4	angiopoletin-like 4	-1,51
30	ENSIMUSG0000023927.16	Satb1	special AI-rich sequence binding	
24		Luna a d A	protein 1	-1,46
31			LIVI and cysteine-rich domains 1	-1,44
32	ENSIMUSG0000063506.15	Arngap2	Rho GTPase activating protein 22	1.1.0
22		2		-1,44
33	ENSIVIUSG00000044701.6	1127	Interieukin 27	-1,44
-				
----	----------------------	----------	---	-------
34	ENSMUSG0000027800.15	Tm4sf1	transmembrane 4 superfamily	
			member 1	-1,42
35	ENSMUSG0000087006.4	Gm1388	predicted gene 13889	
		9		-1,41
36	ENSMUSG0000006154.14	Eps8l1	EPS8-like 1	-1,39
37	ENSMUSG00000121137.1	NA	NA	-1,39
38	ENSMUSG0000024401.15	Tnf	tumor necrosis factor	-1,36
39	ENSMUSG0000076614.8	NA	NA	-1,35
40	ENSMUSG0000050395.10	Tnfsf15	tumor necrosis factor (ligand)	
			superfamily, member 15	-1,34
41	ENSMUSG0000060586.12	H2-Eb1	histocompatibility 2, class II antigen E	
			beta	-1,33
42	ENSMUSG0000073421.7	H2-Ab1	histocompatibility 2, class II antigen A,	
			beta 1	-1,33
43	ENSMUSG0000019929.17	Dcn	decorin	-1,31
44	ENSMUSG0000031289.11	ll13ra2	interleukin 13 receptor, alpha 2	-1,31
45	ENSMUSG0000030022.15	Adamts9	a disintegrin-like and	
			metallopeptidase (reprolysin type)	
			with thrombospondin type 1 motif, 9	-1,31
46	ENSMUSG00000047562.4	Mmp10	matrix metallopeptidase 10	-1,31
47	ENSMUSG0000042622.15	Maff	v-maf musculoaponeurotic	
			fibrosarcoma oncogene family,	
			protein F (avian)	-1,30
48	ENSMUSG0000029553.11	Tfec	transcription factor EC	-1,29
49	ENSMUSG0000027859.11	Ngf	nerve growth factor	-1,28
50	ENSMUSG0000036594.16	H2-Aa	histocompatibility 2, class II antigen A,	
			alpha	-1,27
51	ENSMUSG0000022893.15	Adamts1	a disintegrin-like and	
			metallopeptidase (reprolysin type)	
			with thrombospondin type 1 motif, 1	-1,26
52	ENSMUSG0000007805.5	Twist2	twist basic helix-loop-helix	
			transcription factor 2	-1,26
53	ENSMUSG0000036356.16	Csgalnac	chondroitin sulfate N-	
		t1	acetylgalactosaminyltransferase 1	-1,25
54	ENSMUSG0000060206.12	Zfp462	zinc finger protein 462	-1,25
55	ENSMUSG0000040435.13	Ppp1r15	protein phosphatase 1, regulatory	
		а	subunit 15A	-1,24
56	ENSMUSG0000097804.2	Gm1668	predicted gene, 16685	
		5		-1,24
57	ENSMUSG0000025854.16	Fam20c	FAM20C, golgi associated secretory	
			pathway kinase	-1,23
58	ENSMUSG0000007655.17	Cav1	caveolin 1, caveolae protein	-1,23
59	ENSMUSG00000095562.9	Erdr1	erythroid differentiation regulator 1	-1,23
60	ENSMUSG00000046031.8	Calhm6	calcium homeostasis modulator	
			family member 6	-1,21
61	ENSMUSG0000052911.10	Lamb2	laminin, beta 2	-1,21
62	ENSMUSG0000072941.6	Sod3	superoxide dismutase 3, extracellular	-1,20

62		A) A / A A A A A		
63	ENSMUSG0000075010.7	AW1120	expressed sequence AW112010	1 20
64		10 Osmr	oncostatin M recentor	-1,20
65	ENSMUSG0000031530 7	Dusn/	dual specificity phosphatase A	-1,19
66	ENSMUSG0000031330.7	Adamts5	a disintegrin-like and	-1,10
00	21031010300000022894.7	Audints5	metallonentidase (reprolysin type)	
			with thrombospondin type 1 motif. 5	
			(aggrecanase-2)	-1.17
