УДК 582.949.2+547.814.5+615.214.32

НОВЫЕ ГЛИКОЗИДЫ АКАЦЕТИНА И ДРУГИЕ ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ИЗ Agastache foeniculum И ИХ ВЛИЯНИЕ НА МОНОАМИНОКСИДАЗЫ А И В

© 2024 г. Д. Н. Оленников^{1, *}, Н. И. Кащенко¹

¹Институт общей и экспериментальной биологии СО РАН, Улан-Удэ, 670047 Россия
*e-mail: olennikovdn@mail.ru
Поступила в редакцию 29.12.2023 г.
После доработки 21.02.2024 г.
Принята к публикации 28.02.2024 г.

Ингибиторы моноаминоксидаз (**MAO**) являются эффективными терапевтическими средствами для лечения нейродегенеративных заболеваний. К их числу относятся флавоноиды, обнаруженные в видах *Agastache*. В ходе настоящего исследования из *A. foeniculum* было выделено и идентифицировано с применением УФ, ЯМР спектроскопии и масс-спектрометрии шесть новых ацилированных флавон-*О*-гликозидов — агастозидов A (акацетин 7-*O*-(2"-*O*-малонил)-β-D-глюкопиранозид), В (акацетин 7-*O*-(4"-*O*-малонил)-β-D-глюкопиранозид), С (акацетин 7-*O*-(2",6"-ди-*O*-малонил)-β-D-глюкопиранозид), В (акацетин 7-*O*-(2"-*O*-малонил)-β-D-глюкопиранозид), В (акацетин 7-*O*-(2"-*O*-малонил)-β-D-глюкопиранозид). Использование флэш-хроматографии и жидкостной хроматографии-масс-спектрометрии позволило обнаружить еще 34 известных фенольных соединения. Исследование биологической активности показало, что гликозиды акацетина из *А. foeniculum* оказывали ингибиторное действиеие на МАО, причем наибольший эффект был отмечен для ацетильных и малонильных эфиров акацетин 7-*O*-глюкозида, которые могут быть перспективными соединениями для создания новых лекарственных средств.

Ключевые слова: Agastache foeniculum, моноаминоксидаза, ингибиторы, гликозиды акацетина, тилианин

DOI: 10.31857/S0555109924060084 EDN: QFJSVU

Нейродегенеративные заболевания представляют собой третью по распространенности группу патологий человека в мире [1]. Одной из частых причин возникновений данных нарушений нервной деятельности является повышенная активность митохондриальных моноаминоксидаз (МАО), участвующих в процессах окислительного дезаминирования биогенных аминов (серотонина, адреналина, допамина и других), что может приводить к депрессии, тревожным расстройствам, а также болезни Альцгеймера и Паркинсона [2]. Для коррекции данного типа нарушений применяются ингибиторы МАО, предотвращающие разрушение моноаминных нейротрансмиттеров и повышающие тем самым их доступность. В настоящее время для этой цели применяются различные синтетические ингибиторы МАО (коргилин, L-депренил, разагинил), которые, несмотря на свою эффективность, обладают побочными эффектами, включая гипертензию, расстройства пищеварения, бессонницу, сонливость, головокружение и головные боли [3]. В ходе поисковых исследований было выявлено, что природные флавоноиды обладают

способностью ингибировать МАО изоформ А (МАО-А) и В (МАО-В), не обладая негативными эффектами синтетических лекарств [4]. Среди множества известных флавоноидов, наибольший интерес представляют флавоны, широко представленные в растениях семейства Lamiaceae, в частности производные акацетина, обнаруженные в Agastache rugosa (Fisch. & C.A. Mey.) Киптzе и охарактеризованные как эффективные ингибиторы МАО-А и МАО-В [5].

В России наиболее распространенным видом рода Agastache является Agastache foeniculum (Pursh) Киптzе (син. Lophanthus anisatus (Nutt.) Вепth.), для которого известно около 10 сортов, зарегистрированных в Государственном реестре селекционных достижений, широко применяемых с лекарственной и пищевой целью [6]. Сведения о химическом составе A. foeniculum ограничены данными о присутствии некоторых флавоноидов в сырье из Румынии [7]. Ранее было показано, что данный вид содержит акацетин 7-О-глюкозид и некоторые другие флавоны [8], однако углубленных исследований

метаболитов не проводились. В этой связи представляло интерес изучить состав фенольных соединений *А. foeniculum* сорта Франт, который наиболее распространен в России в качестве высокопродуктивного медоносного растения [9].

Цель работы — изучить фенольные соединения надземной части *A. foeniculum*, культивируемого в России, выделить основные флавоноиды, определить их количественное содержание и изучить их влияние на МАО-А и МАО-В.

МЕТОЛИКА

Общие экспериментальные условия. Цветки и листья A. foeniculum (сорт Франт; ООО "Селекционная фирма Гавриш", Россия) были собраны в экспериментальном тепличном хозяйстве Института общей и экспериментальной биологии СО РАН (Республика Бурятия, Россия) и высушены при 40°С до влажности <5% в конвекционном сушильном шкафу ПРО ШСП-У 35/150-120 (ООО "Новые технологии", Россия). Для колоночной хроматографии использовали полиамид, нормально- (SiO_2) и обращено-фазовый силикагель $(O\Phi-SiO_2)$ Сефадекс LH-20 ("Sigma-Aldrich", США). Спектры поглощения в ультрафиолетовой области ($\mathbf{y}\mathbf{\Phi}$) регистрировали для растворов в метаноле на спектрофотометре СФ-2000 ("ОКБ Спектр", Россия), масс-спектры — на TQ-масс-спектрометре LCMS-8050 ("Shimadzu", Япония) [10], спектры ЯМР — на спектрометре VXR 500S ("Varian", США). Препаративную высокоэффективную жидкостную хроматографию (ПВЭЖХ) осуществляли на жидкостном хроматографе LC-20 Prominence ("Shimadzu", Япония), снабженном колонкой Shim-pak PREP-ODS (20 мм × 250 мм × 15 мкм, "Shimadzu", Япония) и фотодиодным детектором SPD-M30A ("Shimadzu", Япония), при скорости -1.0 мл/мин и температуре колонки 20°С.

Экстракты из высушенных цветков и листьев *A. foeniculum* получали в аппарате Сокслета после исчерпывающей экстракции изопропанолом. Выход изопропанольных экстрактов, от массы воздушно-сухого сырья: цветки 35.2%, листья — 22.6%.

Выделение соединений из *А. foeniculum*. Изопропанольный экстракт из цветков *А. foeniculum* экстрагировали хлороформом в аппарате Сокслета. После этого остаток экстракта переносили на полиамид для колоночной хроматографии (10 кг), промывали водой, 70%-ным этанолом и 0.5%-ным раствором аммиака в 90%-ном этаноле и после удаления растворителей были получены фракции ТФЭ-1, фракция ТФЭ-2 и фракция ТФЭ-3, соответственно [11]. Для выделения индивидуальных соединений фракции ТФЭ-2 (500 г) и ТФЭ-3 (550 г) хроматографировали методом флэш-хроматографии на Сефадексе LH-20 (2 × 90 см, элюент — этанол—вода 90 : 10 → 50 : 50), ОФ-SiO₂ (2 × 40 см,

элюент вода—ацетонитрил $80:20 \rightarrow 20:80$) и SiO_2 (3 × 40 см, элюент этилацетат—этанол $100:0 \rightarrow 60:40$). Соединения с близкими временами удерживания разделяли, используя ПВЭЖХ в градиентном режиме. Элюент I — вода, элюент II — ацетонитрил; программа элюирования: 0-15 мин 10-30% I в II, 15-80 мин 30-70% I в II, 80-120 мин 70-100% I в II.

Гидролиз. Кислотный гидролиз соединений I—VI в 2 М ТФУ и последующий анализ продуктов гидролиза проводили как описано ранее [12]. Дезацилирование соединений I—VI осуществляли в среде 0.3%-ного NaOH по известной методике [13].

Биологическая активность. Исследование влияния экстрактов листьев и цветков A. foeniculum и индивидуальных соединений на активность моноаминооксидаз (рекомбинантная моноаминооксидаза A и B человека, $K\Phi$ 1.4.3.4, "Sigma-Aldrich" США) осуществляли с использованием флуориметрического метода [14]. Толоксатон и паргилин применялись в качестве веществ сравнения ("Sigma-Aldrich", США). Ингибиторная активность выражалась величиной IC_{50} (концентрация, вызывающая 50% ингибирование активности фермента) в мкг/мл, которую определяли графически после построения зависимости ингибиторной активности от концентрации.

Высокоэффективная хроматография с диодно-матричным и масс-спектрометрическим детектированием с ионизацией электрораспылением (ВЭЖХ-ДМД-ИЭР-МС). Анализ осуществляли на жидкостном хроматографе LCMS-8050 ("Shimadzu", Япония), соединенном с диодно-матричным детектором (ДМД) и 3О-детектором с ионизацией электрораспылением (ИЭР/МС), используя колонку ReproSil-Pur 120 C18-AQ (250 $MM \times 4,6 MM \times 5 MM$; "Dr. Maisch GmbH", Германия). Условия ВЭЖХ: подвижная фаза, элюент А – вода, элюент В – ацетонитрил. Программа градиента — 0-20 мин 2-80% В, 20-30 мин 80-100% В, 30-35 мин 100% В, 35-40 мин 100-2% В; инжектируемый объем -1 мкл; скорость потока -1 мл/мин, температура колонки - 30°C; диапазон сканирования спектров поглощения – 200-600 нм. Условия ИЭР/ МС: режим ионизации – электрораспыление, положительная ионизация; температура интерфейса ИЭР – 300°С; температура линии десольватации – 250° C; температура нагревательного блока — 400° C; скорость газа-распылителя $(N_2) - 3$ л/мин; скорость газа-нагревателя (воздух) – 10 л/мин; давление газа, используемого для диссоциации, индуцируемой соударением (CID газ, Ar) – 270 кПа; скорость Ar - 0.3 мл/мин; напряжение на капилляре - 3 кВ; диапазон сканирования масс (m/z) 100—1900. Для построения градуировочных графиков серию разведений веществ сравнения (1-100 мкг/мл) хроматографировали в описанных выше условиях трижды для каждой концентрации вещества. По полученным данным строили градуировочные графики

в координатах "концентрация, мкг/мл — площадь пика" с применением пакета программ Advanced Grapher ver. 2.2 ("Alentum Software, Inc.", США).

Статистический анализ проводили с использованием однофакторного дисперсионного анализа (ANOVA). Значимость различий средних определяли с помощью многорангового теста Дункана. Отличия при р < 0.05 считались статистически значимыми. Данные представлены в виде среднего из трех (количественный анализ) и пяти (биологическая активность) определений \pm среднеквадратичное отклонение (S.D.).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для определения биологически активных компонентов цветков A. foenicilum изопропанольный экстракт (2.64 кг) предварительно обезжиривали хлороформом, после чего фракционировали на полиамиде, что позволило получить фракции, в которых сконцентрированы нефенольные гидрофильные компоненты (фракция ТФЭ-1, 810 г), неацилированные фенольные соединения (фракция ТФЭ-2, 550 г) и фенольные кислоты и ацилированные флавоноиды (фракция ТФЭ-3, 570 г). Фракции, содержание фенольные компоненты подвергали хроматографическому разделению на Сефадексе LH-20, обращено- и нормально-фазовом силикагеле, и очистке с применением ПВЭЖХ. В результате были выделены флавоноиды i—xiv — акацетин 7-O-глюкозид (25 г; і) и акацетин (7 г; іі), лютеолин 7-*O*-(6"-*O*-ацетил)-глюкозид (10 мг; iii), апигенин 7-*O*-(2"-*O*-ацетил)-глюкозид (25 мг; iv), диосметин 7-*O*-(6"-*O*-ацетил)-глюкозид (7.5 г; v), апигенин 7-O-(6"-О-ацетил)-глюкозид (18 г; vi), апигенин

7-O-(3"-O-ацетил)-глюкозид (30 мг; vii), апигенин 7-O-(4"-O-ацетил)-глюкозид (45 мг; viii), акацетин 7-O-(6"-O-малонил)-глюкозид (21 г; ix), акацетин 7-O-(2"-O-ацетил)-глюкозид (40 мг; x), акацетин 7-O-(6"-O-ацетил)-глюкозид (20 г; xi), акацетин 7-O-(2"-O-ацетил-6"-O-малонил)-глюкозид (125 г; xii), акацетин 7-O-(3"-O-ацетил-6"-O-малонил)-глюкозид (1 г; xiii) и лютеолин 7,4'-диметиловый эфир (520 мг; xiv) (рис. 1), а также 6 новых соединений — I (220 г), II (50 мг), III (3.5 г), IV (35 мг), V (5 г) и VI (14 г), идентифицированные по данным спектроскопии УФ, масс-спектрометрии (табл. 1) и ЯМР 1 H (табл. 2) и 13 C (табл. 3) [15, 16].

В масс-спектрах соединений І-VI были отмечены ионы, указывающие на присутствие одного $(m/z, 531 \rightarrow 445; y I и II)$ или двух фрагментов малоновой кислоты (m/z 617 \rightarrow 531, 445; у **III** и **IV**), уксусной и малоновой кислот (m/z 573 \rightarrow 531, 487, 445; v V и VI), а также фрагмента гексозы (m/z 445 → 283: у I-VI) (табл. 1, рис. 2) [18]. Для определения природы агликона и углеводного остатка соединения I-VI подвергали гидролизу в среде 2 М ТФУ, после чего были идентифицированы акацетин (4'-метокси-апигенин) и D-глюкоза в соотношении 1:1. Форма УФ-спектров всех соединений указывала на замещение агликона по положению С-7, что характерно для производных акацетин 7-О-глюкозида (тилианина) (табл. 1) [17]. Это было подтверждено результатами щелочного дезацилирования соединений, приводившему к образованию тилианина. Данные спектроскопии ЯМР для всех изученных соединений были близки к таковым тилианина [19], но содержали сигналы, обусловленные влиянием фрагментов малоновой ($\delta_{\rm H}$ 2.52–2.57; $\delta_{\rm C}$ 42.0–42.4,

$$\begin{array}{c} \textbf{i:} \ R_1 = R_2 = R_3 = H \\ \textbf{ix:} \ R_1 = R_2 = H; \ R_3 = Mal \\ \textbf{xi:} \ R_1 = R_2 = H; \ R_3 = Ac \\ \textbf{xii:} \ R_1 = R_2 = H; \ R_3 = Mal \\ \textbf{xiii:} \ R_1 = Ac; \ R_2 = H; \ R_3 = Mal \\ \textbf{xiii:} \ R_1 = R_2 = H; \ R_3 = Mal \\ \textbf{xiii:} \ R_1 = R_2 = H; \ R_3 = Mal \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H; \ R_4 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H; \ R_2 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H; \ R_2 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H; \ R_2 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_2 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_3 = R_4 = R_3 = R_4 = H; \ R_3 = Ac \\ \textbf{xiii:} \ R_1 = R_3 = R_4 =$$

Рис. 1. Строение известных флавоноидов i—xiv, выделенных из *A. foenicilum*: Ac — ацетил, Mal — малонил.