67	ENSMUSG0000001131.12	Timp1	tissue inhibitor of metalloproteinase 1	-1.16
68	ENSMUSG0000085875.4	NA	NA	-1.16
69	ENSMUSG0000021994.16	Wnt5a	wingless-type MMTV integration site	, -
			family, member 5A	-1,16
70	ENSMUSG0000029377.6	Ereg	epiregulin	-1,16
71	ENSMUSG0000035107.14	Dcbld2	discoidin, CUB and LCCL domain	
			containing 2	-1,16
72	ENSMUSG0000090733.7	Rps27	ribosomal protein S27	-1,15
73	ENSMUSG00000101249.2	NA	NA	-1,14
74	ENSMUSG00000044468.15	Tent5c	terminal nucleotidyltransferase 5C	-1,12
75	ENSMUSG0000045502.7	Hcar2	hydroxycarboxylic acid receptor 2	-1,12
76	ENSMUSG0000015652.10	Steap1	six transmembrane epithelial antigen	
			of the prostate 1	-1,11
77	ENSMUSG00000044576.7	Garem2	GRB2 associated regulator of MAPK1	
70			subtype 2	-1,11
/8	ENSMUSG0000043421.9	нірда	hypoxia inducible lipid droplet	1 1 1
70		D:1 F	associated	-1,11
79 00		PIL5	peptidase infibitor 15	-1,10
00	ENSIVIUSG0000034394.15	LII Gdaf	dial call line derived neurotrophic	-1,10
01	LINSINIOSCI0000022144.5	Guin	factor	-1 07
82	ENSMUSG0000105504 5	Ghn5	guanylate hinding protein 5	-1 07
83	ENSMUSG0000022122.16	Ednrb	endothelin receptor type B	-1 07
84	ENSMUSG0000013584.6	Aldh1a2	aldehyde dehydrogenase family 1.	_,.,
			subfamily A2	-1,05
85	ENSMUSG0000033213.17	AA46719	expressed sequence AA467197	,
		7		-1,05
86	ENSMUSG0000026185.9	lgfbp5	insulin-like growth factor binding	
			protein 5	-1,05
87	ENSMUSG0000060429.13	Sntb1	syntrophin, basic 1	-1,04
88	ENSMUSG0000024427.8	Spry4	sprouty RTK signaling antagonist 4	-1,04
89	ENSMUSG0000030103.12	Bhlhe40	basic helix-loop-helix family, member	
			e40	-1,04
90	ENSMUSG0000003541.7	ler3	immediate early response 3	-1,04
91	ENSMUSG0000018500.3	Adora2b	adenosine A2b receptor	-1,03
92	ENSMUSG0000023959.11	Clic5	chloride intracellular channel 5	-1,03
93	ENSMUSG0000024610.16	Cd74	CD74 antigen (invariant polypeptide	
			of major histocompatibility complex,	
			class II antigen-associated)	-1,03
94	ENSMUSG00000121069.1	NA	NA	-1,02

95	ENSMUSG0000026069.16	ll1rl1	interleukin 1 receptor-like 1	-1,02
96	ENSMUSG0000035828.12	Pim3	proviral integration site 3	-1,02
97	ENSMUSG0000050578.11	Mmp13	matrix metallopeptidase 13	-1,02
98	ENSMUSG0000021701.9	Plk2	polo like kinase 2	-1,02
99	ENSMUSG0000021125.7	Arg2	arginase type II	-1,00
100	ENSMUSG0000028517.9	Plpp3	phospholipid phosphatase 3	-1,00
101	ENSMUSG0000036526.9	Card11	caspase recruitment domain family,	
			member 11	1,00
102	ENSMUSG0000041225.17	Arhgap1	Rho GTPase activating protein 12	
		2		1,00
103	ENSMUSG0000038481.14	Cdk19	cyclin-dependent kinase 19	1,01
104	ENSMUSG0000043263.14	lfi209	interferon activated gene 209	1,01
105	ENSMUSG0000020717.20	Pecam1	platelet/endothelial cell adhesion	
			molecule 1	1,02
106	ENSMUSG0000013089.16	Etv5	ets variant 5	1,02
107	ENSMUSG0000026548.5	Slamf9	SLAM family member 9	1,03
108	ENSMUSG0000026473.17	Glul	glutamate-ammonia ligase (glutamine	
			synthetase)	1,03
109	ENSMUSG0000035352.4	Ccl12	chemokine (C-C motif) ligand 12	1,03