Таблица 1. Молекулярная формула, данные УФ и масс-спектров соединений I-VI

№ соед.	Показатель	Значение				
I	Формула	$C_{25}H_{24}O_{13}$				
	$У$ Ф-спектр, λ_{max} , нм	268, 332				
	HR-ESI-MS, m/z	531.431 [M—H] ⁻ (расч. 531.446 для С ₂₅ H ₂₃ O ₁₃ [M—H] ⁻)				
	ESI-MS, <i>m/z</i> (%)	531 (61) [M—H] ⁻ , 445 (100) [(М—Н)—малонил] ⁻ , 283 (5) [(М—Н)—малонил—глюкоза] ⁻				
II	Формула	$C_{25}H_{24}O_{13}$				
	$У$ Ф-спектр, λ_{max} , нм	267, 332				
	HR-ESI-MS, m/z	531.362 [M-H] ⁻ (расч. 531.446 для С ₂₅ H ₂₃ O ₁₃ [M-H] ⁻)				
	ESI-MS, <i>m/z</i> (%)	531 (60) [M—H] ⁻ , 445 (100) [(М—Н)—малонил] ⁻ , 283 (2) [(М—Н)—малонил—глюкоза] ⁻				
III	Формула	$C_{28}H_{26}O_{16}$				
	$У$ Ф-спектр, λ_{max} , нм	270, 330				
	HR-ESI-MS, m/z	$617.301~[\mathrm{M-H}]^-$ (расч. 617.492 для $\mathrm{C}_{28}\mathrm{H}_{25}\mathrm{O}_{16}~[\mathrm{M-H}]^-$)				
	ESI-MS, <i>m/z</i> (%)	617 (72) [M–H] ⁻ , 531 (23) [(M–H)—малонил] ⁻ , 445 (100) [(M–H)—2×малонил] ⁻ , 283 (4) [(M–H)—2×малонил—глюкоза] ⁻				
IV	Формула	$C_{27}H_{26}O_{14}$				
	$У$ Ф-спектр, λ_{max} , нм	269, 333				
	HR-ESI-MS, m/z	573.196 [M—H] ⁻ (расч. 573.483 для С ₂₇ H ₂₅ O ₁₄ [M—H] ⁻)				
	ESI-MS, <i>m/z</i> (%)	573 (52) [М-Н]-, 531 (14) [(М-Н)-ацетил]-, 487 (9) [(М-Н)-малонил]-, 445 (100) [(М-Н)-ацетил-малонил]-, 283 (4) [(М-Н)-ацетил-малонил-глюкоза]-				
V	Формула	$C_{28}H_{26}O_{16}$				
	$У$ Ф-спектр, λ_{max} , нм	270, 331				
	HR-ESI-MS, m/z	$617.254~[\mathrm{M-H}]^-$ (расч. 617.492 для $\mathrm{C}_{28}\mathrm{H}_{25}\mathrm{O}_{16}~[\mathrm{M-H}]^-$)				
	ESI-MS, <i>m/z</i> (%)	617 (70) [M—H] ⁻ , 531 (20) [(М—Н)—малонил] ⁻ , 445 (100) [(М—Н) —2×малонил] ⁻ , 283 (5) [(М—Н)—2×малонил—глюкоза] ⁻				
VI	Формула	C ₂₇ H ₂₆ O ₁₄				
	$ abla\Phi$ -спектр, λ_{max} , нм	269, 332				
	HR-ESI-MS, m/z	573.207 [M—H] ⁻ (расч. 573.483 для С ₂₇ H ₂₅ O ₁₄ [M—H] ⁻)				
	ESI-MS, <i>m/z</i> (%)	573 (50) [M-H] ⁻ , 531 (12) [(М-Н)-ацетил] ⁻ , 487 (5) [(М-Н)-малонил] ⁻ , 445 (100) [(М-Н)-ацетил-малонил] ⁻ , 283 (2) [(М-Н)-ацетил-малонил-глюкоза] ⁻				

167.5-168.2, 168.7-170.5) и уксусной кислот ($\delta_{\rm H}$ 2.09-2.11; $\delta_{\rm C}$ 20.3-20.4, 169.4-169.6) [20] (табл. 2, 3).

Локализацию ацильных групп определяли по данным одно- и двумерной спектроскопии ЯМР (табл. 2, 3, рис. 3). Сравнительный анализ спектров тилианина и I выявил наличие сдвига в слабое поле сигнала С-2" глюкозы ($\delta_{\rm C}$ 72.8 \rightarrow 72.5) и сильнопольные сдвиги сигналов соседних атомов С-1" ($\delta_{\rm C}$ 100.2 \rightarrow 96.8) и С-3" ($\delta_{\rm C}$ 77.3 \rightarrow 73.8) [15]. В спектре НМВС выявлены корреляции между

сигналами H-2" ($\delta_{\rm H}$ 4.89) и малонильным карбонилом ($\delta_{\rm C}$ 168.2), что указывало на наличие замещения по положению C-2" глюкозы и позволило описать строение I, как акацетин 7-O-(2"-O-малонил)- β -D-глюкопиранозида. У флавона II отмечены сдвиги в слабое поле сигнала C-4" глюкозы ($\delta_{\rm C}$ 70.2 \rightarrow 72.7), а в спектре HMBC присутствовали корреляции между H-4" ($\delta_{\rm H}$ 4.73) и малонильным карбонилом ($\delta_{\rm C}$ 168.0), что возможно для акацетин 7-O-(4"-O-малонил)-G-D-глюкопиранозида. Ранее имелись сведения только об одном малонате

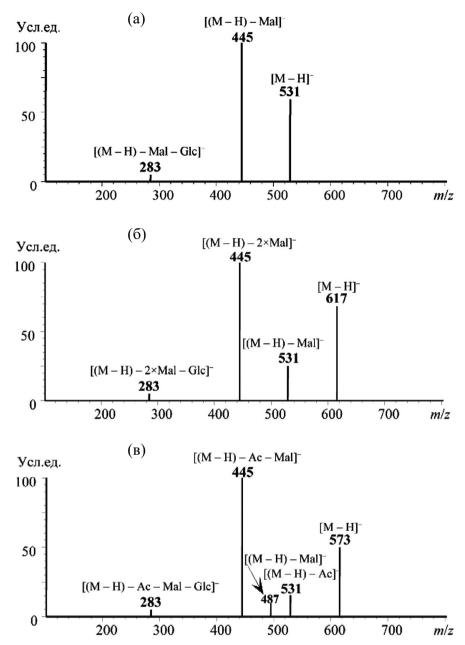
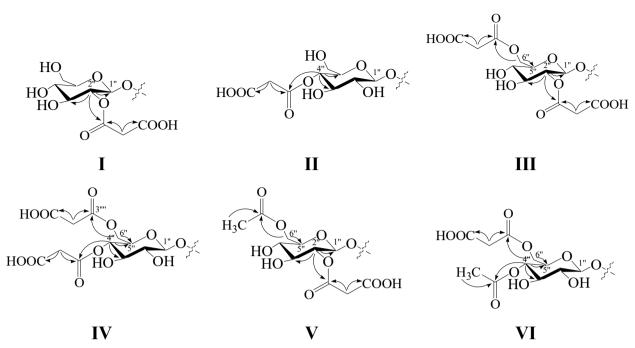


Рис. 2. Масс-спектры соединений I (а), II (б) и III (в): Ас – ацетил, Mal – малонил.

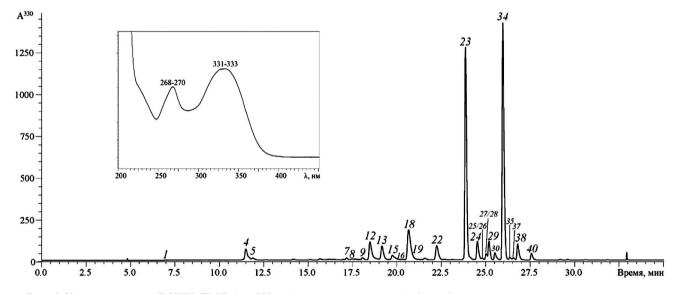
тилианина — акацетин 7-O-(6"-O-малонил)-глюкозиде, выделенном из травы A. rugosa полностью [15].

Дималонильные эфиры тилианина III и IV представляли собой акацетин 7-O-(2",6"-ди-O-малонил)- β -D-глюкопиранозид и акацетин 7-O-(4",6"-ди-O-малонил)- β -D-глюкопиранозид соответственно. На это указывали сдвиги в слабое поле сигналов C-2" ($\delta_{\rm C}$ 72.8 \rightarrow 73.4) и C-6" ($\delta_{\rm C}$ 60.2 \rightarrow 64.6) у III и C-4" ($\delta_{\rm C}$ 70.2 \rightarrow 72.9) и C-6" ($\delta_{\rm C}$ 60.2 \rightarrow 64.5) у IV [21], а также взаимные корреляции в спектрах HMBC. Данные о природных или синтетических дималонатах тилианина отсутствуют.

Таблица 2. Сигналы спектров ЯМР 1 Н (500 МГц, ДМСО- 1 d, 333 K, δ_{H} , м.д., 1 Гц) соединений 1 –VI


№ соединения	δ_{H}
I	Акацетин — 6.98 (1H, c; H-3), 6.42 (1H, д, J = 2.0 Гц; H-6), 6.83 (1H, д, J = 2.0 Гц; H-8), 8.11 (2H, д, J = 9.0 Гц; H-2', H-6'), 7.10 (2H, д, J = 9.0 Гц; H-3', H-5'), 3.82 (3H, c; 4'-С $\underline{\text{H}}_3$ O); 7- O - β -D-глюкопираноза — 5.43 (1H, д, J = 7.6 Гц; H-1"), 4.89 (1H, м; H-2"), 3.58 (1H, м; H-3"), 3.47 (1H, м; H-4"), 3.53 (1H, м; H-5"), 3.73 (1H, дд, J = 11.8, 5.2 Гц; H-6" _A), 3.90 (1H, д, J = 11.8 Гц; H-6" _B); 2"- O -малонил — 2.52 (2H, c; OC-С $\underline{\text{H}}_2$ -COOH)
II	Акацетин — 6.99 (1H, c; H-3), 6.10 (1H, д, J = 1.8 Гц; H-6), 6.80 (1H, д, J = 1.8 Гц; H-8), 8.09 (2H, д, J = 8.9 Гц; H-2', H-6'), 7.11 (2H, д, J = 8.9 Гц; H-3', H-5'), 3.85 (3H, c; 4'-С $\underline{\text{H}}_3$ O); 7- O - β -D-глюкопираноза — 5.25 (1H, д, J = 7.8 Гц; H-1"), 3.72 (1H, м; H-2"), 3.62 (1H, м; H-3"), 4.73 (1H, м; H-4"), 3.58 (1H, м; H-5"), 3.75 (1H, дд, J = 12.0, 5.0 Гц; H-6" _A), 3.94 (1H, д, J = 12.0 Гц; H-6" _B); 4"- O -малонил— 2.54 (2H, c; OC-С $\underline{\text{H}}_2$ -COOH)
III	Акацетин — 6.96 (1H, c; H-3), 6.40 (1H, д, J = 2.0 Гц; H-6), 6.82 (1H, д, J = 2.0 Гц; H-8), 8.09 (2H, д, J = 9.0 Гц; H-2', H-6'), 7.08 (2H, д, J = 9.0 Гц; H-3', H-5'), 3.81 (3H, c; 4'-С $\underline{\mathbf{H}}_3$ O); 7- O - β -Dглюкопираноза — 5.45 (1H, д, J = 7.6 Гц; H-1"), 4.92 (1H, м; H-2"), 3.57 (1H, м; H-3"), 3.50 (1H, м; H-4"), 3.72 (1H, м; H-5"), 4.35 (1H, дд, J = 11.9, 5.8 Гц; H-6" _A), 4.62 (1H, д, J = 11.9 Гц; H-6" _B); 2"- O -малонил — 2.52 (2H, c; OC-С $\underline{\mathbf{H}}_2$ -COOH)
IV	Акацетин — 6.95 (1H, c; H-3), 6.42 (1H, д, J = 1.9 Гц; H-6), 6.84 (1H, д, J = 1.9 Гц; H-8), 8.10 (2H, д, J = 9.1 Гц; H-2', H-6'), 7.12 (2H, д, J = 9.1 Гц; H-3', H-5'), 3.83 (3H, c; 4'- $\text{С}\underline{\text{H}}_3\text{O}$); 7- O - β - D -глюкопираноза — 5.47 (1H, д, J = 7.6 Гц; H-1"), 4.93 (1H, м; H-2"), 3.55 (1H, м; H-3"), 3.50 (1H, м; H-4"), 3.73 (1H, м; H-5"), 4.30 (1H, дд, J = 12.0, 5.6 Гц; H-6" _A), 4.58 (1H, д, J = 12.0 Гц; H-6" _B); 2"- O -малонил — 2.52 (2H, c; OC- $\text{С}\underline{\text{H}}_2$ -COOH); 6"- O -ацетил — 2.11 (3H, c; OC- $\text{С}\underline{\text{H}}_3$)
V	Акацетин — 6.95 (1H, c; H-3), 6.42 (1H, д, J = 2.1 Гц; H-6), 6.79 (1H, д, J = 2.1 Гц; H-8), 8.12 (2H, д, J = 8.8 Гц; H-2', H-6'), 7.10 (2H, д, J = 8.8 Гц; H-3', H-5'), 3.83 (3H, c; 4'-С $\underline{\mathbf{H}}_3$ О); 7- O - β -D-глюкопираноза — 5.25 (1H, д, J = 7.5 Гц; H-1"), 3.70 (1H, м; H-2"), 3.65 (1H, м; H-3"), 4.82 (1H, м; H-4"), 3.76 (1H, м; H-5"), 4.38 (1H, дд, J = 11.8, 5.7 Гц; H-6" _A), 4.65 (1H, д, J = 11.8 Гц; H-6" _B); 4"- O -малонил — 2.54 (2H, c; OC-С $\underline{\mathbf{H}}_2$ -COOH)
VI	Акацетин — 6.93 (1H, c; H-3), 6.40 (1H, д, J = 1.9 Гц; H-6), 6.82 (1H, д, J = 1.9 Гц; H-8), 8.14 (2H, д, J = 9.1 Гц; H-2', H-6'), 7.09 (2H, д, J = 9.1 Гц; H-3', H-5'), 3.81 (3H, c; 4'-С \underline{H}_3 O); 7- O - β -Dглюкопираноза — 5.23 (1H, д, J = 7.8 Гц; H-1"), 3.69 (1H, м; H-2"), 3.62 (1H, м; H-3"), 4.78 (1H, м; H-4"), 3.79 (1H, м; H-5"), 4.40 (1H, дд, J = 12.0, 5.7 Гц; H-6" _A), 4.69 (1H, д, J = 12.0 Гц; H-6" _B); 4"- O -ацетил — 2.09 (3H, c; OC-С \underline{H}_3); 6"- O -малонил — 2.57 (2H, c; OC-С \underline{H}_2 -COOH)

Дополнительные сведения о компонентах *А. foenicilum* были получены в ходе ВЭЖХ-ДМД-ИЭР-МС профилирования экстрактов из цветков и листьев данного растения (рис. 4). В результате было установлено присутствие 40 соединений, в том числе 35 — в цветках и 34 — в листьях (табл. 4). Кроме выделенных флавоноидов в цветках *А. foenicilum* после сравнения спектральных данных с таковыми известных веществ было установлено присутствие 8 производных кофейной кислоты, включая 3-*O*- (5), 4-*O*- (1), 5-*O*- (4), 3,4-ди-*O*- (14), 3,5-ди-*O*- (17), 4,5-ди-*O*-кофеилхинные кислоты (20), розмариновую кислоту (12) и литоспермовую кислоту В (18), а также апигенин 7-*O*-глюкозида (7) и нарингенин 7-*O*-глюкозида (9).