110	ENSMUSG0000024535.17	Snx24	sorting nexing 24	1,05
111	ENSMUSG0000020865.17	Abcc3	ATP-binding cassette, sub-family C	
			(CFTR/MRP), member 3	1,05
112	ENSMUSG0000036098.16	Myrf	myelin regulatory factor	1,05
113	ENSMUSG0000029570.6	Lfng	LFNG O-fucosylpeptide 3-beta-N-	
		161-01	acetylglucosaminyltransferase	1,06
114	ENSMUSG0000062488.10	lfit3b	interferon-induced protein with	
			tetratricopeptide repeats 3B	1,06
115	ENSMUSG0000097705.3	NA O 1002		1,06
116	ENSMUSG00000100862.2	Gm1092	ATP synthase FO subunit 6	1.00
117		5 Ambred 2C	pseudogene	1,08
11/			histosomostibility 2. Trasion losus 24	1,08
118		HZ-124	hustingtin interacting protoin 1	1,08
119	ENSIMUSG00000039959.14	HID1 Club	nuntingtin interacting protein 1	1,09
120			Creatine kinase, brain	1,09
121		5020101	SH2 domain containing IB1	1,09
122			ecotropic viral integration site 20	1,10
123	ENSIVIUSGUUUUU085780.3	NA Fada6	NA fatty acid desaturase domain family	1,10
124	EINSIVIUSG00000044788.11	Fauso	member 6	1,11
125	ENSMUSG0000044026.4	Slc35g1	solute carrier family 35, member G1	1,13
126	ENSMUSG0000042498.17	Radx	RPA1 related single stranded DNA	
			binding protein, X-linked	1,14
127	ENSMUSG0000001166.18	Oas1c	2'-5' oligoadenylate synthetase 1C	1,14
128	ENSMUSG00000116895.2	Gm3435	predicted gene 3435	1,14
129	ENSMUSG0000024399.6	Ltb	lymphotoxin B	1,15
130	ENSMUSG00000050592.9	Fam78a	family with sequence similarity 78,	
			member A	1,15
131	ENSMUSG0000027763.14	Mbnl1	muscleblind like splicing factor 1	1,16

132	ENSMUSG0000015854.8	Cd5l	CD5 antigen-like	1,16
133	ENSMUSG00000110631.2	NA	NA	1,16
134	ENSMUSG0000024030.8	Abcg1	ATP binding cassette subfamily G	
			member 1	1,17
135	ENSMUSG0000031367.16	Ap1s2	adaptor-related protein complex 1,	
			sigma 2 subunit	1,18
136	ENSMUSG0000024063.14	Lbh	limb-bud and heart	1,19
137	ENSMUSG0000036944.7	Tmem71	transmembrane protein 71	1,21
138	ENSMUSG0000043939.17	A530064	RIKEN cDNA A530064D06 gene	
		D06Rik		1,22
139	ENSMUSG0000028944.15	Prkag2	protein kinase, AMP-activated,	
			gamma 2 non-catalytic subunit	1,22
140	ENSMUSG0000005583.17	Mef2c	myocyte enhancer factor 2C	1,23
141	ENSMUSG0000017756.10	Slc12a7	solute carrier family 12, member 7	1,25
142	ENSMUSG0000035275.15	Raver2	ribonucleoprotein, PTB-binding 2	1,26
143	ENSMUSG0000070354.14	Evi2	ecotropic viral integration site 2	1,26
144	ENSMUSG0000020101.15	Vsir	V-set immunoregulatory receptor	1,26
145	ENSMUSG0000040552.9	C3ar1	complement component 3a receptor	4.07
110		C		1,27
146	ENSIMUSG0000049848.8	Ceacami	carcinoembryonic antigen-related cell	1 20
147	ENSMUSC0000041420 16	9 Mfcd6	adnesion molecule 19	1,28
147	ENSIN0300000041439.10	IVIISUO	containing 6	1 2 1
1/0		Cpr65	Containing 0	1 2 2
1/0	ENSMUSG0000021880.8	Upros Il 2ra	interleukin 2 recentor, alpha chain	1 2 2
149	ENSMUSG0000020770.0	SIc37a1	solute carrier family 37 (glycerol-3-	1,32
130	11311030000024030.17	5105741	nhosnhate transporter) member 1	1 33
151	FNSMUSG0000039126.11	Prune2	prune homolog 2	1.33