Природа пяти соединений (26, 31, 32, 36, 39) была установлена предварительно на основании УФ- и масс-спектральных данных в виде ацилированных гликозидов тилианина. Соединение 26 давало депротонированный ион с m/z 531,

последовательно распадавшийся до ионов с *m/z* 445 и 283, что характерно для моно-малонатов тилианина [15]. Из четырех возможных эфиров тилианина с замещением по положениям С-2", С-3", С-4" и С-6", присутствие трех уже установлено в *A. foenicilum* (2"-*O*-малонил 23, 4"-*O*-малонил 27, 6"-*O*-малонил 24), что указывало на наиболее вероятное строение 26 в виде пока не охарактеризованного 3"-*O*-малонильного эфира тилианина.

Четыре изомерных флавона **31**, **32**, **36** и **39** были идентифицированы как тилианин ди-O-малонаты, так как масс-спектры содержали набор ионов с m/z 617, 531, 445 и 283, сходный с таковым у соединений **28** и **33**. Из шести возможных соединений, замещенных по C-2",3"; C-2",4"; C-2",6"; C-3",4"; C-3",6" и C-4",6", известны лишь акацетин 7-O-(2",6"-ди-O-малонил)-глюкозид (**28**) и акацетин 7-O-(4",6"-ди-O-малонил)-глюкозид (**33**), описанные в данной работе, что указывает на существование еще четырех новых изомерных флавоноидов.

Рис. 3. Строение углеводных фрагментов новых гликозидов акацетина **I–VI**. Стрелками указаны ключевые корреляции в спектрах HMBC.

Рис. 4. Хроматограмма (ВЭЖХ-ДМД, $\lambda = 330$ нм) экстракта цветков *A. foenicilum* и спектр поглощения гликозидов акацетина (на врезке). Номера соединений указаны как в табл. 4.

Хроматографический профиль листьев A. foenicilum был близок к таковому цветков, но отличался присутствием 2-O- (2) и 3-O-кофеилтреоновых кислот (3), лютеолин 7-O-глюкозида (6) и двух его моноацетатов 10 и 11, а также отсутствием минорных флавонов 7, 9, 31, 32, 36 и 39. Ранее в экстрактах травы A. foenicilum, культивируемой в Румынии, были обнаружены 5-O-кофеилхинная кислота (4), лютеолин 7-O-глюкозид (6), апигенин 7-O-глюкозид (7) и розмариновая кислота (12) [21], следовательно 36 соединений (1- $\mathbf{3}$, 5, 8- $\mathbf{11}$, 13- $\mathbf{40}$)

обнаружены впервые у этого вида. Флавоноиды **15**, **22**, **24**, **25**, **29**, **34** и **35** были описаны как компоненты *A. rugosa* и *A. mexicana* первый раз полностью, т.к. другой вид [7] в отличие от 29 оставшихся фенольных соединений (1–3, 5, 8–11, 13, 14, 16–22, **23**, **26**–**28**, **30**–**33**, **36**–**40**), впервые выявленных у представителей рода *Agastache*.

Данные количественного анализа свидетельствовали о том, что содержание флавоноидов в цветках A. foenicilum (102.18 мг/г) в 4.7 раза выше такового в листьях (21.58 мг/г) (табл. 4). На долю

Таблица 3. Сигналы спектров ЯМР 13 С (125 МГц, ДМСО- d_6 , 330 K, δ_C , м.д.) соединений **I–VI** и акацетин 7-O-глюкозида (**AG**)

С-атом	I	II	III	IV	V	VI	AG	
		1	Акаце	тин		1	1	
2	163.3	163.4	163.2	163.1	163.5	163.4	163.2	
3	103.0	103.2	103.2	103.0	103.1	103.3	103.1	
4	181.9	182.0	181.8	181.8	182.1	181.8	181.8	
5	158.5	158.2	158.6	158.2	158.1	158.2	158.3	
6	99.4	99.1	99.2	99.2	99.4	99.2	99.3	
7	161.9	162.0	162.1	162.0	162.2	162.1	162.0	
8	95.4	95.2	95.6	95.3	95.3	95.4	95.2	
9	156.8	156.4	156.7	156.7	156.2	156.4	156.7	
10	105.4	105.1	105.2	105.4	105.4	105.3	105.2	
1'	122.4	122.5	122.0	122.2	122.4	122.0	122.5	
2', 6'	128.4	128.4	128.2	128.5	128.4	128.1	128.3	
3', 5'	114.4	114.2	114.4	114.6	114.5	114.4	114.0	
4'	162.6	162.4	162.7	162.7	162.8	162.9	162.5	
4'- <u>C</u> H ₃ O	55.2	55.2	55.4	55.5	55.4	55.3	55.4	
7- <i>О</i> -β-D-Глюкопираноза								
1"	96.8	100.1	96.5	100.2	96.4	100.1	100.2	
2"	73.5	72.7	73.4	72.5	73.2	72.4	72.8	
3"	73.8	76.2	73.9	76.0	73.8	75.8	77.3	
4"	70.3	72.7	70.7	72.9	70.9	73.2	70.2	
5"	76.2	75.1	75.3	74.8	75.0	74.7	76.4	
6''	60.3	60.3	64.6	64.5	65.3	64.3	60.2	
Малонил								
<u>C</u> OO	168.2	168.0	167.5, 168.1	168.0, 168.2	168.3	167.5		
$\underline{\mathbf{C}}\mathbf{H}_2$	42.0	42.2	42.0, 42.3	42.0, 42.3	42.1	42.4		
<u>C</u> OOH	170.6	170.3	168.7, 170.5	170.2, 170.5	170.5	168.7		
			Ацет	гил				
$\underline{\mathbf{C}}\mathbf{H}_3$					20.4	20.3		
<u>C</u> OO					169.4	169.6		

производных акацетина приходилось 94% от идентифицированных флавоноидов цветков (96.32 мг/г) и 82% от флавоноидов листьев (21.58 мг/г). Основными флавонами цветков были агастозид А (39.26 мг/г) и акацетин 7-*O*-(2"-*O*-ацетил-6"-*O*-малонил)-глюкозид (38.20 мг/г), а в листьях — агастозид А (10.49 мг/г). Концентрация производных кофейной кислоты составила 57.62 и 33.43 мг/г соответственно в цветках и листьях, в то время как общее содержание идентифицированных фенольных соединений было 159.80 мг/г в цветках и 55.01 мг/г в листьях, что значительно выше такового для Европейских сортов *А. foenicilum* (2.2—2.8 мг/г) [22].

Анализ биологической активности препаратов из *A. foenicilum* выявил, что экстракт цветков оказывал выраженное ингибиторное действие на

МАО-А и МАО-В в дозе 50 мкг/мл (63.7% и 75.4% соответственно), в то время как экстракт листьев демонстрировал меньшую эффективность ингибирования ферментов (10.3% и 15.8%).

Исследование влияния различных флавоноидов *А. foenicilum* на активность MAO-A и MAO-B показало, что неацилированные 7-*О*-глюкозиды флавоноидов демонстрировали либо слабую выраженность действия на ферменты (лютеолин 7-*О*-глюкозид) либо были неэффективны (гликозиды акацетина, апигенина, нарингенина и диосметина) (табл. 5). Наличие ацетильной группы в составе углеводного фрагмента молекулы по положениям С-4" и С-6" приводило к значительному возрастанию способности соединений ингибировать ферменты (МАО-А/МАО-В: гликозиды акацетина 3.89/3.44 мкМ,

Таблица 4. Хроматографическая подвижность (t_R), молекулярная формула, данные масс-спектров (ИЭР-МС) соединений 1—40 из *A. foeniculum* и их содержание в растительном сырье

№ t _R , мин Соединение 1 9.29 4-О-Кофеилхинная кислота 2 10.21 2-О-Кофеилхинная кислота 3 11.08 3-О-Кофеилхинная кислота 4 11.55 3-О-Кофеилхинная кислота 5 11.92 3-О-Кофеилхинная кислота 6 16.09 Лютеолин 7-О-глюкозид (шинарозид) 9 18.15 Нарингенин 7-О-глюкозид (прунин) 10 18.20 Лютеолин 7-О-(к"-О-ацетил)-глюкозид 11 18.43 Лютеолин 7-О-(к"-О-ацетил)-глюкозид 18 19.21 3,4-Ди-О-кофеилхинная кислота 19 20.04 Апигенин 7-О-(к"-О-ацетил)-глюкозид 10 20.04 Апигенин 7-О-(к"-О-ацетил)-глюкозид 20 3,5-Ди-О-кофеилхинная кислота 20 3,5-Ди-О-кофеилхинная кислота 20 4,5-Ди-О-кофеилхинная кислота 20 4,5-Ди-О-кофеилхинная кислота 20 20.37 Акацетин 7-О-("-О-ацетил)-глюкозид 21.98 Акацетин 7-О-("-О-ацетил)-глюкозид 22.37 Акацетин 7-О-("-О-ацетил)-глюкозид <th></th> <th>Формула С₁₆Н₁₈О₉ С₁₃Н₁₄О₈</th> <th>УИа</th> <th>rM+H1+</th> <th>ТМ+Н1+ ДОПОЛНИТЕЛЬНЫЕ</th> <th>, and a second</th> <th>VID THOUSER A. VIONAMOREE A.</th>		Формула С ₁₆ Н ₁₈ О ₉ С ₁₃ Н ₁₄ О ₈	УИа	rM+H1+	ТМ+Н1+ ДОПОЛНИТЕЛЬНЫЕ	, and a second	VID THOUSER A. VIONAMOREE A.
9.29 10.21 11.08 11.55 11.92 16.09 17.20 17.48 18.15 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.77		C ₁₆ H ₁₈ O ₉ C ₁₃ H ₁₄ O ₈ C ₁₃ H ₁₄ O ₈		[11 141]	ИОНЫ	в цветках	в листьях
10.21 11.08 11.55 11.92 16.09 17.20 17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.76 20.37 20.37 23.34		$C_{13}H_{14}O_{8}$ $C_{13}H_{14}O_{8}$	1a	353		+	+
11.08 11.55 11.92 16.09 17.20 17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.77 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.77		$C_{13}H_{14}O_8$	1a	297		I	+
11.55 11.92 16.09 17.20 17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.76 20.76 20.76 20.76 20.76 20.77 20.78			la	297		I	+
11.92 16.09 17.20 17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.70 20.70 20.76 20.37 21.98 22.37 23.94 24.59		C16H18O9	la	353		9.37 ± 0.18	2.86 ± 0.05
16.09 17.20 17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.76 20.76 20.76 20.77 20.76 20.76 20.76 20.76 20.77 20.77		$C_{16}H_{18}O_9$	la	353		1.93 ± 0.03	2.03 ± 0.04
17.20 17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.70 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.76 20.77 20.78		$C_{21}H_{20}O_{11}$	la	447	285	I	+
17.48 18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.76 20.76 20.77 20.78 20.70 20.76 20.77 20.77		$C_{21}H_{20}O_{10}$	la	431	269	+	I
18.15 18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.76 20.76 20.70 20.76 20.37 23.94 23.94		$C_{23}H_{22}O_{12}$	16	489	447, 285	+	1.58 ± 0.03
18.20 18.43 18.54 19.21 19.65 19.81 20.04 20.70 20.76 20.76 20.78 20.76 20.76 20.77 20.76 20.76 20.77 20.76 20.76 20.77		$\mathbf{C}_{21}\mathbf{H}_{22}\mathbf{O}_{10}$	1a	433	271	+	I
18.43 18.54 19.21 19.65 19.81 20.04 20.13 20.70 20.76 20.76 20.81 21.98 22.37 23.94 23.94 24.59	_	$C_{23}H_{22}O_{12}$	2	489	447, 285	I	+
18.54 19.21 19.65 19.81 20.04 20.70 20.76 20.76 20.78 21.98 22.37 23.94 23.94	Лютеолин 7-0-(Х"-0-ацетил)-глюкозид ^в	$C_{23}H_{22}O_{12}$	2	489	447, 285	I	+
19.21 19.65 19.81 20.04 20.13 20.70 20.76 20.81 21.98 22.37 23.94 24.59	Розмариновая кислота	$C_{18}H_{16}O_{8}$	la	359		15.69 ± 0.31	26.73 ± 0.54
19.65 19.81 20.04 20.13 20.70 20.76 20.81 21.98 22.37 23.94 24.59	Апигенин 7-0-(2"-0-ацетил)-глюкозид	$C_{23}H_{22}O_{11}$	16	473	431, 269	+	+
19.81 20.04 20.13 20.70 20.76 20.81 21.98 22.37 23.94 24.59	3,4-Ди-О-кофеилхинная кислота	$C_{25}H_{24}O_{12}$	la	515	355	+	+
20.04 20.13 20.70 20.76 20.81 21.98 22.37 23.94 24.59		$C_{24}H_{24}O_{12}$	16	547	461, 299, 285	1.85 ± 0.03	1.88 ± 0.03
20.13 20.70 20.76 20.81 21.98 22.37 23.94 24.59	(6"-О-ацетил)-глюкозид	$C_{23}H_{22}O_{11}$	16	473	431, 269	3.75 ± 0.07	0.27 ± 0.00
20.70 20.76 20.81 21.98 22.37 23.94 24.59	3,5-Ди-О-кофеилхинная кислота	$C_{25}H_{24}O_{12}$	la	515	355	+	+
20.76 20.81 21.98 22.37 23.94 24.59	Литоспермовая кислота В	$C_{36}H_{30}O_{16}$	la	717	519	30.63 ± 0.62	1.81 ± 0.03
20.81 21.98 22.37 23.94 24.59	Апигенин 7-О-(3"-О-ацетил)-глюкозид	$C_{23}H_{22}O_{11}$	16	473	431, 269	+	+
21.98 22.37 23.94 24.59	4,5-Ди-О-кофеилхинная кислота	$C_{25}H_{24}O_{12}$	la	515	355	+	+
22.37 23.94 24.59	Апигенин 7-0-(4"-0-ацетил)-глюкозид	$C_{23}H_{22}O_{11}$	16	473	431, 269	+	+
23.94	(тилианин)	$C_{22}H_{22}O_{10}$	16	445	283	4.12 ± 0.08	0.68 ± 0.01
24.59		$C_{25}H_{24}O_{13}$	16	531	445, 283	39.26 ± 0.79	10.49 ± 0.21
((((((((((((((((((((Акацетин 7-О-(6"-О-малонил)-глюкозид	$C_{25}H_{24}O_{13}$	16	531	445, 283	3.76 ± 0.07	0.08 ± 0.00
25 24.75 Akauetuh /- <i>O</i> -(2"- <i>O</i> -aue (изоагастахоз	Акацетин 7- 0 - $(2$ "- 0 -ацетил)-глюкозид (изоагастахозид)	$C_{24}H_{24}O_{11}$	16	487	445, 283	+	+
26 24.87 Акацетин 7- <i>O</i> -(X"- <i>O</i> -малонил)-глюкозид		$C_{25}H_{24}O_{13}$	2	531	445, 283	+	0.95 ± 0.02
27 25.00 Акацетин 7-О-(4"-О-малонил)-глюкозид (агастозид В)		$C_{25}H_{24}O_{13}$	16	531	445, 283	+	0.23 ± 0.00