152	ENSMUSG0000050751.15	Pgbd5	piggvBac transposable element	_,
		U	derived 5	1,36
153	ENSMUSG0000039853.19	Trim14	tripartite motif-containing 14	1,36
154	ENSMUSG0000037995.16	lgsf9	immunoglobulin superfamily, member	
			9	1,36
155	ENSMUSG0000041762.17	Gpr155	G protein-coupled receptor 155	1,37
156	ENSMUSG0000035448.10	Ccr3	chemokine (C-C motif) receptor 3	1,37
157	ENSMUSG0000066677.13	lfi208	interferon activated gene 208	1,39
158	ENSMUSG0000057440.9	Мрр7	membrane protein, palmitoylated 7	
			(MAGUK p55 subfamily member 7)	1,40
159	ENSMUSG0000064043.16	Trerf1	transcriptional regulating factor 1	1,41
160	ENSMUSG0000073491.12	lfi213	interferon activated gene 213	1,42
161	ENSMUSG0000001349.6	Cnn1	calponin 1	1,45
162	ENSMUSG0000021200.15	Asb2	ankyrin repeat and SOCS box-	
1.00			containing 2	1,47
163	ENSMUSG0000047592.18	Nxpe5	neurexophilin and PC-esterase	4 4-
104		Nilum 1 I-	domain tamily, member 5	1,47
104	EIN2INIO2000000/0390.13	мпртр	INLK TAMINY, PYRIN GOMAIN CONTAINING	1.40
165		Doc10	ID	1,49
102	EINSIVIUSGUUUUUU26357.4	RESTO	regulator of G-protein signaling 18	1,49

166	ENSMUSG0000021250.14	Fos	FBJ osteosarcoma oncogene	1,50
167	ENSMUSG0000052336.8	Cx3cr1	chemokine (C-X3-C motif) receptor 1	1,51
168	ENSMUSG0000031391.19	L1cam	L1 cell adhesion molecule	1,53
169	ENSMUSG0000026399.13	Cd55	CD55 molecule, decay accelerating	
			factor for complement	1,57
170	ENSMUSG0000078780.8	Gm5150	predicted gene 5150	1,57
171	ENSMUSG0000030263.14	Lrmp	lymphoid-restricted membrane	
			protein	1,59
172	ENSMUSG0000048031.16	Fcrl5	Fc receptor-like 5	1,69
173	ENSMUSG0000069892.10	9930111	RIKEN cDNA 9930111J21 gene 2	
		J21Rik2		1,75
174	ENSMUSG0000025766.15	D3Ertd7	DNA segment, Chr 3, ERATO Doi 751,	
		51e	expressed	1,76
175	ENSMUSG0000058163.15	Gm5431	predicted gene 5431	1,80
176	ENSMUSG0000026815.15	Gfi1b	growth factor independent 1B	1,81
177	ENSMUSG0000042826.14	Fgf11	fibroblast growth factor 11	1,91
178	ENSMUSG0000039304.12	Tnfsf10	tumor necrosis factor (ligand)	
			superfamily, member 10	1,92
179	ENSMUSG0000049939.7	Lrrc4	leucine rich repeat containing 4	1,94
180	ENSMUSG0000039899.6	Fgl2	fibrinogen-like protein 2	1,94
181	ENSMUSG0000045322.11	Tlr9	toll-like receptor 9	1,95
182	ENSMUSG0000038843.19	Gcnt1	glucosaminyl (N-acetyl) transferase 1,	
			core 2	1,95
183	ENSMUSG0000038332.14	Sesn1	sestrin 1	2,10
184	ENSMUSG0000041594.19	Tmtc4	transmembrane and tetratricopeptide	
			repeat containing 4	2,13
185	ENSMUSG0000027544.17	Nfatc2	nuclear factor of activated T cells,	
			cytoplasmic, calcineurin dependent 2	2,15
186	ENSMUSG0000000861.16	Bcl11a	B cell CLL/lymphoma 11A (zinc finger	
			protein)	2,20
187	ENSMUSG0000086825.2	NA	NA	2,21
188	ENSMUSG0000024013.16	Fgd2	FYVE, RhoGEF and PH domain	
			containing 2	2,28
189	ENSMUSG0000031434.16	Morc4	microrchidia 4	2,36
190	ENSMUSG00000114432.2	Gm4939	predicted gene, 49391	
		1		3,76
191	ENSMUSG00000121474.1	Nlrp1c	NLR family, pyrin domain containing	
			1C, pseudogene	7,08