Таблица 4. Окончание

					И	ИЭР-МС, m/z	Содержание	Содержание \pm S.D., мг/г ⁶
Ž	t _к , мин	Соединение	Формула	$y M^a$	[M+H]	[M+H] ⁺ дополнительные ионы	в цветках	в листьях
28	25.08	Акацетин 7- O - $(2",6"$ -ди- O -малонил)-глюкозид (агастозид С)	$\mathrm{C_{28}H_{26}O_{16}}$	16	617	531, 445, 283	1.05± 0.02	0.87 ± 0.02
30	25.55	Акацетин 7- O -(2"- O -малонил-6"- O -ацетил)-глюкозид (агастозид Е)	$C_{27}H_{26}O_{14}$	16	573	531, 487, 445, 283	1.45 ± 0.03	0.10 ± 0.00
31	25.59	Акацетин 7- O - $(X'',Y''$ -ди- O -малонил $)$ -глюкозид $^{\mathtt{B}}$	$C_{28}H_{26}O_{16}$	2	617	531, 445, 283	+	+
32	25.70	Акацетин 7- O -(X",Y"-ди- O -малонил)-глюкозид $^{\mathtt{B}}$	$\mathbf{C}_{28}\mathbf{H}_{26}\mathbf{O}_{16}$	7	617	531, 445, 283	+	I
33	26.03	Акацетин 7- O - $(4",6"$ -ди- O -малонил)-глюкозид (агастозид D)	$\mathrm{C_{28}H_{26}O_{16}}$	16	617	531, 445, 283	+	I
34	26.10	Акацетин 7- O -(2"- O -ацетил-6"- O -малонил)-глюкозид	$C_{27}H_{26}O_{14}$	16	573	531, 487, 445, 283	38.20 ± 0.79	3.75 ± 0.07
35	26.40	Акацетин 7- O -(3"- O -ацетил-6"- O -малонил)-глюкозид	$C_{27}H_{26}O_{14}$	16	573	531, 487, 445, 283	0.34 ± 0.00	0.36 ± 0.00
36	26.44	Акацетин 7- O -(X",Y"-ди- O -малонил)-глюкозид $^{\mathtt{B}}$	$C_{28}H_{26}O_{16}$	2	617	531, 445, 283	+	I
37	26.62	Лютеолин 7,4'-диметиловый эфир	$C_{17}H_{14}O_6$	16	313	299, 285	0.26 ± 0.00	+
38	26.85	Акацетин 7- O -(4"- O -ацетил-6"- O -малонил)-глюкозид (агастозид F)	$C_{27}H_{26}O_{14}$	16	573	531, 487, 445, 283	3.32 ± 0.07	0.34 ± 0.00
39	26.91	Акацетин 7- O -(X",Y"-ди- O -малонил)-глюкозид $^{\mathtt{B}}$	$C_{28}H_{26}O_{16}$	2	617	531, 445, 283	+	I
40	27.65	Акацетин	$C_{16}H_{12}O_5$	16	283	269	1.29 ± 0.02	+
CyM	тмарное с	Суммарное содержание:						
I -	производг	- производных кофейной кислоты					57.62	33.43
I -	производ г	- производных лютеолина					0.26	1.58
I -	троизводі	- производных апигенина					3.75	0.27
I -	производг	- производных диосметина					1.85	1.88
I -	производг	- производных акацетина					96.32	17.85
þ -	- флавоноидов	дов					102.18	21.58
þ -	фенольны	- фенольных соединений					159.80	55.01
a V/2001			4/1					

тифицированное соединение после выделения и анализа данных УФ, ЯМР спектроскопии и масс-спектрометрии; (2) предположительно охарактеризованные соединения после сравнения данных УФ и масс-спектров с таковыми из литературы. В пересчете на воздушно-сухую массу. В Символы X" и Y" указывают на то, ^а Уровень идентификации: (1а) идентифицированное соединение после анализа данных УФ, масс-спектрометрии в сравнении с известным веществом; (16) иденчто положение заместителей не определено.

	AFILIVOU
апигенина, лютеолина) из A .	foeniculum, $IC_{50} \pm S.D.$, MKM*
Таблица 5. Показатель 50%-с	ого ингиоирования МАО-А и МАО-В флавоноидами (гликозидами акацетина,

	Агликон						
Углеводный фрагмент	акац	цетин	апиг	енин	люте	солин	
	MAO-A	MAO-B	MAO-A	MAO-B	MAO-A	MAO-B	
7- <i>O</i> -Glc	> 50	> 50	> 50	> 50	$12.8 \pm 0.9^{\dagger}$	$10.7\pm0.8^{\dagger\dagger}$	
7- <i>O</i> -(2"- <i>O</i> -Ac)-Glc	> 50	> 50	> 50	> 50	_	_	
7- <i>O</i> -(3"- <i>O</i> -Ac)-Glc	_	_	> 50	> 50	_	_	
7- <i>O</i> -(4"- <i>O</i> -Ac)-Glc	_	_	$3.87 \pm 0.24^{\dagger}$	$3.53 \pm 0.23^{\dagger\dagger}$	_	_	
7- <i>O</i> -(6"- <i>O</i> -Ac)-Glc	$3.89 \pm 0.29^{\dagger}$	$3.44 \pm 0.25^{\dagger\dagger}$	$3.52 \pm 0.21^{\dagger}$	$3.31 \pm 0.22^{\dagger\dagger}$	$2.83 \pm 0.22^{\dagger}$	$2.97 \pm 0.21^{\dagger\dagger}$	
7- <i>O</i> -(2"- <i>O</i> -Mal)-Glc	> 50	> 50	_	_	_	_	
7- <i>O</i> -(4"- <i>O</i> -Mal)-Glc	$1.53 \pm 0.11^{\dagger}$	$1.48 \pm 0.10^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(6"- <i>O</i> -Mal)-Glc	$2.30 \pm 0.17^{\dagger}$	$1.75 \pm 0.12^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(2"- <i>O</i> -Ac-6"- <i>O</i> -Mal)-Glc	$2.35 \pm 0.18^{\dagger}$	$1.96 \pm 0.15^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(3"- <i>O</i> -Ac-6"- <i>O</i> -Mal)-Glc	$2.37 \pm 0.18^{\dagger}$	$1.90 \pm 0.15^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(4"- <i>O</i> -Ac-6"- <i>O</i> -Mal)-Glc	1.95 ± 0.14	$1.63 \pm 0.11^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(2"- <i>O</i> -Mal-6"- <i>O</i> -Ac)-Glc	$3.95 \pm 0.31^{\dagger}$	$3.59 \pm 0.27^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(2",6"- <i>O</i> -Mal ₂)-Glc	2.79 ± 0.19	$2.56 \pm 0.21^{\dagger\dagger}$	_	_	_	_	
7- <i>O</i> -(4",6"- <i>O</i> -Mal ₂)-Glc	$1.58 \pm 0.09^{\dagger}$	$1.30 \pm 0.09^{\dagger\dagger}$	_	_	_	_	

^{*} Вещества сравнения: толоксатон — IC_{50} MAO-A 1.78 ± 0.08 мкМ; паргилин — IC50MAO-B 0.15 ± 0.01 мкМ. Отличия достоверны в сравнении с показателями веществ сравнения († — толоксазон, †† — паргилин).

гликозиды апигенина 3.52-3.87/3.31-3.53 мкМ, гликозиды лютеолина 2.83/2.97 мкМ). Присутствие заместителя у С-2" и С-3" глюкозы не влияло на активность соединения. Сходный паттерн в проявлении активности был отмечен при введении с молекулу флавонов фрагмента малоновой кислоты, причем 4"-О-малонаты были более эффективными ингибиторами, чем 6"-О-малонаты. Агастозид В (акацетин 7-*O*-(4"-*O*-малонил)-глюкозид: 1.53 мкМ) оказывал большее ингибиторное влияние на активность МАО-А, чем вещество сравнения толоксатон (1.78 мкМ). Диацилированные гликозиды также ингибировали МАО-А и МАО-В, причем 2",6"- и 3",6"-дизамещенные гликозиды были менее эффективными, чем соединения с 4",6"-типом замещения. Так активность агастозида F (акацетин 7-O-(4"-O-ацетил-6"-О-малонил)-глюкозид) и D (акацетин 7-O-(4",6"-ди-O-малонил)-глюкозид) в отношении МАО-А/МАО-В составила 1.95/1.63 и 1.58/1.30 мкМ соответственно. Ранее было показано, что присутствие малонильной группы у О-гликозилфлавонов по положению С-6" может приводить к образованию водородных связей между ацильным фрагментом и участками молекулы ферментов (Cys172 и Ile477 у MAO-В) [5]. В настоящей работе впервые показано, что 4''-O-малонаты флавоноидов являются более активными ингибиторами МАО-А и МАО-В, чем их 6"-О-замещенные аналоги.

Учитывая высокое содержание ацилированных производных тилианина у *A. foenicilum* можно

высказать предположение, что присутствие именно этой группы соединений в экстрактах растения объясняет их способность ингибировать МАО. Дополнительно было изучено влияние некоторых нефлавоноидных соединений, обнаруженных в высоких концентрациях в A. foenicilum, на активность МАО-А и МАО-В и установлено, что розмариновая кислота, литоспермовая кислота В и 5-O-кофеилхинная кислота проявляли низкую выраженность действия ($IC_{50} > 50 \text{ мкM}$).

Таким образом, проведенные исследования показали, что *A. foenicilum* является источником различных фенольных соединений, включая производные кофейной кислоты и флавоноиды. Среди последних особое внимание заслуживают ацилированные гликозиды акацетина, которые обладают способностью ингибировать активность MAO-A и MAO-B и могут рассматриваться как перспективные кандидаты для создания новых лекарственных средств.

ФИНАНСИРОВАНИЕ. Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации в рамках научного проекта FWSM-2021-0005 (№121030100227-7).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ. В данной работе отсутствуют исследования человека или животных.

КОНФЛИКТ ИНТЕРЕСОВ. Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Lamptey R.N.L., Chaulagain B., Trivedi R., Gothwal A., Layek B., Singh J. // Int. J. Mol. Sci. 2022. V. 23. № 1851. https://doi.org/10.3390/ijms23031851
- 2. Youdim M.B.H., Edmondson D., Tipton K.F.// Nature Rev. Neurosci. 2006. V. 7. P. 295–309. https://doi.org/10.1038/nrn1883
- 3. Dhiman P., Malik N., Sobarzo-Sánchez E., Uriarte E., Khatkar A. // Molecules. 2019. V. 24. № 418. https://doi.org/10.3390/molecules24030418
- 4. Chaurasiya N.D., Midiwo J., Pandey P., Bwire R.N., Doerksen R.J., Muhammad I., Tekwani B.L. // Molecules. 2020. V. 25. № 5358. https://doi.org/10.3390/molecules25225358
- Lee H.W., Ryu H.W., Baek S.C., Kang M.-G., Park D., Han H.-Y., Kim H. // Int. J. Biol. Macromol. 2017. V. 104. P. 547–553. https://doi.org/10.1016/j.ijbiomac.2017.06.076
- 6. *Абрамчук А.В., Карпухин М.Ю.* // Аграрный вестник Урала. 2017. № 2. С. 6—9.
- Nechita M.-A., Toiu A., Benedec D., Hanganu D., Ielciu I., Oniga O., Nechita V.-I., Oniga I. // Plants. 2023.
 V. 12. № 2937. https://doi.org/10.3390/plants12162937
- 8. *Vogelmann J.E.* // Biochem. Syst. Ecol. 1984. V. 12. P. 363–366. https://doi.org/10.1016/0305-1978(84)90067-X
- 9. *Чумакова В.В., Попова О.И., Чумакова В.В.* // Растит. ресурсы. 2011. Т. 47. С. 51–55.
- Olennikov D.N., Kashchenko N.I. // Agronomy. 2023.
 V. 13. № 2410. https://doi.org/10.3390/agronomy13092410
- 11. *Olennikov D.N.* // Separations. 2023. V. 10. № 255. https://doi.org/10.3390/separations10040255

- 12. *Olennikov D.N., Kashchenko N.I.* // Appl. Biochem. Microbiol. 2023. V. 59. P. 530–538. https://doi.org/10.1134/S0003683823040099
- 13. *Olennikov D.N.*, *Chirikova N.K.* // Chem. Nat. Compd. 2019. V. 55. P. 1032–1038. https://doi.org/10.1007/s10600-019-02887-1
- Olennikov D.N. // Chem. Nat. Compd. 2022. V. 58. P. 816–821. https://doi.org/10.1007/s10600-022-03805-8
- 15. Seo Y.H., Kang S.-Y., Shin J.-S., Ryu S.M., Lee A.Y., Choi G., Lee J. // J. Nat. Prod. 2019. V. 82. P. 3379—3385. https://doi.org/10.1021/acs.jnatprod.9b00697
- 16. *Park S., Kim N., Yoo G., Kim Y., Lee T.H., Kim S.Y., Kim S.H.* // Biochem. Syst. Ecol. 2016. V. 67. P. 17–21. https://doi.org/10.1016/j.bse.2016.05.019
- 17. Mizuno T., Seto H., Nakane T., Murai Y., Tatsuzawa F., Iwashina T. // Bull. Natl. Mus. Nat. Sci. B. 2023. V. 49. P. 57–64. https://doi.org/10.50826/bnmnsbot.49.2 57
- 18. Kachlicki P., Piasecka A., Stobiecki M., Marczak Ł. // Molecules. 2016. V. 21. № 1494. https://doi.org/10.3390/molecules21111494
- 19. *Itokawa H.*, *Suto K.*, *Takeya K.* // Chem. Pharm. Bull. 1981. V. 29. P. 1777—1779. https://doi.org/10.1248/cpb.29.1777
- 20. *Olennikov D.N., Kashchenko N.I.* // Chem. Nat. Comp. 2016. V. 52. P. 996–999. https://doi.org/10.1007/s10600-016-1845-7
- 21. *Norazhar A.I., Lee S.Y., Faudzi S.M.M., Shaari K.* // Appl. Sci. 2021. V. 11. № 3526. https://doi.org/10.3390/app11083526
- Duda S.C., Marghitas L.A., Dezmirean D., Duda M., Margaoan R., Bobis O. // Ind. Crops Prod. 2015. V. 77. P. 499–507. https://doi.org/10.1016/j.indcrop.2015.09.045

New Acacetin Glycosides and Other Phenolics from *Agastache foeniculum* and Their Influence on Monoamine Oxidase A and B

D. N. Olennikov^{a, *} and N. I. Kashchenko^a

^aInstitute of General and Experimental Biology SB RAS, Ulan-Ude, 670047 Russia *e-mail: olennikovdn@mail.ru

Monoamine oxidase (MAO) inhibitors are effective therapeutic agents for the treatment of neurodegenerative diseases, and natural flavonoids found in *Agastache* species belong to them. In the present study, six new acylated flavone-O-glycosides were isolated from *A. foeniculum* and identified using UV, NMR spectroscopy and mass spectrometry as agastoside A (acacetin 7-O-(2"-O-malonyl)- β -D-glucopyranoside), B (acacetin 7-O-(4"-O-malonyl)- β -D-glucopyranoside), C (acacetin 7-O-(2",G-di-O-malonyl)-G-D-glucopyranoside), D (acacetin 7-O-(4",G-di-O-malonyl)-G-D-glucopyranoside), E (acacetin 7-O-(2"-O-malonyl)-G-D-glucopyranoside), Using flash chromatography and liquid chromatography-mass spectrometry, an additional 34 known phenolic compounds were detected. A study of biological activity showed that *A. foeniculum* flavonoids had an inhibitory effect on MAO-A and MAO-B, with the greatest effect noted for acacetin 7-O-glucoside acetate and malonate esters, which may be promising compounds for the development new drugs.

Keywords: Agastache foeniculum, monoamine oxidase, inhibitors, acacetin glycosides, tilianin